myjournal manuscript No.
(will be inserted by the editor)

A Logical Approach to Data-Aware Automated Sequence
Generation

Sylvain Hallé - Roger Villemaire - Omar
Cherkaoui - Rudy Deca

Received: 7 July 2010 / Accepted: 29 October 2010

Abstract Automated sequence generation can be loosely defined as the algo-
rithmic construction of a sequence of objects satisfying a set of constraints for-
mulated declaratively. A variety of scenarios, ranging from self-configuration
of network devices to automated testing of web services, can be described
as automated sequence generation problems. In all these scenarios, the se-
quence of valid objects and their data contents are interdependent. Despite
these similarities, most existing solutions for these scenarios consist of ad hoc,
domain-specific tools. This paper stems from the observation that, when such
“data-aware” constraints are expressed using mathematical logic, automated
sequence generation becomes a case of satisfiability solving. This approach
presents the advantage that, for many logical languages, existing satisfiabil-
ity solvers can be used off-the-shelf. Te paper surveys three logics suitable
to express real-world data-aware constraints and discusses the practical im-
plications, with respect to automated sequence generation, of some of their
theoretical properties.

1 Introduction

Historically, the advancement of computing has been marked by the develop-
ment of successive abstractions in the description of the tasks to be accom-
plished by a system. As an example, in the field of programming, the advent
of the assembly language, followed by structured programming languages, al-
lowed users to progressively distance themselves from technical and hardware
issues to concentrate on a logical description of the work to be done.

S. Hallé
Université du Québec a Chicoutimi, Canada
E-mail: shalle@acm.org

R. Villemaire, O. Cherkaoui, R. Deca
Université du Québec & Montréal, Canada
E-mail: {villemaire.roger, cherkaoui.omar}@uqgam.ca

2 S. Hallé et al.

This evolution towards more abstract descriptions continues to this day.
Until recently, the development and use of a system followed an approach
which could be called imperative: although the languages and the formalisms
evolved towards more abstract concepts, the basic principle always consisted
of describing the tasks to be carried out in order to produce a desired result.
However, a number of fields in computing have been transformed in recent
years with the advent of a new, declarative approach.

In a declarative paradigm, the results, rather than the tasks, are described
by means of a language. The actual way in which these results should be ob-
tained is not specified. The new job for a user is no longer to design and express
a sequence of steps that the system should follow, but rather to describe as pre-
cisely as possible the data or functionalities expected from the system. While
the imperative approach “commands”, the declarative approach “demands”.

This raises a fundamental problem: to develop automated techniques to
produce a result that satisfies some declarative specification. The premise of
this work is the following: mathematical logic represents an appropriate formal
foundation for the resolution of this problem. Indeed, mathematical logic is
essentially a declarative language: by means of logical connectives, it is possible
to build statements that become true or false depending on the context on
which they are interpreted.

First, in Section 2, the paper studies the concept of sequential constraints
in computing and shows by a couple of examples their widespread presence in a
variety of scenarios, ranging from web service compositions to the management
of network devices. Section 2.3 then shows how the automated generation of
sequences of operations can be put to numerous uses in the aforementioned
scenarios. Depending on the field, automated sequence generation becomes an
instance of self-configuration, test case generation, or web service composition
problems.

Second, in Section 3, the paper provides a simple formal model for repre-
senting operations and sequences of operations carrying simple data payloads
such as command parameters, XML message elements, or function arguments.
It shows how all the presented scenarios can be appropriately represented un-
der this model, thereby giving a common, domain-independent formal foun-
dation for the study of sequential dependencies in computing.

Finally, the paper advocates the use of logical methods for representing
such constraints in a declarative fashion. Automated sequence generation then
becomes a mere instance of satisfiability solving for a set of logic formulee.
An interesting consequence is that, for many logics, automated satisfiability
solvers are readily available, and can be used as general purpose engines, thus
removing the need for ad hoc, domain-specific solutions. In addition, well stud-
ied properties of these logics, such as undecidability theorems or complexity
results, apply directly to the computing scenarios they are used to model.

This formal model reveals an important and often overlooked characteristic
of sequential properties. In many cases, the sequence of valid objects and
their respective data contents cannot be treated separately. Yet, we shall see

A Logical Approach to Data-Aware Automated Sequence Generation 3

that traditional logics are generally ill-equipped for expressing such kinds of
constraints.

To the best of the authors’ knowledge, this is the first attempt at a domain-
independent study of logic-based automated sequence generation. Hence, the
paper intends to be a road map for future work on that topic. To this end,
a set of three logics suitable for that task are described in Sections 4 to 6.
The same sample properties of a real-world scenario are modelled in each of
them; tools and techniques for automatically generating sequences satisfying
the resulting formulee are then presented.

2 Sequential Aspects in Computing

The first part of this paper deals with the description of valid sequences of
operations in various fields, and describes how such sequences of operations
can be automatically generated. We first illustrate the concept of sequential
dependencies by means of two examples taken from networks and web ser-
vices. For each of these examples, sequential dependencies are extracted and
formalized.

2.1 Example 1: Management of Network Services

Computer networks have become over the years the central element of numer-
ous applications. While they were originally limited to a few basic functionali-
ties (e-mail, file transfer), a plethora of new services are adding to the value of
these networks: voice over IP, virtual private networks (VPNs), peer-to-peer
communities. The growth of these functionalities over the years considerably
increased the complexity of managing the devices responsible for their proper
functioning, in particular network routers [62].

The deployment of a service over a network basically consists in altering
the configuration of one or many equipments to implement the desired func-
tionalities. We take as an example the Virtual Private Network (VPN) service,
which consists in a private network constructed within a public network such
as a service provider’s network [60].

Such a service consists of multiple configuration operations; in the case of
so-called “Layer 3 VPNs”, it involves setting the routing tables and the VPN
forwarding tables, setting the MPLS, BGP and IGP connectivity on multiple
equipments having various roles. An average of 10 parameters must be added
or changed in each device involved in the deployment of a VPN.

Figure 1 shows a sequence of commands in the Cisco Internet Operating
System (IOS) for the configuration of a Virtual Routing and Forwarding table
(VRF) on a router. Command ip vrf is to be executed first. Its purpose is to
create a VRF instance for the Customer_1 VPN on a router. This command
also opens the ip vrf configuration mode, in which the main VRF parameters
can be configured. These parameters are the route distinguisher (rd), which

4 S. Hallé et al.

ip vrf Customer_1

rd 100:110

route-target both 100:1000
ip vrf forwarding Customer_1

Fig. 1 A sequence of VRF configuration commands for the VPN example.

allows the unique identification of the VPN’s routes throughout the network,
and the import/export route target, which are exchanged between ingress
and egress routers in order to identify the VPNs to which the updates belong
to [56,60].

After the creation of the VRF, it is activated on one of the router’s in-
terfaces. However, when done in an uncoordinated way, changing, adding or
removing components or data that implement network services can bring the
network in an inconsistent or undefined state.

In this context, the application of a declarative approach becomes highly
desirable. For a network manager, it consists of describing the services or
the functionalities available on a network, in conjunction with the modalities
for consuming these services or functionalities by the users (customers). To
this end, the official documentation for VRF functions in Cisco’s operating
system [4] describes a clear sequential order of execution among these VRF
configuration commands. Firstly, we cannot configure the rd and route-tar-
get parameters of a VRF before creating it with the command ip vrf:

Sequential Rule 1 Command rd must be called after command ip vrf.

Secondly, we cannot activate a VRF on an interface before creating it (with
command ip vrf) and configuring its parameters (with commands rd and
route target). Moreover, the VRF we activate must be the one we created,
so there is also a relationship between the VRF name in both commands:

Sequential Rule 2 Command ip vrf forwarding must be called after com-
mands rd and route-target. Moreover, it must have the same argument as
ip vrf.

Note that other sequential rules could be similarly expressed for the route-tar-
get commands and between the ip vrf forwarding. The reader is referred
to [56] for further details about the setup of a VPN in Cisco’s I0OS.

2.2 Example 2: Transactional Web Services

As a second example, we take the case of increasingly popular web applications,
where some server’s functionality is made publicly available as an instance of a
web service that can be freely accessed by any third-party application running
in a web browser. Notable examples of applications using such a scheme in-
clude Facebook, Twitter, and Google Maps, among others. In most cases, the
communication between the application running in the browser and the web

A Logical Approach to Data-Aware Automated Sequence Generation 5

<message>
<action>getStockDetails< /action>
<stocks>
<stock-name>123< /stock-name>
<stock-name>456< /stock-name>
<stock-name>789< /stock-name>
< /stocks>
</message>

Fig. 2 A sample XML message sent by a web application to a web service.

service is done through the exchange of documents formatted in the eXtensible
Markup Language (XML), as shown in Figure 2.

The precise format in which web service operations can be invoked by
an applications is detailed in a a document called an interface specification;
for XML-based interactions, the Web Service Description Language (WSDL)
[14] provides a way of defining the structure and acceptable values for XML
requests and responses exchanged with a given service.

While such “data contracts” are relatively straightforward to specify and
verify, interface contracts go beyond such static requirements and often in-
clude a temporal aspect. For example, the online documentation for the pop-
ular Amazon E-Commerce Service [2] elicits constraints on possible sequences
of operations that must be fulfilled to avoid error messages and transaction
failures [40].

As a simple example, we consider the case of an online trading company,
taken from [34,42]. The company is responsible for selling and buying stocks
for its customers; it exposes its functionalities through a web service interface.
An external buyer (which can be a human interfacing through a web portal,
or another web service acting on behalf of some customer) can first connect
to the trading company and ask for the list of available products. This is
done through the exchange of a getAllStocks message, to which the company
replies with a stockList message. The customer can then decide to get more
information about each stock, such as its price and available quantity, using a
getStockDetails message giving the list of stock names on which information is
asked (see Figure 2). The trading company replies with a stockDetails message
listing the information for each stock. Finally, the customer can buy or sell
stock products. In the case of a buy, this is done by first placing a placeBuy-
Order message, listing the name and desired amount of each products to be
bought.

This scenario also comprises constraints on the possible sequence of valid
operations. For example, a user can call a cash transfer by sending a cash-
Transfer message without having first specified whether a stock should be
bought or sold, or which precise stock is concerned by the transaction. A first
choreography constraint would then be:

Sequential Rule 3 No cash transfer can be initiated before a buy or sell con-
firmation has been issued.

6 S. Hallé et al.

A guarantee on the termination of pending transactions can also be im-
posed. More precisely, the system can require that all transactions eventually
complete in two possible ways:

Sequential Rule 4 Every buy/sell order is eventually completed by a cash
transfer or a cancellation referring to the same bill ID.

Although there exist other constraints in this scenario, these two sequen-
tial rules are sufficient for the paper’s thesis. For a more thorough study of
sequential constraints in transactional web services (and additional examples),
the reader is referred to [32,35].

2.3 Applications of Automated Sequence Generation

The previous scenarios share two important points. First, they involve sets of
discrete “events”: in the first scenario, events are configuration commands; in
the second scenario, events are web service messages sent or received. Second,
these events occur in a precise (or at least, not completely arbitrary) sequence.
Therefore, as we have seen, configuring a VPN not only involves figuring out
what commands to issue to a router; these commands will be rejected if they
are issued in the “wrong” order. Similarly, interacting with the online trad-
ing company will only succeed if the protocol imposed by the web service is
respected by both sides.

The prospect of automatically generating sequences of such events, given
a set of declarative constraints similar to the previous Sequential Rules, is
appealing. As it turns, this concept finds many applications in various fields.
We briefly mention a few of them, along with pointers to additional resources
for each.

2.3.1 Self-Configuration in Autonomic Computing

The automated generation of a structure satisfying a set of properties is part of
a more general paradigm called autonomic computing [37,55]; applied in par-
ticular to computer networks, this notion is called autonomic (or autonomous)
networking [25].

Self-configuration and self-healing are two central capabilities that a net-
work element must implement in order to exhibit autonomic behaviour [55]. In
self-configuration, the numerous parameters of a device are populated with ap-
propriate values without immediate external intervention; these values depend
both on the element’s role and its network context. Narain [52] describes a typ-
ical self-configuration architecture, called a service grammar. In this context,
the requirements language expresses constraints relative to each configuration
command; a “synthesis engine” produces commands and appropriate values
that fulfil these requirements, which are then applied to each device. The VPN
scenario described in Section 2.1 corresponds to this setting: an automatically
generated sequence of commands “auto-configures” a VPN.

A Logical Approach to Data-Aware Automated Sequence Generation 7

Most existing configuration management systems, such as Cfengine [13] and
Befg2 [21], use an imperative rather than declarative approach, and are there-
fore only partially appropriate for the present problem. An approach suggested
by Narain [53] uses a Boolean satisfiability solver to produce a configuration
for a set of routers satisfying a number of network constraints expressed in the
Alloy language [41]. Such an approach was also explored for the automated
generation of configuration parameters in network devices, using different log-
ics, by the authors in [36].

However, none of these solutions involve sequential constraints, and only
refer to static snapshots of configurations. As the previous scenarios showed, in
many cases finding the appropriate operations and values for these operations
is not sufficient.

2.8.2 Automated Composition of Web Services

An open challenge in the web service field is to automatically find a way to
make multiple web services interact between each other without a predefined
pattern of interaction: this is called web service choreography [6]. In such a
situation, a script involving all the potential web services is generated dynam-
ically from a set of specifications for each service. It is up to the composition
engine to resolve these constraints and call each services’ operations in ways
that are consistent with each set of requirements.

The main motivation for this setting is the fact that web services forming a
choreography can be selected dynamically, at runtime. The classical example
is a travel agency, which asks for quotes from various providers before dynam-
ically selecting the best offer and combining reservations details for a car, a
hotel room and airline tickets. Clearly, it is impractical to compute in advance
all possible combinations of web service providers, and hence their interaction
should be guided by the sum of their individual “protocols”.

The scenario shown in Section 2.2 corresponds to this setting. The online
trading company publicizes a number of data and sequential constraints on its
possible invocations. Any potential client must abide by these constraints in
order to successfully interact with it.

The automated composition of web services is a very popular research field
that has spawned a large number of works over the past decade. Notable con-
tributions include the use of semantic web technologies [54], and in particular
ontologies, to provide consistent theories of a particular domain intended as
a common language for all potential partners. These ontologies can be used,
among other things, to describe pre- and post-conditions on operations similar
to sequential constraints. Many ontology languages, such as the Ontology Web
Language (OWL) [48], use logic as the underlying foundation for expressing
their base concepts; automated tasks can then be accomplished on web services
annotated with OWL documents using reasoners.

However, the problem can hardly be considered solved, and a consensus has
yet to be reached on the way each service’s requirement should be expressed,
and up to which level of detail. In addition, many ontologies use a variant of

8 S. Hallé et al.

first-order logic as their formal language; as we shall see, some properties of
first-order logic (namely undecidability) warrant its careful use. Good surveys
on existing techniques in web service composition can be found in [18,58].

2.3.3 Automated Stub Generation

Often a web service under development cannot be run and tested in isola-
tion, and must communicate with its actual partners, even in its early stages
of design. Yet for various reasons, it might be desirable that no actual com-
munication takes place. For example, one might want to control the possible
responses from the outside environment to debug some functionality; or one
might prefer not to provoke real operations (such as buying or selling products)
on the actual third-party services during the testing phase.

To this end, a web service “stub” can be constructed. This stub is a kind
of mock-up web service, acting as a placeholder for an actual one and simulat-
ing its input-output patterns. The degree of “faithfulness” of these mock-ups
can vary: sometimes it suffices to return the same response for all inputs of a
certain type, while at other times a finer granularity is desirable; the exam-
ple in Section 2.2 shows that a realistic stub for the online trading company
should also simulate transactions involving sequential constraints over multiple
operations.

This particular use case of automated sequence generation brings the con-
cept of interactivity. Since the stub is composed of inputs sent by a third-party
service, and returns responses to these inputs, the sequence of operations is
constructed in an incremental fashion. Therefore, at any point in time, an
automated generator must not only produce a sequence that satisfies the nu-
merous sequential rules, but must exhibit a trace which is a valid extension of
a given prefix.

Currently, web service stubs need to be coded by hand, and are hence
specific to each development project. Yet, as was pointed in [40], automatically
generating such stubs based on a declarative specification of the service would
relieve programmers of a task they often overlook. A commercial development
tool for web services, called soapUI [3], allows a user to create “mock web
services” , which consist of hard-coded responses for specific inputs. A similar
tool called WebSob [49] can generate random requests and discover incorrect
handling of nonsensical data on the service side. However, all these approaches
treat request-responses as atomic patterns independent of each other. Of all
works, only [32] considers an automated generation of sequences of messages,
using a variant of formal grammars.

2.8.4 Test Case Generation

Application testing in a regular operating system can be made by simulating
a user generating GUI events. A well-known testing technique, called monkey
testing [8], involves a testing script generating random sequences of GUT events.
However, these events have to be consistent with the state of the application,

A Logical Approach to Data-Aware Automated Sequence Generation 9

and hence constraints on the sequence of possible events have to be followed.
For example, it does not make sense to send a user interface event for a window
that has just been closed: a system crash resulting from that event would not
indicate a flaw in the application under test, since the application itself would
not allow such a sequence of events to be produced in the first place.

Therefore, an educated monkey tester should generate random sequences
of events, taken from the set of all actions that can be produced; as we see,
such actions depend on their ordering. An automated sequence generator, pro-
vided with a formalization of typical GUI behaviours, provides such a tester.
The field of automated test case generation concentrates on the production
of meaningful test cases for applications under development; in particular,
model-based testing attempts to generate these cases from formal models of
the system under test. Some approaches use Boolean satisfiability solvers to
this end, in the manner of the present paper [44].

3 Automated Sequence Generation Through Logic

The previous section has shown how a single concept, namely the automated
generation of sequences of operations according to some declarative specifica-
tion, corresponds to a wide variety of tasks depending on its field of application.
In all these fields, the corresponding problem is still considered open. The pre-
sentation of related work hence highlights the presence of multiple, seemingly
ad hoc and domain specific solutions tailored for particular subproblems.

3.1 A Formal Model of Automated Sequence Generation

Yet, the previous scenarios share important common points. They can be mod-
elled as sequences of “events”, which contains not only a name, but also a
series of parameters and associated values. For example, configuration com-
mands consist of a command name, and of one or more arguments. In the
same way, web service messages have an XML structure that can be likened
to a command and a list of parameters. From this observation, it is possible
to deduce a common formal model, represented in Figure 3.

The interaction with an object (upper box) is carried by a sequence of
operations sent or received (represented by the documents at the bottom).
Each of these operations is a tuple (a,x), where a is a label (represented by
letters A-D), and « is a “content”. Formally, let P be a set of parameters, V' be
a set of values, and A be a set of action names. We define the set of operations
as O C A x 2P%2" ag a set of tuples (a,*), where a € A is an action and * is
a relation associating to each parameter p € P a subset of V.

In the context of network configurations, the operation label can repre-
sent the name of a command or of a block of commands to execute; the set
of parameter-value pairs represents the parameters of the operation, and in
particular the configuration or the portion of configuration the operation acts

10 S. Hallé et al.

Fig. 3 A formal model to represent declarative constraints in computing. Dashed lines
numbered 1, 2, 3 respectively represent static, temporal, and “data-aware” constraints over
traces of operations.

upon. Previous works have shown that such structures are an appropriate ab-
straction of configuration information and operations in network devices [31].
For example, in the VPN scenario, we can define these sets as:

A = {ip vrf,rd,route-target,ip vrf forwarding}
P = {vrf-name, as, send-community}
V' = {100:110,200:210, both, import, export, Customer_1, Customer 2}

Using this representation, configuration commands can be represented as
operations. For example, the IOS command neighbor 10.1.2.3 send-community
both can be represented as an operation o = (neighbor, x), where x is the re-
lation such that x(address) = {10.1.2.3} and x(send-community) = {both}.

Obviously, some parameters are only appropriate for some operations, and
some values are only appropriate for some parameters. For example, the ip
vrf operation only takes a VRF name, and not a send-community parameter.
Similarly, it does not make sense for the VRF name to have as a value an IP
address such as 10.1.2.3. Therefore, in addition to the previous sets, one can
define two ancillary functions:

— A schema function S : A — 2F indicating which parameters can appear in
an operation for a given action

— A domain function D : P — 2V indicating the possible values, among the
set V', are allowed for each parameter.

In the VPN example, one can define functions S and D as shown in Table 1.

Similarly, in the context of service oriented architecture, the label repre-
sents the name of an XML message or of an operation, and the parameter-value
pairs represents the content of the XML message. We omit the formalization

A Logical Approach to Data-Aware Automated Sequence Generation 11

S ={ (ip vrf,{vrf-name}),
(rd, {as}),
(route-target, {route-distinguisher,as}),

(ip vrf forwarding, {vrf-name})}

D = { (vrf-name, {Customer_1, Customer_2}),
(rd, {100:110,200:2101}),
(send-community, {both, import, export})}

Table 1 Schemas and domains definitions for the VPN example.

of the web service scenario, which can be translated in a similar manner as
VPN commands.

3.2 Automated Sequence Generation Through Satisfiability Solving

A trace of operations is a sequence 0 = o0g,01,..., where 0; € O for each
i > 0. Automated sequence generation can be loosely defined as the algorith-
mic generation of a trace of operations satisfying a set of constraints expressed
declaratively. In the present context, an automated sequence generation archi-
tecture can be mapped to some formal concepts. Given:

— some language L to describe constraints

— a sequence of operations 6 whose values need to be found

— ¢, a description of the constraints on o expressed in the language £
— P, a procedure that finds values for o that comply with ¢

then the computation of P(y, o) finds a sequence of operations that fulfils the
constraints. Recall that operations include parameters and values, and that
they too must be taken care of if some constraints restrict them. P acts as the
synthesis engine, while ¢ acts as the requirements expressed in the language
L.

While there exist multiple ways of solving such a problem, a particularly ap-
pealing one is to use logic, or logic-based formalisms, to represent constraints.
Rather than providing ad hoc algorithms or scripts tailored to a handful of sit-
uations, representing each constraint as an assertion that must be fulfilled by a
potential solution opens the way to more general resolution algorithms. Using
logic as the underlying language for expressing dependencies amounts to for-
mulating self-* properties and web service composition broadly as a constraint
satisfaction problem. Therefore, representing the configuration guidelines in a
language £ for which an algorithm P exists allows us to leverage any available
CSP tool to solve this problem.

The previous concepts translate easily into logical terminology. A solution
o0 consistent with the constraints expressed by ¢ is called a model of ¢; we note

12 S. Hallé et al.

that fact o = ¢. If the set of constraints expressed by ¢ admits a solution,
 is said to be satisfiable. Procedure P is called a satisfiability solver. It need
not return a solution for every input. If, for any input ¢, the solution o (if
any) returned by P is such that 6 = ¢, P is said to be sound. Conversely, if
any input ¢ for which there exists a solution o is found by P, P is said to be
complete. A procedure that is both sound and complete computes exactly all
the solutions for inputs that have one.

A first advantage of such an approach is its genericity. As long as the
language L is sufficient for expressing all necessary constraints, the procedure
P is not tied to any particular instance of a problem and acts as a general
problem solver.

A second advantage is that logical formalisms have been thoroughly stud-
ied. For example, we shall see in Section 5 a theoretical result about first-order
logic which tells us that the problem of finding a finite model for an arbitrary
set of constraints is undecidable —that is, unless a tool uses a restricted form
of first-order logic, its algorithm cannot be both sound and complete [28,51].
This kind of global results are seldom available for ad hoc methods that do
not rest on formal grounds.

Early work on that topic can be traced to Kautz [43], who launched the
concept of “planning as satisfiability”. However, the present approach differs
from traditional planning in some important aspects:

— In planning, transition systems’ “states” are atomic objects, and “actions”
are represented as binary relations on the set of states. Intuitively, the
execution of an action transforms one state into another. Automated se-
quence generation uses a simplified model where one is simply interested
in actions; the internal state of the system is not taken into account, and
the focus is on the generation of a sequence of actions satisfying a set of
constraints.

— In planning, a “goal state” must eventually be reached. By the previous
remark, there cannot be such a “goal” in automated sequence generation; a
solution to an automated sequence generation problem is simply a sequence
of actions that satisfies the constraints.

— Planning typically aims at computing a complete solution from beginning
to end in a single step. Some applications of automated sequence generation
are rather interactive (or incremental), as in automated stub generation.

3.3 Desirable Properties for a Logic

The above examples help us determine a few desirable properties that a can-
didate configuration logic must have in order to be helpful in the scenarios
described previously.

First, we can distinguish three types of constraints that can be potentially
expressed in the target formal language; Figure 3 provides an example of each.

A Logical Approach to Data-Aware Automated Sequence Generation 13

3.3.1 1) Support for Static Constraints

A first type of constraint consists of an interdependence relation between mul-
tiple data elements inside a single operation or state of the system: we call these
dependencies static, which refer to one operation at one moment in time. This
relation is described by the dashed line labelled “1” in Figure 3: two parame-
ters in the structure of an operation are constrained by an arbitrary relation.
For example, the context could require that parameters p; and p,, within the
same operation have identical (or distinct) values.

To handle this type of constraint, the chosen logic must express relations on
parameter-value pairs, such as First-Order Logic [51], which will be described
in Section 5.

3.3.2 2) Support for Temporal Constraints

A second type of constraint consists of an interdependence relation on the
sequence of two operations: the constraint is hence called dynamic, since it
imposes a relation between two different moments in time. This relation is
described by the dashed line labelled “2” in Figure 3; for example, the context
could require that the execution of operation “C” always be preceded by the
reception of a response labelled “B”.

To handle this type of constraint, the chosen logic must express temporal
relations. It must include sequencing functions mirroring the temporal opera-
tors of logics like Linear Temporal Logic (LTL) [57], which will be described
in Section 4.

3.3.8 8) Support for Data-Aware Constraints

These constraints are the combination of the two previous types of constraints:
a relation is imposed on the data content of two operations in two distinct
moments in time, as shown by the dashed line labelled “3” in Figure 3. It
cannot be considered as a simple static constraint either, since two distinct
operations are involved. In the same way, it cannot be considered as a simple
temporal constraint, since the content of operations is part of the constraint,
and not only the sequencing of these operations.

In the VPN scenario, this is exemplified by Sequential Rule 2. Indeed, this
constraint requires that the arguments of all ip vrf forwarding and ip vrf
commands have the same value. This implies an access to the as parameter
in each such command, and a comparison between values of any pair of them.

In the web service scenario, this is exemplified by Sequential Rule 4. By
referring to “every buy and sell order”, this new constraint requires that each
bill ID appearing in a confirmation eventually appears inside a cancellation or
a cash transfer. It implies an access to the data content of the message (the
bill ID), and moreover correlates data values at two different moments along
the message trace.

14 S. Hallé et al.

This need to access and correlate the data content in multiple messages is
not an exception and appears in many other natural properties. Data-aware
constraints are therefore more than the sum of their parts; they are best ex-
pressed in a “hybrid” variant of both LTL and first-order logic such as LTL-
FO™, which will be described in Section 6. The reader is referred to [35] for a
detailed description of data-awareness.

In addition to these requirements regarding expressiveness, the target can-
didate logic should have a number of other properties.

3.3.4 4) Decidability

To be used as a general constraint solver, the candidate logic must have an
algorithm P as described above. This algorithm should be sound, and ideally
complete. However, there exist logics for which no such algorithm exists (and
will ever exist). Such logics are called undecidable. The undecidability of a
logic has an important consequence for the task at hand. Suppose that the
language used for describing constraints is undecidable. Then any algorithmic
procedure P dealing with such a language is bound to be imperfect. More
precisely, either:

1. It is not sound (and can generate “wrong” solutions) or incomplete (there
exist situations where a satisfying assignment exists but P cannot find it);
or

2. It cannot be guaranteed to terminate every time —that is, for some inputs,
P might fall into an infinite loop.

Note that this consequence stems not from the inability for a program-
mer to write a correct procedure, but rather from a formal property of the
underlying specification language. Automated reasoners for semantic web lan-
guages, such as OWL, are often limited by the fact that their underlying
language (first-order logic) is undecidable. Remark, however, that decidability
can sometimes be restored by imposing restrictions on the way formule are
written. The loosely guarded fragment of first-order logic, which will be pre-
sented in Section 6.2, is an example of conditions on formula that guarantees
they are decidable.

3.8.5 5) Finite/small model

Another consideration for the logics under study is the size of the solution
that their satisfiability algorithm can return. For some logics, there exist sets
of constraints whose solutions are infinite. Take for example the statement “for
every element x, there exists an element y such that y > x”. Any model of
this formula must have an infinite number of elements (an appropriate model
for this expression would be the set of natural numbers, which is infinite).
Clearly, in the present context, one is not interested in solutions involving
an infinite number of operations, or an infinite number of parameters for some
operation. It is therefore desirable to readily identify sets of constraints leading

A Logical Approach to Data-Aware Automated Sequence Generation 15

to such infinite models, or to use logics that prevent the creation of such
sets altogether. A logical language that guarantees that if a solution exists,
then at least one of them has a finite cardinality, is said to have the finite
model property. More interestingly, some logics have the stronger small model
property, where the existence of a solution ensures that at least one of them
is not only finite, but bounded by a function of the size of the original set of
constraints.

3.3.6 6) Ezistence of automated solvers

Since the purpose of a logical modelling of sequential constraints is to tap into
existing tools for generating models, preference should be given to languages
where solvers are available.

In the next sections, we survey various formalisms that could be suitable
candidates to express and compute sequences of operations. Each formalism
is analyzed with respect to the criteria mentioned above. We shall see that
some of them fair differently with respect to each criterion. Yet, any candidate
logic for automated sequence generation would be worth studying under these
various angles. However, it is not in the paper’s scope to express a prefer-
ence for any of them, as the choice of the “best” language involves a careful
compromise between these aspects.

4 Linear Temporal Logic

Linear Temporal Logic [57] is a logic aimed at describing sequential proper-
ties along paths in a given Kripke structure. It traces its origins in hardware
verification, where it has been widely used to express properties of sequential
circuits, among other things [64].

4.1 Description

LTL’s syntax starts with ground terms, which generally are symbols that can
take the value true (T) or false (). Such symbols can be combined to form
compound statements, with the use of the classical propositional operators V
(“or”), A (“and”), = (“not”) and — (“implies”). To express sequential rela-
tionships, temporal operators have been added.

The first such modal operator is G, which means “globally”. Formally, the
formula G ¢ is true on a given path m when, for all states along this path, the
formula ¢ is true. The second modal operator commonly used is X (“next”).
The formula X ¢ is true on a given path 7 of the Kripke structure when the
next state along 7 satisfies p. A formula of the form F ¢ (“eventually”) is true
on a path when at least one state of the path satisfies . Finally, the operator
U (“until”) relates two expressions ¢ and ; the formula ¢ U 1) states that 1)
1 eventually holds, and 2) in the meantime, ¢ must hold in every state. More
details can be found in [17].

16 S. Hallé et al.

We must first define the ground terms for our theory:

1. From the set A of actions, we define an equal number of action terms a,
for every a € A. On a specific operation o = (da’, %), the term «, is true
exactly when a = d’.

2. For every pair of parameter p € P and value v € V', we create a tuple term
tp». On a specific operation o = (a’,), the term ¢, , is true exactly when

v € %(p).

Equipped with these ground terms, it is first possible to express the schema
and domain functions S and D defined in Table 1. For example, since S(ip vrf)
{vrf-name}, then for any operation whose action is ip vrf, only the param-
eter vrf-name is allowed to have some value. This can be written as:

/\ /\ G (aip vrf = “lpo)

peP\{ip vrf}veV

The symbol A\ oy is a “meta-symbol”, not part of the logic itself. It means
that the formula that follows must be repeated once for every value in the
set V, by replacing any occurrence of v by that value. For example, if V =
{k1, k2, k3}, then Ay t,., would be expanded into ¢y, Atp g, Atp,. These
meta-symbols can be nested, such that the preceding formula amounts the
the repeated conjunction of G (ajp yrf — ~tpw) for all p € P\ {ip vrf}
and v € V. Hence the previous expression represents |V|(|P| — 1) “copies” of
G (...), separated by the A connective.

The formula states that every operation in the trace is such that, if the
operation’s action is ip vrf, then every tuple term ¢, ,, must be false whenever
pis not ip vrf. Such an expression must be repeated for every action and its
corresponding schema; this can be formalized generally as follows:

AN NGt (1)
a€A peP\S(a) vEV

In the same way, domains for each parameter can be formalized by a similar
LTL formula:

A A Gt (2)
pEP veV\D(p)

Sequential constraints in Section 2.1 can now be also expressed as LTL
formuleze. For example, Sequential Constraint 1 becomes the following LTL
expression:

LTL Sequential Formula 1

—Qrd U Qip vrf (3)

A Logical Approach to Data-Aware Automated Sequence Generation 17

This formula states that on any trace of operations 6 = og, 01, ..., action
term arq is not true on any message before action term ap vrs becomes true.
In other words, the action of an operation cannot be rd before some operation
has ip vrf as its action; this is indeed equivalent to Sequential Constraint 1.

Similarly, Sequential Formula 2 becomes a slightly more complex expres-
sion:

LTL Sequential Formula 2

G (aip vet =\ (fasy = G (ip vrt forvarding — tas’v>)> (4)
veV

The subformula G (ip vrf forwarding — tas,») indicates that, at any point
in the trace, any operation with action ip vrf forwarding has its as param-
eter set to some value v. The expression /\ . (-) indicates to take the con-
junction of the expression inside the parentheses successively for every value
v € V. As a whole, the formula expresses the fact that at any point in the
trace, an operation with action ip vrf entails that, for any value v that holds
for its parameter as, globally any occurrence of ip vrf forwarding has that
same value v for its parameter as.

4.2 Analysis

The conjunction of formulee (1)—(4) is a (long) LTL formula that provides a
complete specification ¢ of the VRF configuration constraints, expressed in
Linear Temporal Logic. It follows that any trace of operations o such that
0 Eur o will be a valid sequence of operations, with respect to these require-
ments.

We now revisit the desirable properties enumerated in Section 3.3, with
respect to LTL. First, one can see that, while temporal constraints are easily
expressed with LTL’s operators, static and data-aware constraints must be
simulated through the repeated enumeration of formulae, changing a Boolean
variable each time. Hence, static and data-aware properties become long rep-
etitions of seemingly similar copies of the same formula; more precisely, if |V|
is the domain size for values and k is the number of “meta-symbols” (\/ or A)
ranging over V, then the length of the resulting LTL formula is in O(|V[¥).
Moreover, the expression of that formula must be changed every time the data
domain changes.

LTL satisfiability is decidable, and its complexity is PSPACE-complete [26].
As a matter of fact, any LTL formula can be translated into an equivalent
Biichi automaton [19,26] whose size is bounded; hence LTL also has the small
model property.

While there exist satisfiability algorithms for LTL, which generally involve
translating a formula into an equivalent [19, 26], it is also possible to put
existing software, called LTL model checkers, to good use. A model checker
takes as input a finite state machine K, called a Kripke structure, and an LTL

18 S. Hallé et al.

specification . It then exhaustively checks that any possible execution of K
satisfies . Popular model checkers for LTL include SPIN [39], NuSMV [15],
and Spot [24].

As a by-product of their exhaustive verification, most model checkers pro-
duce counter-example traces of a formula, in the case where K does not satisfy
. It is possible to benefit from this counter-example generation mechanism
to find a sequence that does not violate any constraint. It suffices to submit
the formula —p for verification. If there exists a counter-example for ¢, then
such a trace must necessarily satisfy ¢, giving by the same occasion a valid
deployment sequence. It suffices to give the model checker a Kripke structure
K where all states are linked to each other, called a universal Kripke struc-
ture, and the negation of the constraints as the specification to verify. Such
a technique was suggested by Rozier and Vardi [61] and analyzed empirically
for a variety of model checkers.

5 First-Order Logic

In Linear Temporal Logic, events are considered as “atomic”: they do not
contain parameters. To simulate parameters in events, one must therefore re-
sort to create one propositional variable for every parameter and every value,
and correctly assign truth values to these variables in every possible opera-
tion. Constraints on values become tedious to write, since the same property
must be enumerated using every possible value. It would be desirable to have
a mechanism where data inside events could be referred to, memorized, and
compared at a later time. First-order logic is a formalism that provides such
a mechanism.

5.1 Description

In first-order logic (FOL), the traditional propositional connectives V, A and
— are used to connect predicates py,ps,..., which take their values in some
arbitrary domain D, and return either T or L. The arity of predicates is the
number of arguments they take; for example, the binary predicate p(z,y) is a
function from D x D to {T, L}.

These predicates and connectives are complemented with a set of two quan-
tifiers. The expression Jz : ¢(z) states that there exists some element d € D
such that ¢ is true when all occurrences of = are replaced by d. Similarly,
Va : p(x) asserts the same property, but for all elements d € D.

In counterpart, the temporal operators and intervals that were available in
LTL have disappeared. Temporal relationships between events must therefore
be simulated, using additional variables or relations. More specifically, a trace
of messages can be represented by a set of three ground predicates:

A Logical Approach to Data-Aware Automated Sequence Generation 19

1. From the set A of actions, we define an action predicate o : Nx A — {T, L}.
On a specific operation trace 0 = 01,09, ..., for any i € N and a € A, the
predicate (i, a) is true exactly when o; = (a, *).

2. From the sets of parameters P and values V, we create a tuple predicate
t:NxPxV — {T,L}. On a specific operation o0; = (a,*) in an operation
trace, for any p € P and v € V, t(i, p,v) is true exactly when v € x(p).

The quantifiers are handy for representing the schema and domain func-
tions. The constraint on the ip vrf command, for example, becomes the fol-
lowing first-order formula:

Vpe P\{ip vrf} :Yw eV :Vie N: a(i,ip vrf) — —t(i,p,v)

This formula states that, for every pair of parameters (except ip vrf) and
values p and v, and for every index 1, if the action of the i-th operation of the
trace is ip vrf, then no other parameter-value tuple can be present in the
message.

More generally, this expression can be repeated for every action and its
corresponding schema, as follows:

Vae A:Vpe P\ S(a):Yv eV :VieN:a(i,a) = —t(i,p,v) (5)

In the same way, domains for each parameter can be formalized by a similar
first-order formula:

Vpe P:YveV\D(p):VieN:—t(i,p,v) (6)

The sequential constraints in Section 2.1 can now be expressed as first-order
formulee. However, special care must be taken to correctly express sequential
dependencies as appropriate constraints on the operation indices.

First-Order Sequential Formula 1
i eN: (a(i,ip vrf) AV eN: (j <i— —a(j,rd))) (7)

This formula states that in the operation trace 6 = 01, 02, ..., there exists
some operation o; whose action is ip vrf, and such that for every preceding
operation o; (where j < i), the action for message o; is not rd. This is indeed
equivalent to saying that ip vrf must precede rd in the operation trace.

Similarly, Sequential Constraint 2 can be formalized as follows:

First-Order Sequential Formula 2

VieN:VjeN:VYveV:(afi,ip vrf) A a(j,ip vrf forwarding))
= (t(i, as,v) < i(j,as,v)) (8)

20 S. Hallé et al.

This formula states that for any two operations o; and o; in a trace, if o; has
action ip vrf and o; has action ip vrf forwarding, then their as parameter
is equal. The <+ operator means “if and only if”, and returns true when both its
left- and right-hand members have the same truth value. In the present case,
this means that for every value v € V, either o; and o; both have v as the as
parameter, or neither does. The global formula is indeed equivalent to stating
that the as parameter of all ip vrf and ip vrf forwarding commands is
the same for all their occurrences in a trace.

5.2 Analysis

The conjunction of formulee (5)-(8) is a first-order formula that provides a
complete specification of the VRF constraints expressed in first-order logic.
Again, any trace of operations o such that o =ror, ¢ will be a valid sequence of
operations with respect to these requirements. A model of ¢ therefore consists
in the complete definition of predicates o and ¢ for every i e N,a € A, p € P
andv e V.

The results of the analysis of first-order logic with the criteria presented in
Section 3.3 are almost the opposite as those obtained for LTL in the previous
section. First-order logic allows a succinct description of static constraints
through the use of universal and existential quantifiers; however, classical FOL
does not provide the equivalent of LTL temporal operators. Those must be
simulated by explicitly giving constraints on the indices of operations in a
trace, stating for which indices a particular formula must hold. This makes
the temporal relations much less explicit, as First-Order Sequential Formula
2, for example, shows. Hence, data-aware constraints are also tedious to write,
but for a different reason than in LTL.

First-order logic is strictly richer than linear temporal logic: a classical
result shows that first-order logic encompasses all of LTL. However, this rich-
ness comes at the price of complexity. A result by Trakhtenbrot [63] states
that for a first-order language including a relation symbol that is not unary,
satisfiability over finite structures is undecidable.

We have seen in Section 3.3 the consequences of undecidability for the
constraint language. However, adding constraints to the structure of first-order
formulae might restore decidability. In the particular case where all domains
are considered finite and are known in advance, first-order logic statements
become decidable [46]. Hence there exist “model finders” for first-order logic
that work in that particular case.

Some of the most well-known first-order model finders are Mace [50], Para-
dox [16], and SEM [65]; they all assume that the cardinality of all domains is
bounded. This has an important consequence: it entails that even the length of
the trace must be fixed in advance. Hence, in First-Order Sequential Formula
1, the quantifier 3i € N actually becomes 3i € {0, ...,n} for some constant n.

A Logical Approach to Data-Aware Automated Sequence Generation 21

A book by Borger, Gridel, and Gurevich [12] contains an extensive survey
on results that assert that certain fragments of first order-logic have a decidable
satisfiability problem or not.

6 Linear Temporal Logic with First-Order Quantification

The specification, efficient validation and satisfiability of data-aware constraints
is currently an open problem. Although there exists a number of adequate
formalisms to specify static and temporal constraints, by the previous obser-
vations, they cannot simply be used “side by side” to cover the case of hybrid
constraints.

For example, while Linear Temporal Logic allows a succinct formalization
of temporal relations, its lack of a quantification mechanism makes the expres-
sion of data constraints cumbersome: the same formula must be repeated for
every combination of values, replacing them by the appropriate ground terms
each time. This results in a potentially exponential blow-up of the original
specification, in terms of the domain size.

In contrast, first-order logic’s quantification mechanism allows to succinctly
express relationships between data parameters between events, but its lack of
temporal operators makes the expression of sequential relationships much less
natural.

One is therefore interested in striking a balance between the two extremes
that these logics provide.

6.1 Description

Linear Temporal Logic with First-Order quantification, called LTL-FO™, aims
at this middle ground [33]. As its name implies, LTL-FO™ is a logic where first-
order quantifiers and LTL temporal operators can be freely mixed. Its basic
building blocks are ground predicates defined as follows:

— From the set A of actions, we define an action predicate o : A — {T, L}
On a specific operation o, a(a) is true exactly when o = (a, *).

— From the sets of parameters P and values V', we create a tuple predicate
t:PxV —{T,L}. On a specific operation o = (a,*), for any p € P and
v eV, t(p,v) is true exactly when v € x(p).

One remarks that the predicates are similar to first-order logic, except that
they no longer require the “index” specifying at what particular operation in a
trace they refer. This, similarly to linear temporal logic, is handled implicitly
by the temporal operators.

The Boolean connectives and LTL temporal operators carry their usual
meaning. First-order quantifiers, on the other hand, are a limited version of
their respective First-Order version. In LTL-FO™T, each quantifier is of the
form 3,2 : ¢ or V,z : ¢ and has a subscript, p, which determines which

22 S. Hallé et al.

values are admissible for x. More precisely, V,z : ¢ is true for some operation
o = (a,*) if and only if for all values ¢ € x(p), ¢ holds when =z is replaced by
c. Similarly, 3,2 : ¢ holds if some value ¢ € x(p) is such that ¢ holds when x
is replaced by c. The choice of appropriate values for x therefore depends on
the current operation pointed to in the trace; this, in turn, is modulated by
the LTL temporal operators.

The development of such a “hybrid” between FOL and LTL has led to many
variants of this strategy; notable proponents include LTL-FO [22], EQCTL
[45], QCTL [59], Eagle [10], FOTLX [23], and RuleR [11]. However, the par-
ticular quantification mechanism presented here is unique to LTL-FO™.

Schema and domain constraints are represented in the same way as for
LTL, as is Sequential Constraint 1:

LTL-FO™ Sequential Formula 1
—a(ip vrt) U a(rd) (9)

However, using the LTL-FO* quantifiers, one can represent Sequential
Constraint 2 in a much shorter way:

LTL-FO™' Sequential Formula 2

G (a(ip vrf) — Vasv : G (a(ip vrf forwarding) — t(as,v))) (10)

6.2 Analysis

The conjunction of formulae (1)-(10) is an LTL-FO™ formula that provides a
complete specification of the VRF constraints. Again, any trace of operations
0 such that 0 =pp ro+ o Will be a valid sequence of operations with respect
to these requirements.

As one can see, LTL-FO™ is the formalism where Sequential Formulse have
the shortest expression, compared to both LTL and FOL. Static constraints
become similar to first-order logic, while temporal constraints can use the LTL
operators. Obviously, data-aware constraints can use both.

However, there is currently no dedicated satisfiability solver available for
LTL-FO*. Actually, at first glance it is not even clear that LTL-FOT is de-
cidable, since it includes a form of first-order quantification. However, one can
demonstrate that the quantification mechanism of LTL-FO™ is actually sim-
ilar to the loosely guarded fragment of first-order logic [38]. Guarded logic is
a generalization of modal logic in which all quantifiers must be relativized by
atomic formulee [7]. If we let & and 7 be tuples of variables, quantifiers in the
guarded fragment (GF) of first-order logic appear only in the form:

Iy (v(7,9) A (T,)

vy (v(Z, 9) = ¢(Z,7))

A Logical Approach to Data-Aware Automated Sequence Generation 23

The predicate ~, called the guard, must contain all free variables of . In this
context, it suffices to define the guard as v(p,x) = *(p) = y and rewrite all
LTL-FO* formulee as guarded LTL formulse with general first-order quanti-
fiers:

Jpz o =3z (y(z,p) Ap)
Vpr i p = Va1 (y(z,p) = p)

The advantage of such a rewriting is that the loosely guarded fragment of
first-order logic is decidable [27] and has the finite-model property [38]; hence
LTL-FOT is also decidable.

Obviously, LTL-FOT can be translated back into either LTL or FOL ex-
pressions and handled by their respective solvers. Experiments on this concept
have led to a first attempt at LTL-FO™ satisfiability solving [29,30]. This raises
the concept that the language used for specification can be different from the
underlying representation used by the automated sequence generator.

7 Conclusion

In this paper, we have shown how sequential constraints arise naturally in
a variety of computing scenarios, including the management of network de-
vices and the interaction between web services. The automated generation of
sequences of operations, following these constraints, amounts to various con-
cepts depending on the field over which it applies. For example, generating
sequences of operations corresponds to self-configuration when applied to the
management of network device configurations.

The paper argued that such properties be expressed in a declarative man-
ner by means of a formal language, in particular a logic. In such a case, the
automated generation of sequences becomes a simple instance of satisfiability
solving, for which solvers already exist in a number of cases.

We first concentrated on two natural candidates for the task at hand,
namely Linear Temporal Logic and First-Order Logic. However, we have shown
that many of these constraints correlate sequences of operations and parame-
ters inside these operations in such a way that both types of properties cannot
be expressed in isolation. This called for the presentation of a family of hybrid
formalisms for expressing “data-aware” constraints, a notable proponent being
LTL-FO*.

All three logics have been compared with respect to a number of criteria
relevant to automated sequence generation. A summary of these results can
be found in Table 2.

The paper focused on a linear temporal-first order characterization of se-
quential constraints. However, the authors are fully aware that there exist other
formalisms that could be suitable for this task. For example, Allen’s Interval
Temporal Logic [5], Temporal Description Logics [47], interface grammars [32]

24

S. Hallé et al.

[H LTL [FOL [LTL-FOT]

Static properties + ++ ++
Temporal properties +4+ + +4+
Data-aware properties + + +4+
Decidable Yes No* Yes
Small model Yes No* Yes
Existing solvers + +4+ -

Table 2 A summary of the results for the logics studied in this paper.

are all formalisms that should be studied in their own right with respect to the
criteria specified in this paper. The presence of such a large roster of possibil-
ities reveals the extent of the uncharted territory on the topic of automated
sequence generation with data, as well as its potential for furthering the reach
of declarative specifications in computing.

References

10.

11.

12.

13.

14.

15.

16.

. Proceedings of the 20th Conference on Systems Administration (LISA 2006), Washing-

ton, D.C., USA, December 3-8, 2006. USENIX, 2006.

Amazon e-commerce service, 2009. http://docs.amazonwebservices.com/-
AWSEcommerceService/2005-03-23/.

soapUI: the web services testing tool, 2009. http://www.soapui.org/.

Cisco IOS switching services command reference, release 12.3, 2010. http://-
www.cisco.com/en/US/docs/ios/12_3 /switch/command /reference/swtch_r.html.

J. F. Allen. Maintaining knowledge about temporal intervals. Communications of the
ACM, 26(11):832-843, 1983.

G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services, Concepts, Architec-
tures and Applications. Springer, 2004.

H. Andréka, J. van Benthem, and I. Németi. Modal languages and bounded fragments
of predicate logic. Journal of Philosophical Logic, (27):217-274, 1998.

T. R. Arnold II. Visual Test 6 Bible. Wiley, 1998.

L. Baresi, C.-H. Chi, and J. Suzuki, editors. Service-Oriented Computing, 7th Inter-
national Joint Conference, ICSOC-Service Wave 2009, Stockholm, Sweden, November
24-27, 2009. Proceedings, volume 5900 of Lecture Notes in Computer Science, 2009.
H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime verification.
In B. Steffen and G. Levi, editors, VMCAI, volume 2937 of Lecture Notes in Computer
Science, pages 44-57. Springer, 2004.

H. Barringer, D. Rydeheard, and K. Havelund. Rule systems for run-time monitoring:
From Eagle to RuleR. Journal of Logic and Computation, 2008.

E. Borger, E. Gradel, and Y. Gurevich. The Classical Decision Problem. Perspectives
in Mathematical Logic. Springer, 1997.

M. Burgess and A. Couch. Modeling next generation configuration management tools.
In LISA [1], pages 131-147.

E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web services description
language (WSDL) 1.1, W3C note, 2001.

A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Se-
bastiani, and A. Tacchella. NuSMV 2: An opensource tool for symbolic model checking.
In E. Brinksma and K. G. Larsen, editors, CAV, volume 2404 of Lecture Notes in
Computer Science, pages 359-364. Springer, 2002.

K. Claessen and N. Sorensson. New techniques that improve MACE-style model finding.
In Proc. of Workshop on Model Computation (MODEL), 2003.

. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 2000.

A Logical Approach to Data-Aware Automated Sequence Generation 25

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

F. Daniel and B. Pernici. Insights into web service orchestration and choreography. Int.
Journal of E-Business Research, 2(1):58-77, 2006.

M. Daniele, F. Giunchiglia, and M. Y. Vardi. Improved automata generation for linear
temporal logic. In N. Halbwachs and D. Peled, editors, CAV, volume 1633 of Lecture
Notes in Computer Science, pages 249-260. Springer, 1999.

S. Demri and C. S. Jensen, editors. 15th International Symposium on Temporal Rep-
resentation and Reasoning, TIME 2008, Université du Québec a Monteéal, Canada,
16-18 June 2008. IEEE Computer Society, 2008.

N. Desai, R. Bradshaw, and C. Lueninghoener. Directing change using Bcfg2. In
LISA [1], pages 215-220.

A. Deutsch, L. Sui, and V. Vianu. Specification and verification of data-driven web
services. In A. Deutsch, editor, PODS, pages 71-82. ACM, 2004.

C. Dixon, M. Fisher, B. Konev, and A. Lisitsa. Practical first-order temporal reasoning.
In Demri and Jensen [20], pages 156-163.

A. Duret-Lutz and D. Poitrenaud. Spot: An extensible model checking library using
transition-based generalized biichi automata. In D. DeGroot, P. G. Harrison, H. A. G.
Wijshoff, and Z. Segall, editors, MASCOTS, pages 76-83. IEEE Computer Society,
2004.

D. Gaiti, G. Pujolle, M. Salaiin, and H. Zimmermann. Autonomous network equipments.
In I. Stavrakakis and M. Smirnov, editors, WAC, volume 3854 of Lecture Notes in
Computer Science, pages 177-185. Springer, 2005.

R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly automatic verification
of linear temporal logic. In P. Dembinski and M. Sredniawa, editors, PSTV, volume 38
of IFIP Conference Proceedings, pages 3—18. Chapman & Hall, 1995.

E. Gradel. On the restraining power of guards. Journal of Symbolic Logic, 64(1):1719—
1742, March 1999.

E. Grédel, P. G. Kolaitis, L. Libkin, M. Marx, J. Spencer, M. Y. Vardi, Y. Venema, and
S. Weinstein. Finite Model Theory and Its Applications. Texts in Theoretical Computer
Science. An EATCS Series. Springer, 2007.

S. Hallé. Automated generation of web service stubs using Itl satisfiability solving. In
M. Bravetti and T. Bultan, editors, WS-FM, volume 6551 of Lecture Notes in Computer
Science, pages 42-55. Springer, 2010.

S. Hallé. Causality in message-based contract violations: A temporal logic “whodunit”.
In EDOC, pages 171-180. IEEE Computer Society, 2011.

S. Hallé, R. Deca, O. Cherkaoui, R. Villemaire, and D. Puche. A formal validation
model for the Netconf protocol. In A. Sahai and F. Wu, editors, DSOM, volume 3278
of Lecture Notes in Computer Science, pages 147-158. Springer, 2004.

S. Hallé, G. Hughes, T. Bultan, and M. Alkhalaf. Generating interface grammars from
WSDL for automated verification of web services. In Baresi et al. [9], pages 516-530.
S. Hallé and R. Villemaire. Runtime monitoring of message-based workflows with data.
In EDOC;, pages 63-72. IEEE Computer Society, 2008.

S. Hallé and R. Villemaire. XML methods for validation of temporal properties on mes-
sage traces with data. In R. Meersman and Z. Tari, editors, CooplS/DOA/ODBASE,
volume 5331 of Lecture Notes in Computer Science, pages 337-353. Springer, 2008.

S. Hallé, R. Villemaire, and O. Cherkaoui. Specifying and validating data-aware tem-
poral web service properties. IEEE Trans. Software Eng., 35(5):669-683, 2009.

S. Hallé, R. Villemaire, and O. Cherkaoui. Logical methods for self-configuration of net-
work devices. Formal and Practical Aspects of Autonomic Computing and Networking:
Specification, Development and Verification, pages 189-216, 2011.

P. Hinnelund. Autonomic computing. Master’s thesis, School of Computer Science and
Engineering, Royal Institute of Engineering, March 2004.

I. M. Hodkinson. Loosely guarded fragment of first-order logic has the finite model
property. Studia Logica, 70:205-240, 2002.

G. J. Holzmann. The SPIN Model Checker: Primer and Reference Manual. Addison-
Wesley Professional, 2003.

G. Hughes, T. Bultan, and M. Alkhalaf. Client and server verification for web services
using interface grammars. In T. Bultan and T. Xie, editors, TAV-WEB, pages 40—46.
ACM, 2008.

26

S. Hallé et al.

41.
42.

43.
44.

45.
46.
47.

48.

49.
50.
51.
52.
53.
54.
55.
56.

. A. Pnueli. The temporal logic of programs. In FOCS, pages 46-57. IEEE, 1977.
58.

59.

60.
61.

62.
63.
64.

65.

D. Jackson, I. Schechter, and I. Shlyakhter. Alcoa: the Alloy constraint analyzer. In
ICSE, pages 730-733, 2000.

J. Josephraj. Web services choreography in practice, 2005. http://www-
128.ibm.com/developerworks/webservices/library /ws-choreography /.

H. A. Kautz and B. Selman. Planning as satisfiability. In ECAI, pages 359-363, 1992.
S. Khurshid and D. Marinov. TestEra: Specification-based testing of Java programs
using SAT. Automated Software Engineering Journal, 11(4), 2004.

O. Kupferman. Augmenting branching temporal logics with existential quantification
over atomic propositions. In P. Wolper, editor, CAV, volume 939 of Lecture Notes in
Computer Science, pages 325—338. Springer, 1995.

L. Lowenheim. Uber moglichkeiten im relativkalkiil. Math. Annalen, 76:447-470, 1915.
C. Lutz, F. Wolter, and M. Zakharyaschev. Temporal description logics: A survey. In
Demri and Jensen [20], pages 3-14.

D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. Mcllraith,
S. Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin, N. Srinivasan, and K. Sycara.
OWL-S: Semantic markup for web services, 2008. http://www.ai.sri.com/daml/-
services/owl-s/1.2/overview.

E. Martin, S. Basu, and T. Xie. Automated testing and response analysis of web services.
In ICWS, pages 647-654. IEEE Computer Society, 2007.

W. McCune. A davis-putnam program and its application to finite first-order model
search: Quasigroup existence problems. Technical report, Argonne National Laboratory,
1994.

E. Mendelson. Introduction to Mathematical Logic, Fourth Edition. Springer, 1997.

S. Narain. Towards a foundation for building distributed systems via configuration,
2004. Retrieved February 11th, 2010.

S. Narain. Network configuration management via model finding. In LISA, pages 155—
168. USENIX, 2005.

S. Narayanan and S. A. Mcllraith. Simulation, verification and automated composition
of web services. In WWW, pages 77-88, 2002.

M. Parashar and S. Hariri. Autonomic computing: An overview. In J.-P. Banétre,
P. Fradet, J.-L. Giavitto, and O. Michel, editors, UPP, volume 3566 of Lecture Notes
in Computer Science, pages 257—-269. Springer, 2004.

I. Pepelnjak and J. Guichard. MPLS VPN Architectures. Cisco Press, 2001.

J. Rao and X. Su. A survey of automated web service composition methods. In J. Car-
doso and A. P. Sheth, editors, SWSWPC, volume 3387 of Lecture Notes in Computer
Science, pages 43-54. Springer, 2004.

A. Rensink. Model checking quantified computation tree logic. In C. Baier and H. Her-
manns, editors, CONCUR, volume 4137 of Lecture Notes in Computer Science, pages
110-125. Springer, 2006.

E. C. Rosen and Y. Rekhter. BGP/MPLS VPNs (RFC 2547), March 1999.

K. Y. Rozier and M. Y. Vardi. LTL satisfiability checking. In D. Bosnacki and
S. Edelkamp, editors, SPIN, volume 4595 of Lecture Notes in Computer Science, pages
149-167. Springer, 2007.

A. S. Tanenbaum. Computer Networks, 4th Edition. Prentice Hall, 2002.

B. A. Trakhtenbrot. Impossibility of an algorithm for the decision problem in finite
classes. Doklady Akademii nauk SSSR, (70):569-572, 1950.

G. von Bochmann. Hardware specification with temporal logic: En example. IEEE
Trans. Computers, 31(3):223-231, 1982.

J. Zhang and H. Zhang. System description: Generating models by SEM. In M. A.
McRobbie and J. K. Slaney, editors, CADE, volume 1104 of Lecture Notes in Computer
Science, pages 308-312. Springer, 1996.

