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Abstract

Querying and efficiently validating properties on la-
belled tree structures has become an important part of re-
search in numerous domains. In this paper, we show how
a fragment of XPath called Configuration Logic (CL) can
be embedded into Computation Tree Logic. This frame-
work embeds into CTL a larger subset of XPath than pre-
vious work and in particular allows universally and exis-
tentially quantified variables in formulas. Finally, we show
how the variable binding mechanism of CL can be seen as
a branching-time equivalent of the “freeze” quantifier.

1 Introduction and Related Work

The representation of data in the form of tree-like struc-
tures is a natural choice for numerous applications. Ar-
borescent, or so-calledsemi-structureddata has been used
in areas as diverse as mobile ambients [10], database sys-
tems [1] and network equipment configuration [19]. The
widespread use of the Extensible Markup Language (XML)
[7] has further confirmed the importance of labelled trees as
a mean of representing information, forming among other
things the basis for web services standards.

Complementary to the representation of data into struc-
tures is the need to query those structures, either to val-
idate constraints on them, to express patterns or to ex-
tract parts respecting some selection criterion. To this end,
various languages have been proposed with different lev-
els of expressivity and fields of application, such as the
Tree Query Logic (TQL) [9], XML Schema [17], Schema-
tron/Schemapath [14], XPath [12], XQuery [5], and Con-
figuration Logic [24].

In [2, 3], a method for validating formulas on tree struc-
tures by means of model checking has been presented.
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More precisely, the authors show how the formulas of the
logical fragment of Core XPath [18], called Simple XPath,
can be translated into Computation Tree Logic (CTL) [13].
By this framework, the problem of checking a Simple XPath
formula on a given XML tree amounts to checking a CTL
formula on a suitably constructed Kripke structure whose
states and transitions reflect the nodes and links of the orig-
inal tree, a result already hinted back in [18,22].

In this paper, we demonstrate that a similar reduction can
be done for a larger subset of XPath called Configuration
Logic (CL). CL has been presented in [24] as a formalism
tailored for validating logical properties on the configura-
tion of network routers expressed as XML parameter-value
hierarchies. The major difference between CL and Simple
XPath is in the use of variables: in Simple XPath, all ref-
erences to the node labels of the parsed tree are constant,
whereas CL allows the use of existentially and universally
quantified variables to stand for node labels and be tested
for equality. The construction we describe is inspired in part
from the trace semantics of Core XPath described in [21],
but adapted to a branching-logic setting.

The main contribution of our work is twofold. First,
we show in section 2 that the use of variables in CL is
closely related, and actually extends, the use of the “freeze”
quantifier already developed for linear time logics [4, 15]
to branching time logics. Second, in section 3, we use this
approach to embed CL formulas into CTL. Section 4 con-
cludes and indicates further avenues of investigation.

2 Configuration Logic

In this section, we briefly recall the basic structure of
Configuration Logic (CL) and its intended purpose. We fur-
ther show how the variable quantification mechanism of CL
extends the notion of a “freeze” quantifier.



2.1 Overview of CL

Simply put, CL is a logic over tree structures whose
nodes are name-value pairs. It has been introduced in [24]
in the context of configuration management of network
routers.

In the CL framework, aconfigurationis a forest such as
the one shown in Figure 1. This particular kind of structure
has been introduced as a way of representing the configura-
tion parameters of network routers in a hierarchical fashion
that mirrors the organisation of their command line inter-
face into modes, submodes, interfaces, and so on. Clearly,
a configuration can be encoded as a particular kind of XML
document, and this document can be readily exchanged by
standard configuration protocols such as Netconf [16,20].

Each node is formed of two parts: anameand avalue,
represented in the form “name = value”. In typical net-
work configurations, examples of names areinterface,
router, ip-address. To simplify things, we will top
each forest with an additional source node connected to the
roots of all trees and consider from now on that a configura-
tion is a tree. For example, Figure 1 shows a configuration
formed of two trees whose respective roots, a= 1 (node 1)
and a= 6 (node 2), are linked to a source node.

Definition 1. A configurationis a structure of the form
〈V,N, R̃1, ..., R̃n〉 where:

• V is a set, whose elements are calledvalues.

• N is a set of words closed under prefix, on the alphabet
formed of(p = v), with p a name andv ∈ V . The
elements ofN are callednodes.

• R̃1, . . . , R̃n are relations onV (i.e. subsets of
V arity(R1),. . .,V arity(Rn) respectively).

In this paper, the only relation we consider is equality.

Named paths The succession of name-value pairs from
the source node to an arbitrary node is called anamed path;
two nodes are considered identical if they have the same
named path. For example, the following expression, when
referring to Figure 1, corresponds to a traversal of the con-
figuration that starts at the source node and goes all the way
down to node 10.

a = 6 , b = 6 , e = 7 (1)

A named path can have one or more variables in place
of the value part of some nodes. In this case, depending
on the values taken by those variables, the named path will
designate different nodes. For example, the named path

a = 6 , d = x (2)

Figure 1. A sample configuration composed
of two trees linked by a source node. Names
and values are abstract.

designates node 6 ifx = 7, node 7 ifx = 3, and no node
of the configuration otherwise. Variables standing for the
name of nodes are not authorised.

Finally, the∗ symbol is a shortcut that can be replaced
by any number of nodes in a named path. For example, the
named path

∗ , d = 3 (3)

designates a node “d = 3” at any depth in the tree; in the
case of Figure 1, this expression corresponds to two named
paths for the nodes 4 and 7. This shortcut symbol has a
tricky semantics and is not part of the original definitions
in [24], as no real-world network property uses it. It is only
included here for the sake of later comparison with Simple
XPath.

Quantifiers CL is the formalism tailored for expressing
logical properties on the values occuring in the nodes of
configurations. It is composed of the traditional Boolean
connectives and allows existential (〈 〉) and universal ([ ])
quantification on the “value” part of “name = value” pairs.
Quantification in CL resembles in some way to the re-
stricted “next” operator in sub-LTL [23] which does not
consider all possible future states, but only a subset of them
that has a specific label.

〈p ; n = x〉ϕ (4)

Equation (4) shows the form of an existential quantifier
wherep is a (possibly empty) named path,n is a name and
x is a variable free inϕ. Note that in this quantification,
onlyx is considered bound; the other variables possibly oc-
curring inp are considered free. Therefore, as stated above,
the actual admissible values forx depend on how the named
path that precedes it is valuated. Semantically, the previ-
ous quantification means that there exists a valuec of x for
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which the node designated by the named pathp , n = c
exists, such thatϕ[x/c] is true.

[p ; n = x] ϕ (5)

Universal quantification, shown in (5), likewise asserts
that all valuesc for which the node designated by the named
pathp , n = c exists, are such thatϕ[x/c] is true.

Formally, the semantics of CL have been stated in [24]
as the following.

Definition 2. Let C = 〈V,N, R̃1, ..., R̃n〉 be a configura-
tion andρ be a valuation for this configuration. We say that
C, ρ satisfies a configuration logic formulaϕ (in notation
C, ρ |= ϕ), if recursively:

• C, ρ |= Ri(x̄) if R̃i(ρ(x̄)) holds

• C, ρ |= ϕ ∧ ψ if C, ρ |= ϕ andC, ρ |= ψ

• C, ρ |= ϕ ∨ ψ if C, ρ |= ϕ or C, ρ |= ψ

• C, ρ |= ¬ϕ if C, ρ 6|= ϕ

• C, ρ |= 〈p̄ = x̄; p = x〉ϕ if there exists av ∈ V such
that (p̄ = ρ(x̄))(p = v) ∈ N andC, ρ[x/v] |= ϕ

• C, ρ |= [p̄ = x̄; p = x]ϕ if for all v ∈ V such that
(p̄ = ρ(x̄))(p = v) ∈ N it holds thatC, ρ[x/v] |= ϕ

We suppose that formulas arewell-named–that is, each
variable is quantified only once. It can be easily shown that
every CL formula can be transformed to an equivalent well-
named formula. As previously explained, the original se-
mantics of CL can be extended by allowing the condition
(p̄ = ρ(x̄))(p = v) ∈ N to include∗ symbols that stand for
any number of nodes.

Sentences A sentence is a closed CL formula. For exam-
ple, the formula

〈 ; a = x1〉
〈a = x1 ; b = x2〉
x1 6= x2

(6)

states that there exists a child of the source node with name
“a”, which itself has a child with name “b” and a different
value. One can see that this property is true for the tree of
Figure 1 by considering nodes 1 and 3. The named path
figuring in a quantifier is important, as it constrains the ad-
missible values of a variable. For example, the following
formula differs only from (6) in the named path of the sec-
ond quantifier.

〈 ; a = x1〉
〈 ; b = x2〉
x1 6= x2

(7)

It states that there exists a child of the source node with
name “a”, and another child of the source node with name
“b”, and that both have different values; this formula is false
on the tree of Figure 1.

CL also allows to express constraints on values in more
than one branch. As a more complex example, consider the
following formula:

[ ; a = x1]
〈a = x1 ; b = x2〉

〈a = x1 ; d = x3〉
x2 6= x3

(8)

This formula states that every child of the source with
name “a” has at least two children: one of name “b”, and
one of name “d” that have different values. For example, in
Figure 1, the first node of name “a” under the source is node
1; it has a “d” child in node 4, whose value is different from
the “b” node 3. One can find a similar pairing (nodes 5 and
6) under node 2, and therefore (8) is true on the configura-
tion of Figure 1. Remark that in this case, the values that
are ultimately compared (x2 andx3) are taken along two
different branches: this is what gained CL the appellation
of amulti-sitemodal logic.

The reader is directed to [24] for a more detailed presen-
tation of CL, and to [19] for further examples of applica-
tions to network constraints.

2.2 CL versus Simple XPath

We now proceed to sketch the differences between CL
and Simple XPath as presented in [2,18].

First, while CL is alogic whose sentences are either true
or false for a given configuration, Simple XPath is a lan-
guage aimed at extracting parts of an XML document ac-
cording to some criteria. Therefore, XPath expressions are
not sentences that are true or false, but queries that returna
set of nodes called ananswer set. In [3], a Simple XPath
queryϕ is converted to a sentence by interpreting it as the
assertion “the answer set ofϕ contains the root of the tree”,
which is either true or false.

Second, one must remark that CL separates a node be-
tween name ane value; Simple XPath does not make this
distinction. However, generic XML trees can be trans-
formed into configurations by taking each label as the value
of the node, and by appending the same dummy name, say
“n”, to each node.

Apart from that, one can see that the semantics of Simple
XPath, given in [3], is very similar to CL. Actually, the in-
terpretations of all predicates and Boolean connectives co-
incide with CL’s. A Simple XPath “sentence” is a CL for-
mula where equality testing only occurs between a variable
and a constant, but never between two variables. For exam-
ple, consider the following XPath query, called Q1 in [3]:

3



/[child::site/child::regions/child::africa/
child::item/child::description/
child::parlist/child::listitem/child::text]

(9)

This formula can be translated to the following CL formula:

〈 ; n = x1〉
〈n = x1 ; n = x2〉
. . .
〈n = x1 , n = x2 , n = x3 , n = x4 ,

n = x5 , n = x6 , n = x7 , n = x8〉
x1 = site∧ x2 = regions∧ . . .

∧ x7 = listitem∧ x8 = text

(10)

As another example, query Q3, stated in formula (11),
becomes (12) in CL.

/ [descendant::item/descendant::text] (11)

〈∗ ; n = x1〉
〈∗ , n = x1 ; ∗ ; n = x2〉
x1 = item∧ x2 = text

(12)

Conversely though, there exist CL formulas that cannot
be expressed in Simple XPath. Formulas (6) and (8) are two
examples of properties that cannot be expressed in Simple
XPath, as they compare two quantified node labels, feature
that Simple XPath does not allow.

There is one feature of Simple XPath that is not included
into CL: the support forrelativequeries, i.e. queriesϕ that
are evaluated at every node of a tree and whose answer set
contains the nodes for which the query evaluates to true;
these queries are identified in XPath by the // symbol. How-
ever, we can use the same procedure as in [3] to handle them
—that is, to root the formula successively in every node of
the tree, and to return the nodes for which it is true. This
fact allows us to say the translation presented here actually
extends previous work.

2.3 CL as a Freeze Logic

The quantification process in CL bears some resem-
blance with the Timed Propositional Temporal Logic
(TPTL) [4], and in particular with its concept of “freeze”
quantifier. TPTL can be summarised as a Linear Temporal
Logic (LTL) with an additional quantifier,x., that allows to
retain a value in a variablex at some specific instant in the
evolution of a system to be compared at a later time with
another value. In the particular case of TPTL, one is inter-
ested in freezing the value of a global clock. For example,
the formula

Gx.(p → F y.(q ∧ y ≤ x+ 10)) (13)

Figure 2. A small configuration forest

states that at every state wherep holds, there exists a fu-
ture state whereq holds within 10 clock ticks. When theG
operator is evaluated, the value of the global clock wherep
holds is stored inx; when theF operator is evaluated, the
value of the global clock whereq holds is stored iny.

The quantification process in CL can be interpreted in a
similar way. Instead of a global clock ticking at each state
change, we consider thevaluepart of the name-value pair
encountered at each node along a name path. The named
path inside a quantifier starts at the root of the tree and de-
scends down a specific branch; at the end of the path, the
value in that particular node is fetched and stored into the
quantified variable. It can then be recalled further in the for-
mula and be used either to orient the descent down a branch,
or be compared for equality with another value.

For example, consider the CL formula (6) validated
against the tree of Figure 2. The first quantifier,〈a = x1〉,
starts from the source node of the configuration and de-
scends into a node with name “a”; this is represented by
arrow 1 in Figure 3. It freezes the value of that node into
variablex1. The second quantifier,〈a = x1 ; b = x2〉, then
restarts from the source node (arrow 2), goes down the node
“a = x1” (arrow 3), and then down a node of name “b” (ar-
row 4); it freezes the value of that node inx2. Finally, the
last part of the formula returns back to the source node of
the configuration (arrow 5) and checks thatx1 = x2.

Therefore, the quantifiers in a CL sentence describe mul-
tiple passes through the tree that freeze the value of one
more variable on each pass. It is therefore more than a mere
CTL with freeze, which would only be able to compare val-
ues that have been frozen along the same path. Figure 3
shows only one possible traversal of the configuration de-
picted in Figure 2.

In the previous example, there was only one way of tra-
versing the tree on each pass; however, in most trees, there
are multiple possible passes. This would be the case in Fig-
ure 1. Depending on whether the quantifiers in a formula
are existential or universal, the CL formula asserts some-
thing about all possible traversals or only some of them.
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Figure 3. Quantification in CL is a traversal
of the tree ended by the freezing of a node’s
value into a variable

3 Embedding CL into CTL

The observation that variable quantification in CL can be
seen as a special type of freeze quantification will be used to
perform our embedding of CL into CTL. We proceed in two
steps: first, we show how to convert a configurationT and
a CL formulaϕ to a Kripke structureKT,ϕ; then, we show
how a CL formulaϕ can be translated to a CTL formulaϕ′

and show thatT |= CL ϕ if and only if KT,ϕ |= CTL ϕ′,
thereby reducing the problem of CL model checking to CTL
model checking.

The resulting Kripke structure depends onϕ only for
the number of distinct quantified variables that appear in
it. Therefore, for a fixed number of quantified variables, the
translation ofT is the same for all formulas. In the follow-
ing, we will simply denote it byKT by assuming all con-
sidered formulas have less thank variables for somek > 0.

3.1 From a Configuration to a Kripke Structure

The Kripke structureKT is built in such a way that each
state of the system is the image of some node ofT .

The conversion procedure we show takes a configura-
tionT and a CL formulaϕ and generates a Kripke structure
KT = (S, I,R, L), whereS is the set of states,I is the set
of initial states,R ⊆ S × S is a total transition relation and
L is a labelling functionS → 2AP , for AP a set of atomic
propositions. For the sake of clarity, we will abuse notation
and use state variables that take their values in arbitrary dis-
crete sets instead of Boolean; the setAP is therefore the set
of atomic propositions that encode into Boolean variables
the discrete values occurring in the structure. This opera-
tion is identical as in [2,3].

Actually, each node ofT will have many images inKT ;
there are as many copies as there are possible combinations
of values for the quantified variables appearing in the for-
mula.

Set of states Each state ofKT (with the exception of a
source and a sink node) is intended to mimick one, and
only one, node of the original treeT . LetN be the set of all
names appearing inT , andV be the set of all values appear-
ing in T . For the tree of Figure 2, we haveN = {a, b, d}
andV = {1, 6}. From these sets, create the setsN ′ and
V ′ by adding a special, unused symbol # that will stand for
“undefined”. A state ofS is uniquely identified byk + 2
state variables:

• α ∈ N ′ contains the name of the node in the original
tree

• β ∈ V ′ contains the value of the node in the original
tree

• x1, . . . , xk ∈ V ′ contain the values of the quantified
variables that are frozen when a formula is evaluated;
they can hold either a node value, or the “undefined”
symbol #.

The setS of states ofKT is the subset ofN ′×V ′×V ′k

such thats = (α, β, x1, . . . xk) ∈ S if and only if there
exists a node inT labelledα = β. By convention, the
special source node of every configuration has both name
and value equal to #. For example, ifT is the tree of Figure
2 andϕ is formula 6, then the state whereα = a, β = 1,
x1 = x2 = # is an element ofS that is associated with
node 1.

One can remark that for each node inT , there are multi-
ple states inS that are associated to it, namely one for each
possible valuation of thex1, . . . , xk. We will call acopyof
T the subset ofS in which thexi are valuated in the same
way. There are|V ′|k copies ofT in S. The setI contains
only one initial state: it is the source state of the copy ofT
where allxi are undefined, i.e.(#,#,#, . . . ,#).

Transition relation Next, we define the transition rela-
tionR of that Kripke structure. There are two kinds of tran-
sitions inR. Let s1 = (α1, β1, x1,1, x1,2, . . . , x1,n) and
(α2, β2, x2,1, x2,2, . . . , x2,n) be two states inS.

The first set of transitions aretreetransitions: they corre-
spond to a descent into the original tree. The tree transitions
in R link all the states inside each copy ofT according to
the original tree structure. In such transitions, no quanti-
fied variable changes its value. Formally, this represents the
transitions(s1, s2) in R such thats2 is a child ofs1 in the
original tree andx1,i = x2,i for all 1 ≤ i ≤ k. In Fig-
ure 3, the arrows 1, 3 and 4 are represented inKT by tree
transitions.

The second set of transitions are thefreezetransitions
exposed in section 2.3. They correspond to the arrows 2
and 5 of Figure 3, when the value of a node is frozen into
a variable and the pass into the tree is ended by a return
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to the source node. InKT , these transitions always lead
to the source state of a copy of the original tree where all
variables keep their values, except for onexi that switches
from # to some defined value. The value that thisxi takes
is the value (β) of the node from which the switch has been
made, therefore depicting the freezing of that value intoxi.
Formally, this represents the transitions(s1, s2) in T such
that there exists a1 ≤ j ≤ n such thatx1,i = x2,i for all
i 6= j, β1 = v for somev ∈ V , α2 = β2 = #, x1,j = #
andx2,j = v.

As has been explained in section 2.3, a quantified CL
formula describes multiple passes downT that each freeze
a node value into some variable. A trace inKT represents
just that: a sequence of descents downT along some named
paths; at the end of each named path, a variablexi is quanti-
fied, and the valuev of the node at this point is frozen inxi.
This freezing is done by switching to the copy ofT where
xi has valuev. The traversal ofT caused by the next quan-
tifier then restarts from its source node, which is the image
of T ’s source state in the copy wherexi has been frozen by
the previous quantifier.

Optimisations It is possible to further optimise the struc-
ture. First, one can assume that the variables are always
quantified in the orderx1, x2, . . . , xn. Moreover, every for-
mula that does not respect this condition can be transformed
by a simple renaming of its variables to a formula that com-
plies with this restriction. Doing so reduces the size of the
structure and the number of transitions, as only one variable
at a time can change from # to some value.

Second, the copies ofT where all variables are defined
can be trimmed of everything but their source state. This is
possible because at that point in the evaluation of a formula,
no new variable can be quantified, and therefore no further
pass down the tree is possible. Hence, the nodes of these
copies ofT are useless, since they can never be accessed.

The resulting Kripke structure obtained from Figure 2
and formula (6) is shown in Figure 4. Solid arrows repre-
sent tree transitions; dotted arrows are the freeze transitions.
The optimisations discussed above have been applied to the
graph for the sake of clarity; however, the remaining of the
discussion will suppose a complete structure as defined pre-
viously.

3.2 From CL to CTL

From the Kripke structureKT constructed in the pre-
vious section, it becomes straightforward to translate CL’s
semantics into CTL. We proceed as in [3] and define a lin-
ear embeddingω of CL into CTL formulas, withǫ as the
empty string. Letϕ andψ be CL formulas,c be a constant
in V ,m andn be names inN , and thexi be quantified vari-
ables. Translating the Boolean connectives and the ground

equality testings is direct:

ω(xi = c) = xi = c (14)

ω(xi = xj) = xi = xj (15)

ω(ϕ ∧ ψ) = ω(ϕ) ∧ ω(ψ) (16)

ω(ϕ ∨ ψ) = ω(ϕ) ∨ ω(ψ) (17)

ω(¬ϕ) = ¬ω(ϕ) (18)

The translation of named paths and quantifiers is slightly
more complicated. It proceeds by nesting one element of
the named path at a time until reaching the semicolon; as a
consequence of the semantics of CL, this process is identi-
cal in both existential and universal quantifiers. Then, the
quantified part is translated. Here as before, we designate
by p a (possibly empty) named path as defined in section
2.1.

ω(〈n = xi , p ; m = xi〉ϕ) =
EX (α = n ∧ β = xi

∧ ω(〈p ; m = xi〉ϕ))
(19)

ω([n = xi , p ; m = xi]ϕ) =
EX (α = n ∧ β = xi

∧ ω([p ; m = xi]ϕ))
(20)

ω(〈∗ , p ; m = xi〉ϕ) =
EFω(〈p ; m = xi〉ϕ)

(21)

ω([∗ , p ; m = xi]ϕ) =
EFω([p ; m = xi]ϕ)

(22)

ω(〈 ; n = xi〉ϕ) =
EX ((α = n ∧ xi = #)

∧ EX (xi 6= # ∧ ω(ϕ)))
(23)

ω([ ; n = xi]ϕ) =
AX ((α = n ∧ xi = #)

→ EX (xi 6= # ∧ ω(ϕ)))
(24)

For example, formula (6) is translated to the following
CTL expression:

EX ((α = a∧ x1 = #)∧
EX (x1 6= #∧

EX (α = a∧ β = x1 ∧
EX ((α = b∧ x2 = #)∧

EX (x2 6= #∧
x1 6= x2)))))

(25)

The trace that makes this formula true onKT is shown in
bold arrows in Figure 4. Note that this trace represents two
passes in the tree where appropriate node values are frozen
into variablesx1 andx2, as explained in section 2.3. The
trace inKT is nothing but the succession of states, including
the values of frozen variables, that occur when one traverses
the original tree as shown in Figure 3
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Figure 4. The resulting transition system KT obtained from Figure 2 and formula (6).

Theorem 1. Let T be a configuration,ϕ be a CL formula
and ω be the embedding defined previously. LetKT be
the Kripke structure built as shown in the previous section.
ThenT |= CL ϕ if and only ifKT |= CTL ω(ϕ).

Proof. To demonstrate the equivalence of this embedding,
we need to introduce the notion ofrestriction of a Kripke
structureKT to some valuationρ. This restriction, noted
K|ρ, is the Kripke structure obtained fromK by keeping
only the states where the values of thexi agree withρ. More
precisely, we have thatρ(xi) = v ↔ K|ρ |=CTL xi = v
for v ∈ V . Constants are mapped identically. The initial
state ofK|ρ is the stateα = #, β = # with the smallest set
of defined variables that agree withρ. One can easily show
that, from the construction ofK, this state is unique.

The proof is then done by structural induction. The base
case is ground equality testing.T, ρ |=CL xi = xj if and
only if ρ(xi) = ρ(xj), by Definition 2. But this is true
in turn if and only if bothK|ρ |=CTL xi = ρ(xi) and
K|ρ |=CTL xj = ρ(xj), which is equivalent toK|ρ |=CTL

xi = xj . A similar reasoning can be made in the case of the
comparison of a variable with a constant.

For the induction step, we check the cases one by one.
T, ρ |=CL ϕ ∧ ψ if and only if T, ρ |=CL ϕ and

T, ρ |= CL ψ, by Definition 2. By the induction hypoth-
esis, these two assertions are equivalent toK|ρ |= CTL
ω(ϕ) andK|ρ |= CTL ω(ψ), which by (16) is equal to

K|ρ |= CTL ω(ϕ∧ψ). A similar reasoning can be done for
disjunction and negation.

The case of quantification is more complex. As stated in
Definition 2,T, ρ |= CL 〈p ; n = xi〉ϕ if and only if

1. there exists av ∈ V such thatρ(p , n = v) is a node
of T and

2. T, ρ[xi/v] |= CL ϕ.

The first part is true if and only if there exists a path from
the initial state ofK|ρ that matchesρ(p , n = v); but this is
direct from the translation of named paths in (19)-(22) and
the wayK|ρ has been constructed in Section 3.1.

The second part is true if and only if there exists a way to
extendρ to ρ′ in such a way thatρ = ρ′ except forρ′(xi) =
v. By the wayK is built, this happens if there exists a way
to transit from the current copy ofT to a copy wherexi is
no longer undefined (#), but rather takes valuev (the same
v as the value of the node at the end of the named path); in
such a transition, allxj (j 6= i) keep their already defined
values, except forxi which switches from # tov. Moreover,
such a transition leads to a copy of the source node ofT ;
what is accessible from this state is nothing butK|ρ′ . Then,
by induction hypothesis, we have thatT, ρ′ |= CL ϕ if and
only if K|ρ′ |= CTL ω(ϕ). A similar reasoning can be
made for the case of the universal quantifier.
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3.3 Theoretical Consequences

The embedding described in Section 3.2 is linear; that
is, if we denote by|ϕ| the length of a CL formulaϕ, then
|ω(ϕ)| ∈ O(|ϕ|). It suffices to remark that each translation
rule consumes at least one symbol of the original CL for-
mula and contributes a fixed number of symbols in the re-
sulting CTL formula. Moreover, as explained in section 3.1,
KT has|V ′|k copies ofT , with k the maximum number of
quantified variables occurring inϕ; but clearly,|V | ≤ |T |,
as there cannot be more different values as there are nodes
in T , and therefore|KT | ∈ O(|T |k).

Since the problem of validating a CL formula can be re-
duced to the problem of model checking a particular CTL
formula, all theoretical results proved for CTL also apply to
this particular context of CL.

Complexity of model checking Model checking CTL
formulas is decidable and has time complexity ofO(|ϕ| ×
|K|) [13], where|K| is the size (vertices + edges) of the
Kripke structure. This gives us that the model checking of
CL is decidable and has time complexity ofO(|ϕ| × |T |k).
This means that model checking is polynomial in the size
of the tree and the size of the formula, but exponential in
the number of different quantified variables appearing inϕ.
The optimisations suggested in section 3.1 do not change
this complexity.

This result places CL in comparison with other tree lan-
guages and logics mentioned in Section 1. It can be shown
that CL is a fragment of TQL. [8] has shown that the model
checking, validity and satisfiability problems for closed for-
mulas in TQL with no quantifiers is decidable. Moreover,
[6] demonstrated that model checking in TQL is PSPACE-
hard; this result also applies to CL by using the same argu-
ment. This polynomial space bound is effectively achieved
when using on-the-fly model checking methods.

In turn, as section 2.2 showed it, Simple XPath is a frag-
ment of CL. It has been demonstrated in [2] that Simple
XPath model checking is equivalent, in terms of time com-
plexity, to CTL model checking (O(|ϕ| × |T |)), a result al-
ready proved in a different way in [18]. Our result is accord-
ingly more complex, as the logic presented here is richer;
however, it is interesting to remark that it preserves polyno-
miality in terms of formula length and tree size.

Choice of the approach These complexity results also
validate the choice of approach used for embedding CL into
CTL. In the method presented here, the Kripke structure is
responsible for handling the values of the quantified vari-
ables by containing one copy of the original configuration
for each possible assignment of thexi and by linking these
copies by freeze transitions. A different approach would

have been to create a Kripke structureKT containing a sin-
gle copy ofT without taking into account thexi as state
variables. The handling of the quantified variables would be
transferred instead to the formula by translating the quanti-
fiers in the classical fashion:

ω(〈 p ; n = xi〉ϕ) =
∨

v∈V (p)

ϕ [xi/v] (26)

ω([ p ; n = xi] ϕ) =
∧

v∈V (p)

ϕ [xi/v] (27)

However, because of the semantics of CL, special care
should be taken to consider forv only values that are at
the end of the named pathp, and not all values ofV ; this is
represented in the previous formulas byV (p). Thus, instead
of making multiple copies of the tree inKT according to
each possible value of thexi, one makes multiple copies
of the original CL formulaϕ. This would lead to a Kripke
structure of sizeO(|T |), and to a formula of lengthO(|ϕ|k).
The complexity of model checking CL formulas in such a
framework would therefore be ofO(|ϕ|k × |T |) instead of
O(|ϕ| × |T |k) as is shown here.

This alternate approach has several drawbacks. First, al-
though the translation of a tree into a Kripke structure is
straightforward, the translation of a CL formula into CTL
becomes tightly coupled with the tree on which it has to be
checked. This is because the translation of the quantifiers
shown in (26)-(27) depends on the values occurring in the
tree at the end of some specific named paths —therefore,
restricting possible values to some predetermined set does
not solve the problem, since the structure of each tree still
has to be taken into account.

In practice, however, it is far more frequent to check
the same formula on many configurations than the oppo-
site. Therefore, the approach presented in this paper, where
the translation of formulas does not depend in any way on
the tree, is more efficient. Moreover, we have shown in sec-
tion 3.1 that given a fixed maximum number of quantified
variables, the translation of a configuration into a Kripke
structure is also independent of any formula.

Second, on a more technical aspect, standard model
checkers such as NuSMV [11] can easily handle systems
with very large state spaces and reasonably short temporal
formulas, but are far less efficient for checking exponen-
tially long formulas on relatively small systems. It is there-
fore natural to choose an approach where the exponential is
placed on system size rather than formula length.

4 Conclusion

In this paper, we have briefly recalled the origins of Con-
figuration Logic (CL) and stated its differences with re-
spect to Simple XPath. We have shown how a fragment
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of XPath called Configuration Logic (CL) can be embed-
ded into Computation Tree Logic. We have also shown that
this framework embeds into CTL a larger subset of XPath
than a previous work and in particular allows universally
and existentially quantified variables in formulas. Finally,
we have also demonstrated how the variable binding mech-
anism of CL can be seen as a branching-time equivalent of
the “freeze” quantifier. This embedding of CL into CTL
opens the way to the reverse process of using decidabil-
ity and model existence of CTL to prove decidability and
model existence of CL, a property that is highly desirable in
the context of network configurations and that would make
CL one of the few decidable tree logics around.
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