
Specifying and Validating Data-Aware
Temporal Web Service Properties

Sylvain Hallé, Student Member, IEEE, Roger Villemaire, Member, IEEE Computer Society, and

Omar Cherkaoui, Member, IEEE

Abstract—Most works that extend workflow validation beyond syntactical checking consider constraints on the sequence of messages

exchanged between services. These constraints are expressed only in terms of message names and abstract away their actual data

content. We provide examples of real-world “data-aware” Web service constraints where the sequence of messages and their content

are interdependent. To this end, we present CTL-FOþ, an extension over Computation Tree Logic that includes first-order

quantification on message content in addition to temporal operators. We show how CTL-FOþ is adequate for expressing data-aware

constraints, give a sound and complete model checking algorithm for CTL-FOþ, and establish its complexity to be PSPACE-complete.

A “naive” translation of CTL-FOþ into CTL leads to a serious exponential blowup of the problem that prevents existing validation tools

to be used. We provide an alternate translation of CTL-FOþ into CTL, where the construction of the workflow model depends on the

property to validate. We show experimentally how this translation is significantly more efficient for complex formulas and makes model

checking of data-aware temporal properties on real-world Web service workflows tractable using off-the-shelf tools.

Index Terms—Web services, software/program verification, model checking, temporal logic.

Ç

1 INTRODUCTION

THERE exists a large number of Web service orchestration
tools available over the Internet. Since the format of all

input and output messages is publicized by service
providers, these tools allow a syntactical validation of the
service invocations in a workflow. This “first generation” of
Web service technologies concentrates on single request-
response patterns of messages. However, correctness at the
syntactical level does not give a complete picture of the
necessary conditions for a successful composition [1].
Nothing prevents a service from sending to a peer
syntactically valid messages in a sequence that prevents
an actual composition from taking place. Operating guide-
lines, conversation specification, user contract, protocol of
interaction, and Web service choreography are various ter-
minologies referring to a common, twofold concern: the use
of a formal language to express and advertise the protocol
imposed on the use of a service and the development of a
methodology to ensure compliance.

A wide consensus exists to the effect that specification of

these constraints is beyond the expressive power of existing

standards and available design tools. A “second generation”

of Web service technologies has given rise to a variety of

standards taking into account the sequence of message

exchanges allowed by a service. The SOAP Service Descrip-

tion Language (SSDL) [2] is a notable example of this

approach. Classical temporal languages, such as Linear
Temporal Logic (LTL), Computation Tree Logic (CTL), or
�-calculus, have been suggested as appropriate notations for
expressing sequential dependencies between messages.

In Section 2, we briefly review related work and show why
solutions based on traditional temporal logics are not
adequate for the validation task at hand: Most efforts still
treat messages as atomic units represented by their names;
they are not “data-aware.” In this paper, we argue that “data-
awareness” of protocol specifications is a fundamental part of
ensuring workflow correctness. We provide in Section 3
examples of real-world Web service scenarios where both the
sequence of messages and their content are interdependent.

In Section 4, we present an extension of the popular CTL
that introduces first-order quantification on values of
message elements, called CTL-FOþ, as an appropriate formal
language for the expression of temporal constraints on Web
service invocations. Contrarily to the classical temporal
formalisms used in most Web service validation approaches,
CTL-FOþ retains the full temporal flexibility of CTL, while
allowing reference to the content of messages inside the
temporal properties. We provide in Section 5 an algorithm for
the model checking of CTL-FOþ formulas on a given
workflow model and show that it is PSPACE-complete. This
result places CTL-FOþ on a par, complexity-wise, with the
LTL used by widely accepted tools like SPIN [3].

An explicit translation of CTL-FOþ back into CTL
model checking consists in repeating a formula such as
AG (a ¼ x! AF b ¼ y) for every possible combination of
static values of x and y. Any such transformation results
in an exponential blowup of the original problem. In
Section 6, we present a reduction of CTL-FOþ to CTL that
modifies the translation of a workflow into a finite-state
system using the concept of “freeze quantification”: The
construction of the service model becomes dependent on

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. X, XXXXXXX 2009 1

. S. Hallé is with University of California, Santa Barbara, CA 93106-5110.
E-mail: shalle@acm.org.

. R. Villemaire and O. Cherkaoui are with Université du Québec à Montréal,
C.P. 8888, Succ. Centre-Ville, Montréal, Canada H3C 3P8.
E-mail: villemaire.roger@uqam.ca, cherkaoui.omar@uqam.ca.

Manuscript received 5 Feb. 2008; revised 16 Jan. 2009; accepted 17 Feb. 2009;
published online 23 Apr. 2009.
Recommended for acceptance by S. Uchitel.
For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number TSE-2008-02-0060.
Digital Object Identifier no. 10.1109/TSE.2009.29.

0098-5589/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

the property to validate. In Section 7, we compare this
freeze quantification approach with the more straightfor-
ward explicit quantification suggested above. Although both
translations are ultimately exponential, we empirically
demonstrate that freeze quantification is several orders of
magnitude more efficient. We illustrate our claim by using
an off-the-shelf tool, the NuSMV [4] model checker, to
validate constraints on sample Web service workflows. We
conclude that our methodology brings validation of data-
aware properties within reach of existing tools.

2 RELATED WORK AND EXISTING SOLUTIONS

Existing Web service validation approaches can be classi-
fied into three categories, corresponding to the degree of
data-awareness they exhibit. We illustrate each of these
categories in the simple example of Fig. 1. We consider a
Web service workflow which receives from some partner a
message labeled “a” that contains an integer value. If this
received value is 0, the service returns a message “b” with
value 9. If the received value is not 0, the service returns a
message “c” that increments the received value by 1. The�
symbol means “the next message.”

2.1 Propositional Workflows, Propositional
Properties

A first step is to use classical automata-theoretic construc-
tions or model checking tools and languages to model the
behavior of a Web service and its interaction with other
services. This is exemplified in Fig. 1a. The messages are
considered atomic: Their actual data content is abstracted
away. We call such a model propositional since the external
behavior of Web services is represented by the transmission
or reception of messages that are identified by propositional
letters standing for their names.

This entails that the choice between sending message “b”
and message “c,” since it depends on message content, is seen
as nondeterministic by the model. For the same reason, the
behavioral properties of the service can only be expressed in
terms of message names; we call them propositional proper-
ties. Therefore, neither of the two formulas at the bottom of
Fig. 1a is always true on the modeled workflow.

Conversation specification [5] is an example of sequence
of intertwined messages received and sent by multiple
agents. Message Sequence Charts (MSC) are modeled into
finite-state processes by [6]. A similar approach has been

done with use of the BPE-calculus and the Concurrency
Workbench (CWB) [7] and Petri nets [8]. Zaha et al. [9]
tackle the formal specification of a protocol of interaction
between services expressed as a pattern of messages.

These works have been dubbed “data-agnostic” solutions
[10]. Currently, some problems, such as local enforceability of
global constraints [9], have only been studied in this context.

2.2 Data-Aware Workflows, Propositional
Properties

A refinement over the previous solutions is to consider that
the actual data exchanged in the messages of a Web service
can actually influence the control flow of that service: Tthe
workflow model becomes “data-aware.” This refinement is
illustrated in Fig. 1b: For example, the choice between
sending message “b” or “c” is now unambiguous and
determined by the value inside message “a.”

This category constitutes the bulk of formal Web services
models. Kazhamiakin et al. [11] model Web service
compositions by finite-state systems and studies them from
the angle of synchronicity; it takes the content of variables
and message parts into account by extending the original
message alphabet. Berardi et al. [12] model Web services in
Propositional Dynamic Logic (PDL) and are interested in
generating automated compositions between services. Duan
et al. [13] propose a restricted BPEL semantics for which it is
possible to automatically generate the composition of tasks.
In [14], the controllability of a business process is studied;
the operating guidelines of a process P is the automaton that
includes as its subgraphs all the possible controllers of P .
Nakajima [15] proposes techniques to extract a behavioral
specification from a BPEL process and verifies it with model
checking techniques.

Other works present automated tools for the validation
of the properties. Turner [16] formalizes BPEL Web service
workflows using a language called CHISEL, which is then
transformed into LOTOS for automated validation.
Multiagent Web services are modeled in [17] using a
custom protocol language called MAP which is then
translated into SPIN models and model-checked. A process
algebra approach is used in [18] to model Web service
choreographies using the Calculus of Communicating
Systems (CCS). Pistore et al. [19] use a formal language
called Tropos and validate properties in NuSMV [4].
Finally, in [20], model checking of LTL formulas expressed
in Promela on BPEL specifications is attempted using SPIN

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. X, XXXXXXX 2009

Fig. 1. Workflow modeling with various degrees of data-awareness. (a) Propositional workflow, propositional properties, (b) data-aware workflow,

propositional properties, and (c) data-aware workflow, data-aware properties.

[3]. The approach is extended in [21] and constitutes the
basis of the Web Service Analysis Tool (WSAT). VERBUS
[22] is another tool that translates a Web service workflow
into a finite-state structure. Finally, Johnson et al. [23] study
the two-phase commit protocol and model it using the
Temporal Logic of Actions (TLAþ).

Although these works take data into account when
modeling the Web services’ interactions, these data do not
play a role when expressing the properties. The temporal
formulas are still propositional. Actual data content can be
referred statically: In Fig. 1b, a(0) and b(9) are simply
modeled as two new message names. It is not possible,
however, to compare the values inside two different
messages except by explicitly stating their value.

2.3 Data-Aware Workflows, Data-Aware Properties

A further extension consists of allowing quantification on
data inside temporal properties, making them “data-aware”
as is shown in Fig. 1c. Knowledge about the internal workflow
generally remains unchanged with respect to the previous
category; however, the properties can now express that, when
“c” is sent, it contains the value of “a” incremented by 1.

In [10], [24], extensions to the temporal logics CTL and
LTL, respectively called CTL-FO and LTL-FO, are intro-
duced. These logics include a form of first-order quantifica-
tion on data. The model presented is very rich: It contains a
database represented as a variable set of first-order predicates;
however, this richness is achieved at the price of complexity.
The problem of model checking a CTL-FO formula ’ on a
Web service W (as defined in [24]) is undecidable. The
problem of model checking a formula ’ without any
quantification is in CO-NEXPTIME if the formula is proposi-
tional CTL. We show in this paper how a simpler modeling of
the services, coupled with a more expressive logic than CTL-
FO, is sufficient for model checking important data-aware
properties in real-world scenarios. Theorem 2 will demon-
strate that CTL-FOþ model checking is PSPACE-complete, a
considerably lower complexity.

The validation of interacting databases communicating
through Tree Pattern Queries is studied in [25]. Tree Pattern
Queries are tree skeletons used to fetch values inside a
structured database, which can then be sent to a remote
requester. Temporal formulas can be expressed in an
extension of LTL called Tree LTL. Although this work
considers infinite domains, in counterpart it prevents the
use of negation, and its model checking becomes undecid-
able if existential quantification is allowed in TPQs.

The Artifact Behavioral Specification Language (ABSL)
[26] is another extension of CTL that includes a form of
first-order quantification. However, ABSL is developed in a
context of artifact-centric business processes and is suited to
express properties of intra-artifact behaviors, not inter-
message constraints; the optimality of the ABSL model
checking algorithms also remains to be shown. In the same
vein, the language ALBERT [27] provides a way of
expressing assertions on the runtime state of a BPEL
process by referring to its internal variables and calls to
external services. Operators “forall” and “exists” are
mentioned in the language syntax and can be used to fetch
and memorize elements.

We shall stress that although some of these works give
formal complexity-theoretic bounds to the algorithms they
present, very few provide proof-of-concept implementations

of the kind presented in this paper; as far as we could look, this
work is the first to perform an empirical analysis and present
actual model checking times of data-aware properties in
various scenarios. This step should not be overlooked, as
determining the theoretical complexity of a language does not
give a complete picture of its capabilities. For example, the
decidability of ABSL for finite domains is obtained in [26] by
reducing it to classical CTL; the reduction uses explicit
quantification. Explicit quantification is also used in [27] to
reduce ALBERT to classical CTL. As we shall see in Section 7,
explicit quantification is only appropriate for very simple
cases. The alternate translation that we provide in Section 6,
despite being in the same complexity class, performs orders
of magnitude faster for most of the properties we considered.

3 DATA-AWARE CONSTRAINTS IN WEB SERVICE

SCENARIOS

To measure the importance of data-awareness in Web service
workflow validation, we introduce two representative real-
world scenarios where temporal constraints on messages
arise for a variety of reasons: Technical constraints stem from
the physical or logical nature of the resources involved in the
operations, while policy constraints deal with business logic
and may include membership restrictions, QoS require-
ments, or security. We proceed to show that a number of
these constraints are data-aware temporal properties.

3.1 User-Controlled Lightpaths

The User-Controlled Lightpath (UCLP) research project [28]
develops an environment that allows end users to self-
provision and dynamically reconfigure optical networks. To
this end, network resources from a specific provider, called
Lightpath Objects (LPOs), are virtualized and exposed to the
end user as a Web service. Each provider gives access to its
resources in an Articulated Private Network (APN) via an
LPO-factory Web service from which LPOs can be controlled
and consumed. Each LPO is identified by a unique ID, and
the UCLP operations usually manipulate these IDs.

For example, two adjacent LPOs can be concatenated; the
result of the concatenation operation is an LPO that is
considered as one single link. This operation takes as input
the ID of some LPOs i1; . . . in and returns a new LPO i
corresponding to the result of the concatenation. A
simplified version of the concatenateRequest message
structure is shown below:

<message>

<LPO-ID>i1</LPO-ID>
<LPO-ID>i2</LPO-ID>

. . .

<LPO-ID>in</LPO-ID>

</message>

An LPO’s bandwidth can also be partitioned into links of
equal bandwidth. For instance, an OC-3 LPO (155.52 Mbps)
can be partitioned into three OC-1 LPOs (51.84 Mbps).
Furthermore, as before, during the partition’s lifetime the
original LPO cannot be used in other operations. A request
is, therefore, composed of two elements: i is the ID of the
LPO to partition and b is the bandwidth of the desired
fragments. The response from this request returns a list of
LPO-IDs resulting from this partition.

HALL�E ET AL.: SPECIFYING AND VALIDATING DATA-AWARE TEMPORAL WEB SERVICE PROPERTIES 3

Suppose a small UCLP resource provider wants to limit
the management overhead of its LPOs; it might want to
avoid over-partitioning or over-concatenating its links by
imposing that no LPO be involved in more than one
operation, either as an input or as an output. Therefore, any
LPO will appear at most once.

Choreography Constraint 1. Every LPO-ID present in a

message cannot appear in any future message.

This constraint clearly has nothing to do with the
semantics of the partition operation, but rather with some
additional business logic imposed by one particular service
provider. Constraints can also arise for technical reasons.
For example, the semantics of the concatenate operation
supposes that the LPOs to be concatenated are adjacent (i.e.,
they have exactly one common end). Therefore, although it
would be syntactically perfectly valid, it does not make
sense to take two LPOs originating from the same partition
operation and attempt to concatenate them, as these two
LPOs are actually the same end-to-end connection.

Choreography Constraint 2. If two LPOs are the result of the

same partition response, they cannot be involved together in

the same concatenate request.

Many more data-aware constraints can be extracted from

this scenario; see, for example, [29].

3.2 E-Commerce Online Shop

We next consider an e-commerce scenario, adapted from

[30], where a shop offers users to buy products through a

Web service interface. This general context is appropriate to

represent many requirements of e-commerce applications.
An external buyer (which can be a human interfacing

through a Web portal, or another Web service acting on
behalf of some customer) first logs into the system by
providing a user name. The shop offers a discount if a user
connects with the commitment to buy at least one product,
which is signaled with the commitToBuy element. The
shop responds to the login with a loginConfirmation,
providing a unique ID for the session. The user can then
retrieve the product list and ask for more information about
each product, such as its price and available quantity, by
sending a getProductDetails message; the shop replies
with a productDetails message listing the information
for each product. The customer can buy products; this is
done by first placing a buyOrder message, listing the name
and desired amount of each products to be bought:

<message>

<action>buyOrder</action>

<product>

<name> s1 </name>

<amount> a1 </amount>

</product>
. . .

<product>

<name> s1 </name>

<amount> a1 </amount>

</stock>

<message>

The shop checks the availability of each product and returns
a orderConfirm with a bill identifier. The last step is for
the customer to complete the transaction by proceeding to a
cash transfer. This is achieved by providing an account
number. The transfer can be done for multiple buy orders at
the same time. Alternatively, instead of a cash transfer, a
cancelTransaction message listing some bill IDs can be
sent to revoke these transactions before payment. All these
operations can be intertwined.

One can verify that a user who commits to buy
actually does so for at least one product before the end of
the transaction. This involves the correlation of data
elements inside three different messages, as the following
constraint shows.

Choreography Constraint 3. There exists a product p
appearing in some buyOrder message whose bill ID i,
returned in some orderConfirm message, eventually appears
in a payment confirmation.

This choreography specification is indeed “data-aware”
because the sequence of messages and their content are
interdependent. Again, this scenario lends itself to numer-
ous other data-aware constraints, see [31].

4 A DATA-AWARE TEMPORAL LOGIC

Temporal logics are commonly used in model checking for
describing behavioral properties of systems. However,
classical temporal formalisms are propositional and Section 2
has shown how these languages are only partially appro-
priate to the modeling and validation of data-aware proper-
ties. In this section, we introduce CTL-FOþ, an extension of
the classical temporal logic CTL.

4.1 Workflow Modeling

The logic is defined in relation to a suitable model of a Web
service workflow. In the present context, this representation
should take into account the actual messages that are
exchanged. In addition, the values of the internal variables
used in the original process, since they can influence the
control flow and hence the messages that can be sent or
received, should also be kept.

To simplify the presentation, we shall first assume that
the states explicitly represent the content of flat XML
messages formed of an unordered list of elements; this
presentation will be generalized in Section 5.4. To this end,
we define a set � of parameters and a set � of values that
are used to represent the content of the messages. We define
a special symbol # that stands for “no value.” Couples of
parameters and values form a message element.

Definition 1 (Message Elements). The set of defined message
elements is Ed ¼ �� ð� [f#gÞ. We also consider the set of
undefined message elements, which is the singleton Eu ¼
fð#;#Þg. A message element is a member of E ¼ Ed [Eu.

The concept of message element closely parallels the
structure of a (flat) XML message. The parameters stand for
the tag names, while the values represent the data inside the
tag. For this reason, the definition of a message element
excludes the possibility that a value has no corresponding

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. X, XXXXXXX 2009

parameter. A message is simply an ordered sequence of
message elements.

Definition 2 (k-Messages). Let k be a positive integer, and for
i < k, define Di ¼ fðe1; . . . ; ekÞ : ei 2 Eu ^ eiþ1 2 Edg. The
set of k-messages is defined as Mk ¼ Ek n ð

Sk�1
i¼1 DiÞ.

Note that this representation does not allow nested tags
and imposes an upper bound k on the number of elements
inside a single message. Empty elements are simply
ignored; we impose the restriction that all undefined
elements be grouped at the end of the k-uple and, therefore,
one (flat) XML message maps to exactly one message of Mk.

A workflow messaging model is a standard Kripke
structure whose states represent the values of each of the
internal variables and the message that is being sent or
received in that state. That message can be the empty
k-message ðð#;#Þ; . . . ; ð#;#ÞÞ, indicating that no message
is either received or sent in that particular state of the model.

Definition 3 (Workflow Messaging Model). Let k be a
positive integer, � be a set of parameter names, � be a set of
value names, P ¼ fp1; . . . ; pkg be a set of parameter variables,
V ¼ fv1; . . . ; vkg be a set of value variables, and I be a set of
internal variables. A workflow messaging model is a Kripke
structure Mk ¼ ðS; I; R; LÞ such that

. S is a set of states;

. I � S is a set of initial states;

. R � S2 is a transition relation over the states;

. L ¼ ðS � ðP [V [IÞÞ ! ð� [�Þ is a labeling func-
tion such that, for every s 2 S, ððLðs; p1Þ; Lðs; v1ÞÞ; . . . ;
ðLðs; pkÞ; LðvkÞÞÞ is a k-message.

We further suppose that L uniquely identifies every state;
that is, there does not exist states s0; s1 2 S such that
Lðs0; �Þ ¼ Lðs1; �Þ for every � 2 P [V [I .

A path � ¼ s0s1 . . . is a sequence of states in S such that
ðsi; siþ1Þ 2 R for every i � 0. A workflow messaging model
can be seen as a generalized construction of a classical
Moore machine [32], where the symbol to be printed in a state
is replaced with the k-message encoded by the values of
state variables in P and V. Any path in the system
corresponds to a possible sequence of messages in a service
interaction. Properties about message sequences become
properties on sequences of states that can then be expressed
using temporal logic.

The translation of a business process into a workflow
messaging model is outside the scope of this paper; in the
spirit of [24], we assume it is given. There exists numerous
works providing formal models from various input
notations: UML Message Sequence Charts [33], CRESS
[16], BPEL [20], [34], [35], [36]. Some of these tools even
manage exception handling and compensation procedures
as alternate flows.

4.2 Syntax and Semantics of CTL-FOþ

The Computation Tree Logic with Full First-order Quanti-
fication (CTL-FOþ) is aimed at describing sequentialities in
a finite-state system while allowing full quantification over
data; it is an extension of the well-known temporal logic
CTL [37]. CTL and a related logic called LTL are the most
commonly used languages for describing sequentialities in

finite-state systems. All major model checking tools, such as

SPIN [3] and NuSMV [4], verify temporal formulas

expressed in one of these logics. The reader is referred to

[37] for a deeper coverage of CTL and other temporal logics.
Formulas are built from Boolean variables and the

constants true and false using the classical connectors: ^
(and), _ (or), ! (implies), and : (not). CTL-FOþ further

provides temporal operators, taken directly from CTL, that can

be used on top of traditional propositional logic formulas to

specify the temporal conditions. Universal operators assert

properties about all executions starting from the current

state. The first of these operators is AG, which means

“globally.” For example, the formula AG ’ means that

formula ’ is true in every state of every execution starting at

the current state. The operator AF means “eventually”; the

formula AF ’ is true whenever for all executions,’ holds for

some future state. The operator AX means “next”; it is true

whenever ’ holds in any possible next state of the current

state. Finally, the AU operator means “until”; the formula

A ’ U is true if, in any execution sequence, ’ holds for all

states until holds. Existential operators, designated by EG,

EF, EX, and EU, are defined in the same way as their

universal equivalents, except that the condition holds only

for some instead of all possible sequences.
We extend the expressiveness of the traditional CTL by

adding first-order quantification. The resulting language

has the following formal syntax and semantics.

Definition 4 (Syntax). The language CTL-FOþ (Computation

Tree Logic with Full First-Order Quantification) is obtained

by closing CTL under the following construction rules: Let x

and y be variables or constants; let ’ and be CTL-FOþ

formulas, xi be a free variable in ’, p 2 � be a parameter

name; then

x ¼ y;:’; ’ ^ ; ’ _ ; ’! ;AG ’;EG ’;AF ’;

EF ’;AX ’;EX ’;A ’ U ;E ’ U ; 9pxi : ’

and 8pxi : ’ are CTL-FOþ formulas.

Definition 5 (Semantics). Let Mk be a workflow messaging

model and s 2 S be a state. For p 2 �, let DomsðpÞ ¼
fLðs; viÞ : Lðs; piÞ ¼ p; 1 � i � kg and c1 and c2 be con-

stants. Let X ¼ fx1; . . . ; xng be the set of variables in ’ and

� : X ! � [f#g a valuation that maps each variable to a

possible value. By extension, � maps any constant c to itself.

We denote by �½a=xj� the valuation that agrees with � on every

xi 2 X with the exception of xj for which it returns a. We say

that the tripletMk; s; � satisfies the CTL-FOþ formula ’ and

write Mk; s; � 	 ’ if and only if it follows the rules given in

Table 1. By extension, we write Mk 	 ’ if all initial states

s 2 I ofMk and the empty valuation �ðxÞ ¼ # for all x 2 X
are such that Mk; s; � 	 ’.

The set of operators :;_, AF, EX, EU, and 9 is called

an adequate set of connectives in that all other operators

can be derived from a combination of them with the

following identities:

HALL�E ET AL.: SPECIFYING AND VALIDATING DATA-AWARE TEMPORAL WEB SERVICE PROPERTIES 5

’ ^
 :ð:’ _ : Þ;EF ’
 E ½true U ’�;
AX ’
 :EX :’;AG ’
 :E ½true U :’�;

A ½’ U �
 :ðE ½ð:’Þ U :ð’ _ Þ� _EG : Þ;
8pxi : ’
 :ð9pxi : :’Þ:

This result is classical [38].
Without loss of generality, we assume that CTL-FOþ

formulas ’ with n quantified variables are well named: Each
variable is quantified only once and in the order
x1; x2; . . . ; xn. Every CTL-FOþ formula can be transformed
by a simple renaming of its variables to a well-named
formula. Then, the valuations � used in the previous
semantics can be restricted to ordered valuations, which
define variables progressively in the order x1; x2; . . . ; xn. An
ordered t-valuation is an ordered valuation for which exactly
the first t variables x1; x2; . . . ; xt have been defined. We then
define pi 2 � as the parameter name appearing in the
quantification of variable xi in ’.

CTL-FOþ is reminiscent of [39] which introduces a logic
called EQCTL that extends CTL by allowing existential
quantification over state variables. EQCTL is not closed
under negation; therefore, universal quantification cannot
be obtained. CTL-FOþ quantifies over values and is closer to
true first-order quantification. Furthermore, the model
checking of EQCTL is NP-complete, while we show later
that model checking in CTL-FOþ is in a higher complexity
class. A closer work is QCTL [40], which extends CTL by
including first-order quantification and monadic second-
order quantification over arbitrary algebraic data structures;
such expressiveness is not required in our case. Finally,
CTL-FOþ can freely mix temporal and data quantification
without restriction. This is an extension over the logic
CTL-FO defined in [24], which does not allow formulas
containing temporal operators to be existentially quantified.

CTL-FOþ is expressive enough to model a wide range of
existing notations. In particular, it can be used to express
safety, fairness, and liveness properties and sequentiality
properties in UML Sequence Diagrams. The three operators
of the Let’s Dance choreography language (“precedes,”
“inhibits,” and “weak-precedes”) [9] can be mapped into
CTL-FOþ, as well as all the existence and relation formulas
of the DecSerFlow language [41], and the portion of BPMN
and BEMN, which has been formalized into temporal logic
[42]. It can also express properties that are beyond any of
these languages, such as all data-aware constraints. By
taking time as an additional global variable, the logic also
expresses metric temporal properties such as time windows
(B happens at least/most k seconds after A, where k is a
constant) and time filters (B happens at most x seconds
after A, where x is fetched from a message in the
conversation), see [43].

4.3 Formalizing Web Service Properties

The values of the variables appearing in a CTL-FOþ

formula are quantified according to specific parts of the
XML message that is received or sent in the current state of
the system. A quantifier like 8LPO�IDx therefore means “for
all values x of elements named LPO-ID in the current
message.” This form of quantification is sufficient, since
when referring to message data, it is never necessary to
quantify over all values of all elements in the message;
rather, we normally want to quantify for all values of a
specific element name. As an example, Choreography
Specification 1 becomes the following CTL-FOþ formula.

Formal Choreography Constraint 1.

AG ð8LPO-ID x1 : AXAGð8LPO-ID x2 : x1 6¼ x2ÞÞ

It is important to remark that quantification only refers to

values occurring in the current message. Variables x1 and x2

both quantify over LPO-ID elements. If quantification did not

depend on the current message, the previous formula would

always be false, as any value c bound to x1 would also be

admissible for x2, making the assertion x1 6¼ x2 false at least

once. The previous formula rather states that at any time in

any execution of the script, for any LPO-ID x1 appearing in a

message, then from now on in any future message, any LPO-

ID x2 is different from x1. Hence, it will be true exactly when

no LPO-ID appears more than once in any execution, which is

consistent with Choreography Specification 1.
In a similar way, Choreography Specification 2 becomes

the following, more complex CTL-FOþ formula.

Formal Choreography Constraint 2.

AG ð8operation x1 : x1 ¼ concatenateRequest!
8LPO-ID x2 : AXAGð8operation x3 :

ðx3 ¼ partitionRequest _ x3 ¼ concatenateRequestÞ
! 8LPO-ID x4 : x2 6¼ x4ÞÞ

This formula states that, at any time in any execution of

the script, if the operation x1 of the message is concatena-

teRequest, then, for every LPO-ID x2 appearing in this

message, we have that, for every future message whose

operation element value x3 is partitionRequest or concate-

nateRequest, any value x4 for its LPO-ID is different from

x2. In other words, once an LPO has been concatenated, no

further partition or concatenation involves this LPO, which

is indeed equivalent to Choreography Constraint 2.
As a last example, Choreography Constraint 3 becomes

the following CTL-FOþ formula in seven variables; note

that, in this case, existential quantification is necessary.

Formal Choreography Constraint 3.

AF ð9action x1 : x1 ¼ buyOrder^
9product=name x2 : AF ð9actionx3 :

ðx3 6¼ orderConfirm ^ ð9product=namex4 : 9bill-IDx5 :

AF ð9actionx6 9bill-IDx7

x6 ¼ confirmPayment ^ x7 ¼ x5ÞÞÞÞÞ

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. X, XXXXXXX 2009

TABLE 1
Formal Semantics of CTL-FOþ

The semantics for the Boolean connectives and temporal operators is
identical to CTL’s.

5 VALIDATING CTL-FOþ PROPERTIES

In this section, we show how CTL-FOþ formulas can be

actually validated on a Web service workflow by presenting

a model checking algorithm. The complexity of this

algorithm is then established and discussed. In particular,

we show that CTL-FOþ model checking is a problem as

tractable as the LTL model checking problem that is widely

used in the industry. Finally, we show that any Web service

model that uses a data-aware workflow but propositional

properties cannot efficiently simulate data-awareness.

5.1 Model Checking CTL-FOþ

The model checking for CTL-FOþ formulas is derived from

the classical CTL model checking algorithm and is presented

in Table 2. Given a valuation �, the procedure CHECK

performs by structural recursion on the CTL-FOþ formula ’

and consists of forming recursively the set of states s such

that Mk; s; � 	 ’. Ground equality testing is evaluated by

comparing the valuation of each side. If the main operator of

the subformula to check is a Boolean connective or a

temporal modality, the algorithm is identical to the model

checking of a CTL formula defined in [44].
Differences arise when the main operator of the formula

is an existential quantifier, 9x : ’ðxÞ. In such a case, the

algorithm successively applies the model checking of ’ðaÞ,
for a in the domain of x, and keeps states which satisfy at

least one ’ðaÞ. Finally, model checking of ground terms is

composed of equality testing. Depending on the valuation

and the terms to be compared, either the entire model

satisfies it if the assertion is true or no state satisfies it if the

assertion is false.
A workflow messaging model Mk satisfies the global

CTL-FOþ formula ’ if and only if all its initial states are

in the set returned by CHECK(’; �), with � being the

empty valuation.

Theorem 1. CHECK is sound and complete.

Proof. The proof is done by structural induction on the
formula ’. Base case: Ground formulas are equality
testings and the result is direct. Induction step: Suppose
that CHECK is sound and complete for every formula of
length less than ‘. Let ’ be a formula of length ‘. For
Boolean connectives and temporal operators, the proce-
dure CHECK is identical to CTL’s [44] and its soundness
and completeness are assumed. The remaining case not
covered is that of existential quantification. Lines 4-6 of
the procedure CHECK ð9px : ’; �Þ are such that a state s is
added to set N if and only if there exists at least one
value a 2 DomsðpÞ such that s 2 CHECK ð’; �½a=x�Þ. By
the induction hypothesis, this is the case if and only if
Mk; s; �½a=x� 	 ’. Since this loop is repeated for every
s 2 S, at the end of the procedure we have that s 2 N ¼
CHECK ð9px : ’; �Þ if and only if there exists a 2 DomsðpÞ
such thatMk; s; �½a=x� 	 ’. By Definition 5, this in turn is
equivalent to Mk; s; � 	 9px : ’. tu

The model checking of CTL-FOþ requires a workflow
messaging model with finite domains. If the original
process produces a finite number of values, then these
values can be directly used to build the workflow messa-
ging model. If the process manipulates a potentially infinite
domain, a finite abstraction of the infinite space must first be
applied before building the model. For example, since
atoms in CTL-FOþ are only equality tests, the original
domain can be replaced by a finite number of symbolic
values, representing different equivalence classes; among
other possible approaches, we also mention finite sampling
of an infinite set by random selection of values [27] and
abstraction to Boolean values and progressive refinement of
the model [45]. However, as explained in Section 4.1, the
translation between a business process and a workflow
messaging model is outside the scope of this paper;
therefore, any mapping to the actual values of the original
process is assumed to be taken care of independently.

5.2 CTL-FOþ Model Checking is PSPACE-Complete

We now establish the complexity of model checking
CTL-FOþ formulas and show that data-aware properties
cannot be modeled effectively by propositional properties.

Theorem 2. Let ’ be a CTL-FOþ formula and Mk be a
workflow messaging model. Determining whether Mk 	 ’ is
PSPACE-complete.

Proof. We first show that the model checking problem is

PSPACE-hard by reducing the quantified Boolean

formula problem (QBF), known to be PSPACE-complete

[46], to CTL-FOþ model checking. A quantified Boolean

formula ’ is of the form Q1x1Q
2x2 . . .Qnxn’, where Qi is

either the existential (9) or the universal (8) quantifier

and the xi are Boolean variables (their domain is f0; 1g).
Consider the workflow messaging model M2 consisting

of a single state s (which is also the initial state), a

transition relation fðs; sÞg, and where the two-message in

state s is ððp; 0Þ; ðp; 1ÞÞ for some dummy parameter

name p. Then, by rewriting the quantifiers Qxi in the

original QBF to Qi
pxi; ’ becomes a CTL-FOþ formula ’0,

where each variable xi has domain DomsðpÞ ¼ f0; 1g.
Therefore, ’ is satisfiable if and only if M2 	 ’0.

HALL�E ET AL.: SPECIFYING AND VALIDATING DATA-AWARE TEMPORAL WEB SERVICE PROPERTIES 7

TABLE 2
The Recursive Model Checking Procedure for CTL-FOþ

The second step consists in showing that the
procedure CHECK is in PSPACE. Each recursive call
receives as arguments a subformula bounded by the size
of the original formula ’ and a valuation � whose
cardinality is fixed. Depending on the case to be
considered, each call uses at most two subsets of S
during its computation and returns a subset of S.
Therefore, the space consumed by each recursive call is
linear in the size of both the formula and the structure.
Since the number of calls is bounded by the length of the
formula, this algorithm is polynomial in the size of the
CTL-FOþ formula and the transition system. Note that
the PSPACE class of decision problems only requires
polynomial use of memory space; the algorithm is clearly
exponential with respect to time. tu

The PSPACE-completeness result places CTL-FOþ

model checking for finite domains in the same complexity
class as model checking of an LTL formula [37]. LTL is a
temporal logic widely used in the industry, for example, in
conjunction with the SPIN model checker, and many
works with propositional properties mentioned in Section 2.2
use LTL as their language for expressing constraints on
message sequences. Therefore, although CTL-FOþ allows
to fully access the data content of the messages, its model
checking problem has an equivalent complexity to many
other existing solutions that do not provide data-aware
temporal capabilities.

5.3 Simulating Data-Awareness with Propositional
Properties

Studying the complexity of the CTL-FOþ model checking
algorithm can teach us more. Since the domain for each
variable is finite, it is possible to use the semantics of
Definition 5 and convert each quantifier into a conjunction
or a disjunction of a finite number of terms. The resulting
expression is a plain CTL formula where all references to
data are static; we call this approach explicit quantification. In
turn, this expansion of a CTL-FOþ formula ’ into a
propositional CTL formula ’0 is exponential in the number
of quantifiers since each quantified subformula must be
repeated once for each possible value in the domain.
However, the model checking algorithm of a CTL formula
is in P: It has a worst-case running time linear in the size of
the formula to check and linear in the size of the Kripke
structure [38]. Therefore, using CTL model checking on ’0

takes exponential time, which is no worse than the runtime
of CTL-FOþ model checking on ’.

One might then think that CTL-FOþ is simply CTL with
an additional level of syntactic sugar and that data-aware
workflows with propositional properties, as described in
Section 2.2, are already sufficient to model any data-aware
property by simply extending the message alphabet.
However, this is not the case; the following theorem shows
that it is highly unlikely that any polynomial reduction of
CTL-FOþ to CTL exists.

Theorem 3. If there exists a polynomial reduction of CTL-FOþ

model checking to CTL model checking, then P ¼ NP.

Proof. A polynomial reduction of CTL-FOþ model
checking to CTL model checking entails that for every
workflow messaging model Mk and every CTL-FOþ

formula ’, there exists a Kripke structure K0 and a

CTL formula ’0 such that Mk 	 ’ if and only if
K0 	 ’0. Moreover, the size of K0 and ’ are respec-
tively polynomial in the sizes of Mk and ’. Since
CTL-FOþ model checking is PSPACE-complete and
CTL model checking is in P, we have PSPACE � P.
The result follows since P � NP � PSPACE. tu

Therefore, unless P ¼ NP, any attempt at using data-
aware workflows with propositional properties to model
data-aware properties will either blow the size of the
formulas or the size of the model by an exponential factor.
In other words, CTL-FOþ is exponentially more succinct
than any propositional modeling of data-awareness.

Furthermore, with explicit quantification, the translation
of constraints into temporal logic becomes tightly coupled
with the actual script on which it has to be checked. This is
because the translation of the quantifiers shown depends on
the values occurring in the script. It is, however, unrealistic
that a service provider advertises its constraints in such a
manner: One would have to know in advance all possible
values occurring in scripts prepared by third parties to
include them in the large disjunction. Finally, we suspect
standard model checkers such as NuSMV [4] to easily
handle systems with very large state spaces and reasonably
short temporal formulas, but to be far less efficient for
checking exponentially long formulas. The experimental
results in Section 7 will confirm this intuition.

5.4 Generalization to Nested Message Elements

Up to now, messages in the workflow messaging model
were represented explicitly as flat, unordered lists of
element-value pairs. The quantifier 9px constrains the
domain of x to the values of p elements in the current
message. For a given CTL-FOþ formula ’, one can compute
the set of element names fp1; . . . ; png occurring in a
quantifier. Since pi are the only message parts that are
accessed, all message elements outside this set are irrelevant
to ’; hence, the workflow messaging model only needs to
encode a projection of the actual messages onto the set
fp1; . . . ; png.

This construction can be generalized by replacing the pi
with any static expression �i which can fetch a set of values
inside a message; in particular, �i can be an XPath expression
specifying branches of a particular form, such as
p1=p2= . . . =pn, where the pi are static element names. In this
case, the workflow messaging model only needs to encode a
projection of the actual messages onto the set of XPath
expressions f�1; . . . ; �ng. Therefore, the workflow messaging
model can be used to represent access to nested message
elements reachable by standard, static path expressions.

6 AN EFFICIENT REDUCTION OF CTL-FOþ TO CTL

Theorem 3 indicates that, in fact, any attempt to use
standard CTL model checkers to validate data-aware
workflow properties is “doomed” to an exponential blowup
of the original problem, and not only the explicit quantifica-
tion method suggested above.

Nevertheless, in this section, we show an alternate
translation of the CTL-FOþ model checking problem to
CTL. In this approach, the original CTL-FOþ formula is

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. X, XXXXXXX 2009

transformed into a CTL formula, but the original workflow
messaging model is also transformed by adding new state
variables. These additional variables are used to “freeze”
the value of a state variable at some point in the execution
for future reference; consequently, the transformation
technique used is called “freeze quantification.” It has been
originally developed in [47] for timed transitions systems.

We proceed in two steps. First, we show how to convert a
workflow messaging modelMk and a CTL-FOþ formula ’
with n variables into a freeze workflow messaging model cMn

k ;
then, we show how a CTL-FOþ formula’ can be translated to
a CTL formula b’ and show that’ is true forMk if and only if b’
is true for cMn

k , thereby reducing the problem of CTL-FOþ

model checking to CTL model checking.
The number of states in cMn

k is exponential with respect to
the number of states inMk and hence the reduction is still in
EXPTIME; however, the original CTL-FOþ formula ’ is
transformed into a CTL formula whose size is linear with
respect to ’. We shall see in Section 7 that, for this reason,
this reduction performs much better than the explicit
quantification approach for complex formulas.

6.1 Transforming a Kripke Structure

Let Mk ¼ ðS; I; R; LÞ be a workflow messaging model

defined over parameters � and values �, with sets of state

variables P;V, and I defined as previously. We will build a

freeze workflow messaging model cMn
kðbS; bI; bR; bLÞ by includ-

ing an additional set of state variables F ¼ fb�1; . . . ; b�ng,
called the “freeze” variables, intended to capture the value

of some part of a message at a given point in the execution

of the workflow. Intuitively, the b�i will be used to represent

inside the workflow messaging model the possible ordered

valuations � of the variables x1; . . . ; xn in the original

CTL-FOþ formula.
The labeling function L is extended to the freeze

variables and is defined as bL : ðbS � ðP [V [I [FÞÞ !
ð� [�Þ. For 0 � t � n, we define the set �n

t � ð� [f#gÞ
n

such that ðb�1; . . . ; b�nÞ 2 �n
t if and only if b�i 6¼ # for 1 � i � t

and b�i ¼ # otherwise. The set �n
t contains all possible

ordered t-valuations.
The set of system states bS and the behavior of the

labeling function bL on this set are defined as follows.

Definition 6 (Set of System States, Labeling). Let s 2 S be a

state of Mk and t be an integer such that 0 � t � n. Then,bs 2 bS is a state of cMk
n if and only if

. Lðs; �Þ ¼ bLðbs; �Þ for every � 2 P [V [I ;

. ð bLðbs; b�1Þ; . . . ; bLðbs; b�nÞÞ 2 �n
t .

This definition entails that the relation between S and bS
is surjective: For every state s 2 S, there exists multiple

“copies” bs� 2 bS that agree on the labeling function for s for

every state variable of Mk and for which the freeze

variables encode every possible ordered valuation � of the

xi. Therefore, for every 0 � t � n and every � 2 �n
t , the setsbS� ¼ fbs� : bLðbs�; b�iÞ ¼ �ðxiÞ; 1 � i � ng form a partition of bS;

each bS� is a “copy” of S, where the v̂i encode one specific

ordered valuation, �.

The initial states of cMn
k are the copies of the initial states

of Mk, where the b�i encode the empty valuation.

Definition 7 (Initial States). Let s 2 S be a state of Mk andbs� 2 bS be a state of cMn
k such that � 2 �n

0 . Then, s 2 I if and

only if bs� 2 bI.

The transition relation bR is defined as the union of two

relations, bRw and bRf . The transitions contained in the first

part, bRw, reproduce in each partition bS� the original

transition relation R. They are called workflow transitions.

Definition 8 (Transition Relation: Workflow Transitions).

Let s; s0 2 S; � 2 �n
t for some 0 � t � n and bs�; bs 0� 2 bS� .

Then, ðs; s0Þ 2 R if and only if ðbs�; bs 0�Þ 2 bRw.

The transitions contained in the second part, bRf , simulate

the definition of a new variable into the valuation.

Definition 9 (Transition Relation: Freeze Transitions). Let

s 2 S. Let � 2 �n
t for some 0 � t � n; �0 2 �n

tþ1 such that

�ðxiÞ ¼ �0ðxiÞ for 1 � i � t. Then, ðbs�; bs�0 Þ 2 bRf if and only if

�0tþ1 2 Domsð�tþ1Þ.

These are called freeze transitions since the workflow

messaging model switches between two copies bs�; bs�0 of

the same original state s 2 S. Thus, the action of the

original workflow messaging model is suspended while a

variable b�i takes a value. We say that cMn
k is in a freezing

phrase when it advances to its next state through a freeze

transition.
Following the semantics of CTL-FOþ, the domain of

each freeze variable is dependent on the message part on

which they are defined: The definition imposes that, in

state s, if the variable that takes a value is b�i, then this value

must be from Domsð�iþ1Þ.
The actual value assigned to either of these special

variables in each state is nondeterministic among all

possible values in Domsð�iþ1Þ. In addition, each variable

may or may not take a value—that is, variables can stay

undefined. However, once a variable has taken a definite

value, it keeps this value for the remainder of the execution

trace. Finally, any number of freeze transitions can be taken

before resuming the execution of Mk by taking again a

workflow transition. This entails that any number of

variables can be assigned in a freezing phase, provided

that they are assigned in lexicographical order and that

their domain is not empty for that state.
Definitions 6-9 completely specify cMn

k from Mk. It is

important to remark that cMn
k also depends on the CTL-FOþ

formula to check, ’, but only in the number of variables and

the parameters �i on which each xi is quantified.

6.2 Converting a CTL-FOþ Formula

Once a workflow messaging modelMk has been translated

into a freeze workflow messaging model cMn
k , the CTL-FOþ

formula on Mk can be translated into a standard CTL

formula on cMn
k .

We first define a class of auxiliary formulas �nt , called the

guards. Intuitively, �nt describes the fact that the variablesb�1; . . . ; b�n encode an ordered t-valuation in �n
t .

HALL�E ET AL.: SPECIFYING AND VALIDATING DATA-AWARE TEMPORAL WEB SERVICE PROPERTIES 9

Definition 10 (Guard). Let t; n be positive integers such that

0 � t � n. The guard �nt is the CTL formula:

�nt ¼
t̂

i¼1

b�i 6¼ #

 !
^

n̂

i¼tþ1

b�i ¼ #

 !
:

It can be observed that, by definition, we have that �nt holds

in a state bs 2 bS if and only if ð bLðbs; b�1Þ; . . . ; bLðbs; b�nÞÞ 2 �n
t .

We define a linear embedding !nt of CTL-FOþ into

CTL formulas which performs by structural induction on

the original CTL-FOþ formula ’. In the same way as the

semantics of CTL-FOþ depends on the valuation of the

variables �, the translation !nt depends on t, the number

of variables whose value is already defined. Therefore,

!nt ð’Þ returns the CTL translation of ’, given that t out of

n variables are already defined.
Let ’1 and ’2 be CTL-FOþ subformulas, c1; c2 be

constants in �, t; n be integers defined as above, p 2 � be a

parameter name, and x1; . . .xn be the n quantified variables

in the CTL-FOþ formula ’. Translating the Boolean

connectives and the ground equality testings is direct.

!nt ðc1 ¼ c2Þ
 c1 ¼ c2; ð1Þ

!nt ðxi ¼ c1Þ
 b�i ¼ c1; ð2Þ

!nt ðxi ¼ xjÞ
 b�i ¼ b�j; ð3Þ

!nt ð:’1Þ
 :!nt ð’1Þ; ð4Þ

!nt ð’1 _ ’2Þ
 !nt ð’1Þ _ !nt ð’2Þ: ð5Þ

The translation of the CTL temporal operators requires

more work; we explain them one by one. The semantics of the

EX operator requires that there exists one execution path in

Mk for which the next state respects some property. In cMn
k ,

not all possible execution paths are admissible; remember

that, in freeze transitions ðbs0; bs1Þ 2 bRf , the states bs0 and bs1 are

two copies of the same original state in Mk and do not

represent an actual progression of the execution of Mk.

Therefore, the next states reached through these freeze

transitions are not “real” next states of the execution and

must be discarded. Only next states reached through work-

flow transitions ðbs0; bs1Þ 2 bRf must be considered. These states

can be characterized by the fact that the b�i encode a

t-valuation, which, by Definition 9, must be the same as that

in bs0. Hence, only next states that verify both �nt and!nt ð’Þ are

valid candidates. This yields the following equation:

!nt ðEX ’1Þ
 EX �nt ^ !nt ð’1Þ
� �

: ð6Þ

A similar adaptation must be done to preserve the

semantics of the AF operator. In the original semantics,

AF ’ requires that every execution path in Mk starting

from the current state is such that there exists a state that

verifies ’. Again, not all paths must be considered: States

accessible through freeze transitions must be discarded. The

only paths that must fulfill F ’ are those which do not take

a freeze transition:

!nt ðAF ’1Þ
 A
�
�nt U

�
:�nt _

�
�nt ^ !nt

�
’1

����
: ð7Þ

The translation of the AF operator is a generalization of

the traditional CTL AF, is defined as AF ’
 A ½true U ’�;
it suffices to replace �nt by true to recover the original

definition. Therefore, the guard �nt can be seen as a filter

that determines which paths are admissible.
The case of EU is adapted following the same principle:

!nt ðE ’1 U ’2Þ
 E
��
�nt ^ !nt ð’1Þ

�
U
�
�nt ^ !nt ð’2Þ

��
: ð8Þ

Equation (8) imposes the existence of a path where no

freeze transition is taken, by adding the guard �nt to both

subformulas ’1 and ’2.
The quantification on variables becomes a quantification

on some execution paths. Indeed, a quantifier like 9pxi : ’

actually means “there exists a value a that variable xi can

take in the current state such that ’ holds.” According to the

Kripke structure Mk defined previously, this simply

amounts to asserting that in the current state, there exists

a way for b�i of changing from # to some definite value such

that the translation of ’ is true. By Definition 9, the only

values that b�i can change to are in Dombsð�iÞ for s for the

current state bs. This translates as follows:

!nt ð9pxi : ’1Þ
 EX �ntþ1 ^ !ntþ1ð’1Þ
� �

: ð9Þ

Using this embedding, Choreography Specification 2 is

recursively translated to the following CTL expression. The

translation for AG and AX has been obtained from the

above equations using the classical identities mentioned in

Section 4.2.

:E
�
�4

0 U
�
�4

0^�
:
�
AX

�
�4

1 !
�
x1 ¼ partitionResponse!�

AX
�
�4

2 !
�
AX

�
�4

2 ! A
�
�4

2 U
�
�4

2 _
�
AX

�
�4

3 !�
x3 ¼ concatenateRequest!�
EX

�
�4

4 ^ x2 ¼ x4

�����������������
We do not expect data-aware constraints to be expressed

directly in CTL in such a way. However, the translation

from CTL-FOþ to CTL can be automated and the next

theorem shows that the overall construction preserves the

validity of the original problem.

Theorem 4. LetMk be a workflow messaging model, s 2 S be a

state ofMk; ’ be a CTL-FOþ formula in n variables, � be an

ordered t-valuation for some 0 � t � n. Let cMn
k be the

freeze workflow messaging model built from Mk; bs� 2 bS be

a state of cMn
k such that bLðbs�; b�iÞ ¼ �ðxiÞ for all 1 � i � n

and Lðs; �Þ ¼ bLðbs�; �Þ for every � 2 P [V [I . Then,

Mk; s; � 	 ’ if and only if cMn
k ; bs� 	 !nt ð’Þ.

Proof. The proof is done by structural induction on ’.
Base case: The three ground equality testings must be

verified.

1. c1 ¼ c2: Suppose Mk; s; � 	 c1 ¼ c2, where c1 and

c2 are constants. By Definition 5, then, c1 and c2

are the same. By (1), !nt ðc1 ¼ c2Þ
 c1 ¼ c2. Since c1

and c2 are the same, then c1 ¼ c2 is a tautology

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. X, XXXXXXX 2009

and cMn
k ; bs� 	 c1 ¼ c2. The case where Mk; s; � 6	

c1 ¼ c2 is shown in the same way.
2. xi ¼ c1: Same as above, using (2).
3. xi ¼ xj: Same as above, using (3).

Induction step: Suppose the equivalence is respected
for all formulas of length less than ‘. Let ’ be a formula
of length ‘. We must show that the application of !nt in
each possible case for ’ preserves the satisfiability of
the formula.

1. :’0: By Definition 5, Mk; s; � 	 :’0 if and only

if Mk; s; � 6	 ’0. By the induction hypothesis,

Mk; s; � 6	 ’0 if and only if cMn
k ; bs� 6	 !nt ð’0Þ. By

the classical semantics of CTL, cMn
k ; bs� 6	 !nt ð’0Þ

if and only if cMn
k ; bs� 	 :!nt ð’0Þ. By (4),

:!nt ð’0Þ
 !nt ð:’0Þ.
2. ’0 _ : By Definition 5, Mk; s; � 	 ’0 _ if and

only if Mk; s; � 	 ’0 or Mk; s; � 	 . By the

induction hypothesis, Mk; s; � 	 ’0 if and only ifcMn
k ; bs� 	 !nt ð’0Þ, and Mk; s; � 	 if and only ifcMn
k ; bs� 	 !nt ð Þ. By the classical semantics of CTL,

this is the case if and only if cMn
k ; bs� 	 !nt ð’0Þ _

!nt ð Þ. By (4), !nt ð’0Þ _ !nt ð Þ
 !nt ð’0 _ Þ.
3. EX ’0: By Definition 5, Mk; s; � 	 EX ’0 if and

only if there exists s0 2 S such that ðs; s0Þ 2 R and

Mk; s
0; � 	 ’0. By Definition 8, ðs; s0Þ 2 R if and

only if there exists a state bs0� 2 bS such that ðbs�; bs0�Þ 2bR;Lðs0; �Þ ¼ bLðbs0�; �Þ for every � 2 P [V [I , andbLðbs 0� ; b�iÞ ¼ bLðbs�; b�iÞ for every b�i 2 F ; this last

condition entails that cMn
k ; bs0� 	 �nt . By the induction

hypothesis, we know thatMk; s
0; � 	 ’0 if and only

if cMn
k ; bs0� 	 !nt ð’0Þ. By the classical semantics of

CTL, the previous two results are equivalent tocMn
k ; bs0� 	 �nt ^ !nt ð’0Þ. This in turn is equivalent tocMn
k ; bs� 	 EX ð�nt ^ !nt ð’0ÞÞ. F i n a l l y , EX ð�nt ^

!nt ð’0ÞÞ
 !nt ðEX ’0Þ by (6).
4. AF ’0: SupposeMk; s; � 	 AF ’0. By Definition 5,

every path � ¼ ss1s2 . . . is such thatMk; si; � 	 ’0
for some i. Alternatively, this is equivalent to the
fact that there is no path � ¼ s1s2 . . . with s ¼ s1

such that Mk; si; � 6	 ’0 for every i � 1.
By (7), !nt ðAF ’0Þ
 A ½�nt U ð:�nt _ !nt ð’0ÞÞ�.

By the classical CTL semantics, the formula

A ½�nt U ð:�nt _ !nt ð’0ÞÞ� if true if and only if for

every path b� ¼ bs1bs2 . . . with bs� ¼ bs1, there exists

an m � 1 such that bMk; bsi 	 �nt for every i < m,

and either bMk; bsm 6	 �nt or bMk; bsm 	 !nt ð’0Þ.
Let b� ¼ bs�bs1bs2 . . . be a path. Define 1 � m1 �

1 such that bMk; bsm1
	 !nt ð’0Þ and bMk; bsi 6	 !nt ð’0Þ

for every i < m1. Similarly, define 1 � m2 � 1
such that bMk; bsm2

6	 �nt and bMk; bsi 	 �nt for every

i < m2. Three cases must be considered:

. m1 � m2 and m1 <1: Then bMk; bsi 	 �nt for
every i < m1, and bMk; bsm1

	 �nt ^ !nt ð’0Þ.
Let m ¼ m1, and the path fulfills the

definition.

. m1 > m2: Then bMk; bsi 	 �nt for every i < m2,
and bMk; bsm2

6	 �nt . Let m ¼ m2 and the path
fulfills the definition.

. m1 ¼ m2 ¼ 1: Then b� is a path bsbs1bs2 . . . such

that cMn
k ; bsi 	 �nt and cMn

k ; bsi 6	 !nt ð’0Þ for

every i � 1. By Definition 8, b� is a path inbMk if and only if there exists a path � ¼
ss1s2 . . . in Mk such that, for every i >

1; Lðsi; �Þ ¼ bLðbsi; �Þ for every � 2 P [V [I
and ðsi�1; siÞ 2 R. By the induction hypoth-

esis, since cMn
k ; bsi 6	 !nt ð’0Þ for every i � 1,

then Mk; si; � 6	 ’0 for every i � 1. This

contradicts the hypothesis that no such path

exists in Mk.

Therefore, all paths in cMn

k satisfy the condition
and cMn

k ; bs� 	 !nt ð’0Þ.
Conversely, suppose Mk; s; � 6	 AF ’0. By De-

finition 5, there exists a path � ¼ ss1s2 . . . in bMk

such that Mk; si; � 6	 ’0 for every i � 1. By
Definition 8, � is a path in Mk if and only if
there exists a path b� ¼ bs�bs1bs2 . . . such that

. ðbs�; bs1Þ 2 bR and for every j � 1; ðbsj; bsjþ1Þ 2 bR;

. for every j � 1 and every � 2 P [V [I ;bLðbsj; �Þ ¼ Lðsj; �Þ;

. for every j � 1 and every b�i 2 F ; bLðbsj; b�iÞ ¼
�ðxiÞ.

Therefore, for every i � 1, we have bMk; bsi 	 �nt ,

and by the induction hypothesis, cMn
k ; bsi 6	 !nt ð’0Þ.

By the classical CTL semantics, we then have thatcMn
k ; bs� 6	 A ½�nt U ð:�nt _ ð�nt ^ !nt ð’0ÞÞÞ�.

5. E ½’0 U �: By Definition 5, Mk; s; � 	 E ½’0 U �
holds if and only if there exists a path � ¼ ss1s2 . . .

and m � 1 such that Mk; si; � 	 ’0 for all i < m

and Mk; sm; � 	 . By Definition 8, � is a path in

Mk if and only if there exists a path b� ¼ bs�bs1bs2 . . .

such that

. ðbs�; bs1Þ 2 bR and for every j � 1; ðbsj; bsjþ1Þ 2 bR;

. for every j � 1 and every � 2 P [V [I ;bLðbsj; �Þ ¼ Lðsj; �Þ;

. for every j � 1 and every b�i 2 F ; bLðbsj; b�iÞ ¼
�ðxiÞ.

Therefore, every state bsi along b� is such thatbMk; bsi 	 �nt . Moreover, by the induction hypoth-

esis, Mk; si; � 	 ’0 for all i < m if and only ifbMk; bsi 	 !nt ð’0Þ for all i < m, andMk; sm; � 	 if

and only if bMk; bsm 	 !nt ð Þ. By the classical CTL

semantics, this is equivalent to bMk; bs� 	 E ½ð�nt ^
!nt ð’ÞÞ U ð�nt ^ !nt ð ÞÞ�, and by (8), this in turn is

equivalent to bMk; bs� 	 !nt ðE ½’0 U �Þ.
6. 9pxi : ’0: Since ’ is well named, the quantifica-

tion of variable xi entails that all variables

x1; . . . ; xi�1 are already defined by �; hence, i ¼
tþ 1 and p ¼ �tþ1. By Definition 5, Mk; s; � 	
9�tþ1

xtþ1 : ’0 if and only if there exists a 2
Domsð�tþ1Þ s u c h t h a t Mk; s; �½a=xtþ1� 	 ’0;
�½a=xi� is the ðtþ 1Þ-valuation that agrees with

HALL�E ET AL.: SPECIFYING AND VALIDATING DATA-AWARE TEMPORAL WEB SERVICE PROPERTIES 11

the ordered t-valuation � for all xi with

1 � i � t, and which maps xtþ1 to a.

By the induction hypothesis,Mk; s; �½a=xtþ1� 	
’0 holds if and only if cMn

k ; bs�½a=xi� 	 !ntþ1ð’0Þ,
where bs�½a=xi� 2 bS is such that bLðbs�½a=xi�; �Þ ¼
Lðs; �Þ for every � 2 P [V [I , and bLðbs�½a=xi�;b�jÞ ¼ �½a=xi�ðxjÞ for every b�j 2 F ; moreover, by

definition, bs�½a=xi� is such that cMn
k ; bs�½a=xi� 	 �ntþ1.

By Definition 9, this is true if and only if

ðbs�; bs�½a=xtþ1�Þ 2 bR. By the classical semantics of

CTL, this is true if and only if cMn
k ; bs� 	

EX ð�ntþ1 ^ !ntþ1ð’0ÞÞ, which by (9) is equivalent

to cMn
k ; bs� 	 !nt ð9pxtþ1 : ’0Þ. tu

Corollary 1. Let Mk be a workflow messaging model, ’ be a

CTL-FOþ formula in n variables, cMn

k be the freeze workflow

messaging model built from Mk, and b’ ¼ !n0 ð’Þ. Then,

Mk 	 ’ if and only if cMn
k 	 b’.

Proof. From Definition 7, s 2 I if and only if bs 2 bI, with
Lðs; �Þ ¼ bLðbs; �Þ for every � 2 P [V [I , and bLðbs; b�iÞ ¼
# for every �i 2 F . But then by Theorem 4, Mk; s; � 	 ’
if and only if cMn

k ; bs 	 b’, with � the empty valuation. tu

Contrarily to explicit quantification, the freeze quantifi-
cation approach does not cause an exponential blowup of
the original formula. The embedding ! is linear: that is, if
we denote by j’j the length of a CTL-FOþ formula ’, then
j!n0 ð’Þj 2 Oðj’jÞ. It suffices to remark that each translation
rule consumes at least one symbol of the original CTL-FOþ

formula and contributes a fixed number of symbols in the
resulting CTL formula.

7 EXPERIMENTAL RESULTS

We conducted a set of experiments that involved the
validation of constraints in the scenarios detailed in
Section 3. This section shows results intended to compare
explicit quantification and freeze quantification.

7.1 Methodology

The goal of these experiments is twofold: First, to show that
validating Web service constraints can be done using the
freeze quantification solution presented in this paper;
second, to exhibit sample properties for which the explicit
quantification approach is inadequate.

We defined a workflow messaging model for both the e-
commerce and the UCLP scenarios. We first fixed a domain
size n and then populated this domain with symbolic values
with names a1; . . . ; an, considered different. All message
elements in the workflow messaging model took values from
this set. According to the fact that atoms in CTL-FOþ are only
equality tests, these values are generic (cf., Section 5.1). In
both scenarios, the initial description of the service consisted
of two parts: a finite-state guarded automaton that repre-
sented the control flow of the service and the structure (name
and number of elements) of each message type sent or
received by this service (e.g., loginMessage, concatenateRe-
quest, etc.), as shown in Section 3. Each state of the guarded

automaton was then attached to one of the message types,
thereby forming a workflow messaging model.

A PHP script was then used to generate a NuSMV [4]
file, taking as paramters: the description of the workflow
messaging model (given as above), the CTL-FOþ formula to
validate, the desired arity of the messages k, and the size of
the value domains n. The script either produced a standard
workflow messaging model with an explicitly quantified
CTL formula or a freeze workflow messaging model with a
freeze quantified CTL formula.

Adding freeze variables to an existing workflow messa-
ging model requires minimal modifications that have been
automated. In a NuSMV model, for each added freeze
variable quantifying over element of name p, it suffices to
add two new lines of code stating that 1) either the variable
keeps its value in the next state or 2) the variable is
currently undefined and takes in the next state the value of
one of the p elements of the current message. Finally, a
single new condition on the transition of the guarded
automaton is added: If any freeze variable changes its value
in the next transition, the state of the guarded automaton
does not change. The resulting model is a freeze workflow
messaging model; it was then fed into NuSMV and its
running times and file size were measured.

7.2 Results and Discussion

The Figs. 2, 3, and 4 present the validation times of the freeze
and the explicit quantification approaches for the three
formal choreography specifications detailed in Section 3, on
processes with data domains of size n ranging from 1 to 30
(45 in the case of Fig. 2). The formulas contain, respectively,
2, 4, and 7 quantifiers. All times have been obtained with
NuSMV 2.4.0 on an AMD Athlon 2,200+ CPU running under
Windows XP (Cygwin). Since NuSMV takes several dozen
seconds only to display the explicitly quantified formulas,
all display from NuSMV was disabled.

We can distinguish two situations. In the case of
Property Specification 1 (Fig. 2), freeze and explicit
quantification approaches are head-to-head until n ¼ 30.
Explicit quantification then keeps a slower growth than the
freeze quantification approach from n ¼ 30 to n ¼ 45.

In the remaining two figures, this tendency is reversed
and freeze quantification performs much better than
explicit quantification. In Fig. 3, explicit validation times

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. X, XXXXXXX 2009

Fig. 2. Validation time (in seconds) for Choreography Specification 1

with respect to the size n of the domain, using respectively the explicit

quantification (dashed curve) and the freeze quantification approach

(solid curve).

rapidly blow up; NuSMV had to be killed after consuming

all available memory for n ¼ 5. The last data point is

20 minutes for n ¼ 4, while freeze quantification takes less

than one second for the same problem. In Fig. 3, we could

obtain only one data point (n ¼ 1) with explicit quantifica-

tion before it exploded. We stopped evaluating freeze

quantification at n ¼ 10 when it became clear it out-

performed explicit quantification.
We see that explicit quantification performs better with

few quantifiers (two or three), while freeze quantification

becomes more advantageous when the number of quanti-

fiers exceeds that threshold. To highlight the interplay

between formula length and system size, we compared the

number of states in the freeze model the number of symbols

in the explicit formula. When this ratio increases, as for

Choreography Specification 1 (Fig. 5), explicit quantification

is favored. Otherwise, freeze quantification performs better,

as is the case for Choreography Specifications 2 and 3

(Fig. 6). An interesting consequence of this observation is

that these ratios can be computed beforehand. For any

given workflow messaging model and CTL-FOþ property,

it is relatively easy to determine functions fEðnÞ and fF ðnÞ,
returning respectively the size of the explicit CTL formula

and the size of the freeze model in terms of the domain

size n. It then suffices to study the behavior of fEðnÞ=fF ðnÞ
to determine which method to favor.

In practice, however, explicit quantification fares better
only for really simple formulas, with three quantifiers or
less. Our examples show that all but one property fits into
this category. Therefore, freeze quantification is an im-
portant approach to bring a large class of data-aware
properties within reach of existing model checking tools.

8 CONCLUSION

In this paper, we have shown how “data-aware” temporal
properties can be used to express constraints on the behavior
of a Web service composition. These properties enable
complex temporal relationships to be expressed, while at
the same time allowing full first-order quantification on the
content of the messages. We presented real-world scenarios
where data-aware properties arise naturally and showed
how existing related work is only partially appropriate for the
validation of such properties. To this end, we introduced the
logic CTL-FOþ, showed its model checking algorithm, and
studied its complexity. We conclude that model checking
data-aware temporal properties is a tractable problem and
that any Web service model that uses a data-aware workflow
but propositional properties cannot efficiently simulate data-
awareness. We have demonstrated by empirical testing on
processes how a suitable reduction of CTL-FOþ to CTL, using
the concept of freeze quantification, can be used to validate
them in reasonable time compared to classical approaches.

HALL�E ET AL.: SPECIFYING AND VALIDATING DATA-AWARE TEMPORAL WEB SERVICE PROPERTIES 13

Fig. 4. Validation time (in seconds) for Choreography Specification 3

with respect to the size n of the domain, using respectively the explicit

quantification (dashed curve) and the freeze quantification approach

(solid curve).

Fig. 5. Ratio size of freeze model versus length of explicit formula for

Choreography Specification 1.

Fig. 6. Ratio size of freeze model versus length of explicit formula for

Choreography Specification 2.

Fig. 3. Validation time (in seconds) for Choreography Specification 2

with respect to the size n of the domain, using respectively the explicit

quantification (dashed curve) and the freeze quantification approach

(solid curve).

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support of
the Natural Sciences and Engineering Research Council of
Canada. They thank Jérôme Tremblay and Boubker
Ghandour for their technical contribution to this work.

REFERENCES

[1] G. Meredith and S. Bjorg, “Contracts and Types,” Comm. ACM,
vol. 46, no. 10, pp. 41-47, 2003.

[2] S. Parastatidis, J. Webber, S. Woodman, D. Kuo, and P. Greenfield,
“SOAP Service Description Language (SSDL),” Technical Report
CS-TR-899, Univ. of Newcastle, Newcastle upon Tyne, 2005.

[3] G.J. Holzmann, The SPIN Model Checker: Primer and Reference
Manual. Addison-Wesley Professional, 2003.

[4] A. Cimatti, E.M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “NuSMV 2: An
Opensource Tool for Symbolic Model Checking,” Proc. 14th Int’l
Conf. Computer Aided Verification, E. Brinksma and K.G. Larsen,
eds., pp. 359-364, 2002.

[5] T. Bultan, X. Fu, R. Hull, and J. Su, “Conversation Specifica-
tion: A New Approach to Design and Analysis of E-Service
Composition,” Proc. Int’l World Wide Web Conf., pp. 403-410,
2003.

[6] H. Foster, S. Uchitel, J. Magee, and J. Kramer, “Model-Based
Analysis of Obligations in Web Service Choreography,” Proc. Int’l
Conf. Internet and Web Applications and Services/Advanced Int’l Conf.
Telecomm., p. 149, 2006.

[7] M. Koshkina and F. van Breugel, “Modelling and Verifying Web
Service Orchestration by Means of the Concurrency Workbench,”
ACM SIGSOFT Software Eng. Notes, vol. 29, no. 5, pp. 1-10, Sept.
2004.

[8] S. Hinz, K. Schmidt, and C. Stahl, “Transforming BPEL to
Petri Nets,” Proc. Int’l Conf. Business Process Management,
W.M.P. van der Aalst, B. Benatallah, F. Casati, and F. Curbera,
eds., pp. 220-235, 2005.

[9] J.M. Zaha, M. Dumas, A. ter Hofstede, A. Barros, and G. Decker,
“Service Interaction Modeling: Bridging Global and Local Views,”
Proc. 10th IEEE Int’l Enterprise Distributed Object Computing Conf.,
pp. 45-55, 2006.

[10] A. Deutsch, L. Sui, V. Vianu, and D. Zhou, “Verification of
Communicating Data-Driven Web Services,” Proc. ACM Symp.
Principles of Database Systems, S. Vansummeren, ed., pp. 90-99,
2006.

[11] R. Kazhamiakin, M. Pistore, and L. Santuari, “Analysis of
Communication Models in Web Service Compositions,” Proc. Int’l
World Wide Web Conf., L. Carr, D.D. Roure, A. Iyengar, C.A. Goble,
and M. Dahlin, eds., pp. 267-276, 2006.

[12] D. Berardi, D. Calvanese, G.D. Giacomo, R. Hull, and M.
Mecella, “Automatic Composition of Transition-Based Semantic
Web Services with Messaging,” Proc. 31st Int’l Conf. Very Large
Data Bases, K. Böhm, C.S. Jensen, L.M. Haas, M.L. Kersten,
P.-�A. Larson, and B.C. Ooi, eds., pp. 613-624, 2005.

[13] Z. Duan, A.J. Bernstein, P.M. Lewis, and S. Lu, “A Model for
Abstract Process Specification, Verification and Composition,”
Proc. Int’l Conf. Service Oriented Computing, M. Aiello, M. Aoyama,
F. Curbera, and M.P. Papazoglou, eds., pp. 232-241, 2004.

[14] N. Lohmann, P. Massuthe, C. Stahl, and D. Weinberg, “Analyzing
Interacting BPEL Processes,” Proc. Int’l Conf. Business Process
Management, S. Dustdar, J.L. Fiadeiro, and A.P. Sheth, eds., pp. 17-
32, 2006.

[15] S. Nakajima, “Model-Checking of Safety and Security Aspects in
Web Service Flows,” Proc. Int’l Conf. Web Eng., N. Koch,
P. Fraternali, and M. Wirsing, eds., vol. 3140, pp. 488-501, 2004.

[16] K.J. Turner, “Formalising Web Services,” Proc. Int’l Conf. Formal
Techniques for Networked and Distributed Systems, F. Wang, ed.,
pp. 473-488, 2005.

[17] C.D. Walton, “Model Checking Multi-Agent Web Services,”
journal? p. 8, 2004.

[18] A. Brogi, C. Canal, E. Pimentel, and A. Vallecillo, “Formalizing
Web Service Choreographies,” Electronic Notes in Theoretical
Computer Science, vol. 105, pp. 73-94, 2004.

[19] M. Pistore, M. Roveri, and P. Busetta, “Requirements-Driven
Verification of Web Services,” Electronic Notes in Theoretical
Computer Science, vol. 105, pp. 95-108, 2004.

[20] X. Fu, T. Bultan, and J. Su, “Analysis of Interacting BPEL Web
Services,” Proc. Int’l World Wide Web Conf., S.I. Feldman,
M. Uretsky, M. Najork, and C.E. Wills, eds., pp. 621-630, 2004.

[21] X. Fu, T. Bultan, and J. Su, “Model Checking XML Manipulating
Software,” Proc. Int’l Symp. Software Testing and Analysis,
G.S. Avrunin and G. Rothermel, eds., pp. 252-262, 2004.

[22] J. Arias-Fisteus, L.S. Fernández, and C.D. Kloos, “Applying Model
Checking to BPEL4WS Business Collaborations,” Proc. 2005 ACM
Symp. Applied Computing, H. Haddad, L.M. Liebrock, A. Omicini,
and R.L. Wainwright, eds., pp. 826-830, 2005.

[23] J.E. Johnson, D.E. Langworthy, L. Lamport, and F.H. Vogt,
“Formal Specification of a Web Services Protocol,” Electronic Notes
in Theoretical Computer Science, vol. 105, pp. 147-158, 2004.

[24] A. Deutsch, L. Sui, and V. Vianu, “Specification and Verification of
Data-Driven Web Services,” Proc. ACM Symp. Principles of Database
Systems, A. Deutsch, ed., pp. 71-82, 2004.

[25] S. Abiteboul, L. Segoufin, and V. Vianu, “Static Analysis of
Active XML Systems,” Proc. ACM Symp. Principles of Database
Systems, M. Lenzerini and D. Lembo, eds., pp. 221-230, 2008.

[26] C.E. Gerede and J. Su, “Specification and Verification of Artifact
Behaviors in Business Process Models,” Proc. Int’l Conf. Service
Oriented Computing, B.J. Krämer, K.-J. Lin, and P. Narasimhan,
eds., vol. 4749, pp. 181-192, 2007.

[27] L. Baresi, D. Bianculli, C. Ghezzi, S. Guinea, and P. Spoletini,
“Validation of Web Service Compositions,” IET Software, vol. 1,
pp. 219-232, 2007.

[28] R. Boutaba, W. Golab, Y. Iraqi, and B.S. Arnaud, “Lightpaths on
Demand: A Web-Services-Based Management System,” IEEE
Comm. Magazine, vol. 42, no. 7, pp. 101-107, July 2004.

[29] S. Hallé, R. Villemaire, O. Cherkaoui, J. Tremblay, and B.
Ghandour, “Extending Model Checking to Data-Aware Tem-
poral Properties of Web Services,” Proc. Web Services and
Formal Methods, M. Dumas and R. Heckel, eds., vol. 4937,
pp. 31-45, 2007.

[30] J. Josephraj, “Web Services Choreography in Practice,” http://
www-128.ibm.com/developerworks/webservices/library/ws-
choreography/, 2005.

[31] S. Hallé and R. Villemaire, “Runtime Monitoring of Message-
Based Workflows with Data,” Proc. 12th IEEE Int’l Enterprise
Distributed Object Computing Conf., pp. 67-83, 2008.

[32] J.E. Hopcroft, R. Motwani, and J.D. Ullman, Introduction to
Automata Theory, Languages, and Computation, second ed. Addison
Wesley, 2000.

[33] H. Foster, S. Uchitel, J. Magee, and J. Kramer, “Model-Based
Verification of Web Service Compositions,” Proc. IEEE Int’l Conf.
Automated Software Eng., pp. 152-163, 2003.

[34] C. Ouyang, E. Verbeek, W.M.P. van der Aalst, S. Breutel, M.
Dumas, and A.H.M. ter Hofstede, “Formal Semantics and
Analysis of Control Flow in WS-BPEL,” Science of Computer
Programming, vol. 67, nos. 2/3, pp. 162-198, 2007.

[35] R. Lucchi and M. Mazzara, “A Pi-Calculus Based Semantics for
WS-BPEL,” J. Logic and Algebraic Programming, vol. 70, no. 1,
pp. 96-118, 2007.

[36] J. Arias-Fisteus, A. Marin, and C.D. Kloos, “VERBUS: A Formal
Model for Business Process Verification,” Proc. Information
Resources Management Assoc., May 2004.

[37] E.M. Clarke, O. Grumberg, and D.A. Peled, Model Checking. MIT
Press, 2000.

[38] P. Schnoebelen, “The Complexity of Temporal Logic Model
Checking,” Advances in Modal Logic, vol. 4, pp. 393-436, http://
citeseer.ist.psu.edu/schnoebelen03complexity.html, 2003.

[39] O. Kupferman, “Augmenting Branching Temporal Logics with
Existential Quantification over Atomic Propositions,” Int’l Conf.
Computer Aided Verification, P. Wolper, ed., vol. 939, pp. 325-338,
http://www.cs.huji.ac.il/ornak/pub.html, 1995.

[40] A. Rensink, “Model Checking Quantified Computation Tree
Logic,” Proc. Int’l Conf. Concurrency Theory, C. Baier and
H. Hermanns, eds., pp. 110-125, 2006.

[41] W.M. van der Aalst and M. Pesic, “DecSerFlow: Towards a Truly
Declarative Service Flow Language,” Proc. Web Services and Formal
Methods, M. Bravetti, M. Núñez, and G. Zavattaro, eds., pp. 1-23,
2006.

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 35, NO. X, XXXXXXX 2009

[42] M. Brambilla, A. Deutsch, L. Sui, and V. Vianu, “The Role of
Visual Tools in a Web Application Design and Verification
Framework: A Visual Notation for LTL Formulae,” Proc. Int’l
Conf. Web Eng., D. Lowe and M. Gaedke, eds., pp. 557-568, 2005.

[43] H. Barringer, A. Goldberg, K. Havelund, and K. Sen, “Rule-Based
Runtime Verification,” Proc. Int’l Conf. Verification, Model Chacking,
and Abstract Interpretation, B. Steffen and G. Levi, eds., pp. 44-57,
2004.

[44] M.R.A. Huth and M.D. Ryan, Logic in Computer Science: Modelling
and Reasoning about Systems. Cambridge Univ. Press, citeseer.ist.
psu.edu/huth99logic.html, 2000.

[45] T. Ball and S.K. Rajamani, “Boolean Programs: A Model and
Process for Software Analysis,” Technical Report MSR-TR-2000-
14, Microsoft Research, Feb. 2000.

[46] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman, 1979.

[47] R. Alur and T.A. Henzinger, “A Really Temporal Logic,” J. ACM,
vol. 41, no. 1, pp. 181-204, 1994.

Sylvain Hallé received the BS degree in
mathematics from the Université Laval in 2002
and the MSc degree in mathematics and the
PhD degree in computer science from the
Université du Québec à Montréal in 2004 and
2008, respectively. He is currently a postdoctoral
research fellow at the University of California,
Santa Barbara. He received fellowships from the
Natural Sciences and Engineering Research
Council of Canada (NSERC) in 2005 and from

Quebec’s Research Fund on Nature and Technologies (FQRNT) in
2008. His major research interests include Web applications and formal
verification. He is a member of the ACM and the Association for
Symbolic Logic and a student member of the IEEE and the IEEE
Computer Society. He was the cochair of DDBP ’08, TIME ’08, and
DDBP ’09.

Roger Villemaire received the PhD degree from
the University of Tübingen in 1988. He was a
postdoctoral fellow at McGill University and later
at the Université du Québec à Montréal
(UQAM). He is a professor in the Department
of Computer Science at UQAM, which he joined
in 1993. His research interests include applica-
tions of logic in computer science, in particular
formalisms, methods, and algorithms, which can
help to realize reliable computing systems. He

was the cochair of TIME ’08 and served on its program committee in
2009. He is a member of the ACM, the Association for Symbolic Logic,
and the IEEE Computer Society.

Omar Cherkaoui received the PhD degree in
computer science from the Université de Mon-
tréal in 1988. He is a professor in the Depart-
ment of Computer Science at the Université du
Québec à Montréal, which he joined in 1984. He
has been involved in numerous research part-
nerships with the industry, including the
CANARIE consortium and Cisco Systems. He
has coauthored more than 50 peer-reviewed
technical publications and books and two patent

disclosures. His research interests include network management and
optical networks. He is a member of the IEEE, the IEEE Computer
Society, and the IEEE Communications Society. He is a member of the
technical program committees of a dozen conferences, including IM ’03,
DSOM ’05, ACON ’06, and AICT ’07 and ’08.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

HALL�E ET AL.: SPECIFYING AND VALIDATING DATA-AWARE TEMPORAL WEB SERVICE PROPERTIES 15

