
Model-checking Data-Aware Temporal Workflow Properties with CTL-FO+

Sylvain Hallé, Roger Villemaire, Omar Cherkaoui and Boubker Ghandour
Université du Québec à Montréal

C. P. 8888, Succ. Centre-Ville
Montréal, Canada H3C 3P8

halle@info.uqam.ca ∗

Abstract

Most works that extend workflow validation beyond syn-
tactical checking consider constraints on the sequence of
messages exchanged between services. However, these con-
straints are expressed only in terms of message names and
abstract away their actual data content. Using the context
of the User-controlled Lightpath initiative (UCLP) hosted
by the CANARIE consortium, we provide examples of real-
world “data-aware” web service constraints where the se-
quence of messages and their content are interdependent.
We present CTL-FO+, an extension over Computation Tree
Logic that includes first-order quantification on state vari-
ables in addition to temporal operators. We show how CTL-
FO+ is adequate for expressing data-aware constraints,
give a complete model checking algorithm for CTL-FO+

and establish its complexity to be PSPACE-complete. This
makes using CTL-FO+ for validating workflow properties
no harder than using the Linear Temporal Logic (LTL) al-
ready used by some web service tools. Finally, we show how
the modelling of data-aware properties is an increase in ex-
pressiveness that cannot be efficiently simulated by these
tools.

1 Introduction

There exists a large number of web service orchestration
tools available over the Internet; these tools allow a syn-
tactical validation of the service invocations in a workflow,
since all input and output messages are publicized by ser-
vice providers in WSDL documents whose form and con-
tent is regulated by standards bodies such as the W3C. This
“first generation” of web service technologies, as it is called
by [33], concentrates on single request-response patterns of
messages specified by various means such as Message Ex-
change Patterns (MEPs).

∗We gratefully acknowledge the financial support of the Natural Sci-
ences and Engineering Research Council of Canada on this research.

However, it has long been argued that syntactical cor-
rectness does not give a complete picture of the necessary
conditions for a successful interaction with a service [24].
Nothing prevents a BPEL process from sending to a peer
syntactically valid messages in a sequence that prevents an
actual composition from taking place. This led the authors
of [16] to call for future work on a formal language to ex-
press and advertise the protocol imposed on the use of a
service, and a methodology to check as much as possible
that an orchestration script created by some user satisfies
this protocol before it is allowed to execute.

A “second generation” of web service technologies has
given rise to a variety of standards taking into account the
sequence of message exchanges allowed by a service. The
SOAP Service Description Language (SSDL) [26] is a no-
table example of this approach. Classical temporal lan-
guages such as the Linear Temporal Logic (LTL), the Com-
putation Tree Logic (CTL) or the π-calculus have been sug-
gested as appropriate notations for expressing temporal or
conversational dependencies between message exchanges.
Numerous automated validation tools have also been devel-
oped that can guarantee conformance of a given workflow
to some set of operating guidelines, in the spirit of [23].

Although this new generation of technologies allows for
a much more realistic specification and enforcement of in-
teraction constraints, most efforts still abstract the actual
content that transits inside the messages of a given conver-
sation. In other words, current protocol specifications treat
messages as atomic units represented by their names; they
are not “data-aware”.

In this paper, we argue that data-awareness of protocol
specifications is a fundamental part of ensuring workflow
correctness. Using the context of the User-controlled Light-
path initiative (UCLP) hosted by the CANARIE consor-
tium, we provide examples of real-world web service proto-
cols where both the sequence of messages and their content
are interdependent. We present an extension of the popular
Computation Tree Logic (CTL) that introduces a general
first-order quantification on state values, called CTL-FO+,

as an appropriate formal language for the expression of tem-
poral constraints on web service invocations. Contrarily to
the classical temporal formalisms used in most web service
validation approaches, CTL-FO+ retains the full temporal
power of the CTL logic, while allowing to refer to the con-
tent of messages inside the temporal properties. We pro-
vide an explicit algorithm for the model checking of CTL-
FO+ formulæ on a given workflow model. We establish the
complexity of the problem of model checking a CTL-FO+

formulæ to be PSPACE-complete. This result places CTL-
FO+ model checking on a par, complexity-wise, with the
Linear Temporal Logic (LTL) used by widely accepted tools
like SPIN [17]. Therefore, we argue that data-awareness in
web service validation is as tractable as modelling sequen-
tial properties in LTL, an approach that is already tackled
by many second generation workflow tools.

The paper is structured as follows. In Section 2, we
briefly review related work and show why current model
checking solutions based on traditional temporal logics are
not adequate for the validation task at hand. In Section
3, we describe the context of User-Controlled Lightpaths
web services and show examples of data-aware constraints.
In Section 4, we show how the use of CTL-FO+ actually
increases expressiveness to model richer web service con-
straints. A complete model checking algorithm is presented
and its complexity is established in Section 5. Section 6
concludes and announces future work and improvements
over the current methodology.

2 Related Work and Existing Solutions

The modelling and validation of constraints of vari-
ous kinds on web service workflows has spawned a large
amount of both theoretical and practical works. With re-
spect to the goal of this paper, they can be classified
into three categories corresponding to the degree of data-
awareness they exhibit. We mention here a few of them.

To support our point, we illustrate each of these cate-
gories in the simple example of Figure 1. We consider a
web service workflow which receives from some partner a
message labelled “a” that contains an integer value. If this
received value is 0, then the service returns a message “b”
with value 9. If the received value is not 0, then the service
returns a message “c” that increments the received value by
1. For the needs of the example, we employ a simplified
notation to refer to messages sent (!a) or received (?a) and
indicate the value of a message between parentheses. The
� symbol means “the next message”.

2.1 Propositional Workflows, Propositional Prop-
erties

A first step is to use classical automata-theoretic con-
structions or model checking tools and languages to model
the behaviour of a web service and its interaction with other
services. This is exemplified in Figure 1a. The messages are
considered atomic: their actual data content is abstracted
away. We call such a model propositional, since the external
behaviour of web services is represented by the transmis-
sion or reception of messages that are identified by propo-
sitional letters standing for their names.

This entails that the choice between sending message “b”
and message “c”, since it depends on message content, is
seen as non-deterministic by the model. For the same rea-
son, the behavioural properties of the service can only be
expressed in terms of message names; we call them proposi-
tional properties. The two formulæ at the bottom of Figure
1a respectively mean that when message “a” is received, the
next message is “b”, or that when message “a” is received,
the next message is “c”.

A fair number of works use the propositional approach.
Conversation specification [6] is an example of sequence of
intertwined messages received and sent by multiple agents.
Message Sequence Charts (MSC) are modelled into finite
state processes by [12]. A similar approach has been done
with use of the BPE-calculus and the Concurrency Work-
bench (CWB) in [21] and Petri nets in [29]. [33] tackles
the formal specification of a protocol of interaction between
services expressed as a pattern of messages.

These works have been dubbed by [10] “data-agnostic”
solutions. It is important to note, however, that although
these works do not model data, this abstraction is an appro-
priate simplification to tackle problems that are outside the
scope of the present paper. For example, [33] provides an
algorithm that determines whether services are “locally en-
forceable”; modelling the data content in messages in such a
work is an open problem, and would render such a question
much more complex and perhaps intractable in practice.

2.2 Data-aware Workflows, Propositional Prop-
erties

A refinement over the previous solutions is to consider
that the actual data exchanged in the messages of a web
service can actually influence the control flow of that ser-
vice: the workflow model becomes “data-aware”. This re-
finement is illustrated in Figure 1b. The choice between
sending message “b” or “c” is now unambiguous and de-
termined by the value inside message “a”. Moreover, the
model correctly represents that the value inside message “c”
is always incremented by 1.

2

?a

!b !c

(a) Propositional workflow, propo-
sitional properties

(b) Data-aware workflow, proposi-
tional properties

?a()x

x=0 =x=0

!b(9) !c(+1)x

(c) Data-aware workflow, data-
aware properties

Figure 1. Workflow modelling with various degrees of data-awareness

This category constitutes the bulk of formal web ser-
vices models. [20] models web service compositions by
finite-state systems and studies them on the angle of syn-
chronicity; it takes the content of variables and message
parts into account by extending the original message al-
phabet. [3] models web services in Propositional Dynamic
Logic (PDL) and is interested in generating automated com-
positions between services. [11] proposes a restricted BPEL
semantics for which it is possible to automatically generate
the composition of tasks. In [23], the controllability of a
business process is studied; the operating guidelines of a
process P is the automaton that includes as its subgraphs
all the possible controllers of P . [25] proposes techniques
to extract a behavioural specification from the BPEL pro-
gram and to verify it with model checking techniques.

Other works also present automated tools for the vali-
dation of the properties. [30] formalizes BPEL web service
workflows using a language called CHISEL which is then
transformed into LOTOS for automated validation. Multi-
agent web services are modelled in [32] using a custom pro-
tocol language called MAP which is then translated into
SPIN models and model-checked. A process algebra ap-
proach is used in [5] to model web service choreographies
using the Calculus of Communicating Systems (CCS). [27]
uses a formal language called Tropos and validates prop-
erties in NuSMV. Finally, in [13], model checking of LTL
formulæ expressed in Promela on BPEL specifications is
attempted using SPIN. The approach is extended in [14]
and constitutes the basis of the Web Service Analysis Tool
(WSAT). VERBUS [2] is another tool that translates a web
service workflow into a finite-state structure. Finally [19]
studies the two-phase commit protocol and models it using
the Temporal Logic of Actions (TLA+).

Although these works take data into account when mod-
elling the web services’ interactions, this data does not play
a role when expressing the properties. The temporal for-
mulæ are still propositional. Actual data content can be re-

ferred to, but only statically by extending the original mes-
sage alphabet. This is shown by the properties in Figure 1b.
It is now possible to state that when “a” contains 0, then “b”
is sent with value 9, since 0 and 9 are fixed constants: a(0)
and b(9) are simply modelled as two new message names.
It is not possible, however, to compare the values inside two
different messages except by explicitly stating their value;
therefore, one cannot say “for all x, the value inside mes-
sage “a” is x, and later the value inside message “c” is
x + 1” without resorting to explicitly name each possible
static value. However, in most of these works the properties
that need to be modelled do not require such a quantifica-
tion.

2.3 Data-aware Workflows, Data-aware Proper-
ties

A further extension with respect to expressiveness of
properties is to model the transfer and transformation of
data inside the control flow of the modelled service, but also
to allow quantification on data inside temporal properties.
We call these properties “data-aware” to indicate that the
actual message content can be known and fully accessed by
the temporal formulæ. Figure 1c illustrates this. Knowledge
about the internal workflow generally remains unchanged
with respect to the previous category. However, the proper-
ties can now fully express the constraint between messages
“a” and “c”: when “c” is sent, it contains the value of “a”
incremented by 1.

We are only aware of a limited number of works that
tackle this problem. In [9, 10], extensions to the temporal
logics CTL and LTL, respectively called CTL-FO and LTL-
FO, are introduced. These logics include a form of first-
order quantification on data. The model presented is very
rich: it contains a database represented as a variable set of
first-order predicates; however this richness is achieved at
the price of complexity. The problem of model checking a

3

CTL-FO formula ϕ on a web service W (as defined in [9])
is undecidable. The problem of model checking a formula
ϕ without any quantification is in CO-NEXPTIME if the
formula is propositional CTL, and in EXPSPACE if the for-
mula is propositional CTL∗.

We show in this paper how a simpler modelling of the
services, coupled with a more expressive logic than CTL-
FO, is sufficient for model checking important data-aware
properties in real-world scenarios. Theorem 1 will show
that the logic CTL-FO+ introduced in the present work
extends CTL-FO in terms of expressiveness, while Theo-
rem 2 will demonstrate that CTL-FO+ model checking is
PSPACE-complete, a considerably lower complexity.

Another work of interest is [31], which defines specifi-
cations using XQuery on traces (SXQT). The SOAP mes-
sages exchanged by services are aligned into a large XML
sequence. XQuery can then be used to refer to and compare
complex elements of specific messages along the trace in
a powerful manner; temporal operators are translated into
specific XQuery expressions. However, this approach al-
lows the validation of one specific trace at a time and does
not constitute a complete model checking of the service
workflow itself.

3 A Web Service Scenario

To measure the importance of data-awareness in web
service workflow validation, we introduce a representative
real-world scenario. We study this scenario under the angle
of data constraints and show that data-aware properties arise
naturally and are essential to correctly model and validate.

3.1 UCLP Web Service Architecture

To make a more efficient and flexible use of network re-
sources, a growing trend is to offer users and applications
services that can be reserved and composed according to
specific needs. This is particularly visible in the GRID
initiative which offers computing, data ware-housing and
transmission resources for high-performance applications.

The web service paradigm is an ideal setting for such
service-oriented networks. Based on this observation, the
User-Controlled Lightpath (UCLP) research project initi-
ated by the CANARIE Consortium1 develops an environ-
ment that allows end users to self provision and dynamically
reconfigure optical networks resources within a single do-
main or across multiple independent management domains.
To this end, network resources from a specific provider are
virtualized and exposed to the end user as instances of web
services that implement functionalities related to lightpath
manipulation. The project is currently at version 2.0. We

1http://www.canarie.ca/canet4/uclp/

Switch A Switch B Switch C

LPO A-B LPO B-C

Switch A Switch C

LPO A-C

concatenate

Figure 2. The result of the concatenation op-
eration is an LPO that is considered as one
single link.

Switch D Switch E

LPO D-E-1

LPO D-E-n

...

Switch D Switch E

LPO D-E

partition

Figure 3. The partition operation splits an
LPO into fragments of smaller bandwidth.

concentrate in the following on the solution developed by
the joint Université du Québec à Montréal-University of
Ottawa UCLP development team2, where such services are
called Lightpath Objects (LPOs).

Simply put, a lightpath is a point-to-point, high-speed
optical link. There are two main operations provided to
manage Lightpath Objects.

LPO Concatenation. In order to build an end-to-end
link, two adjacent LPOs can be concatenated, as is exem-
plified in Figure 2. The result of the concatenation operation
is an LPO that is considered as one single link.

Since the same traffic will flow through all the link’s seg-
ments, the concatenated LPOs must have the same band-
width. Furthermore, the concatenation operation gives rise
to a new LPO during whose lifetime the original LPOs can-
not be used individually in some other operation.

LPO Partition. An LPO’s bandwidth can be partitioned
into links of equal bandwidth. For instance an OC-3 LPO
(155.52 Mbps) can be partitioned into three OC-1 LPOs
(51.84 Mbps). This is shown in Figure 3.

In order to be partitioned into OC-1 links, an LPO must
be of an OC-1’s multiple bandwidth. Furthermore, as be-
fore, during the partition’s life-time the original LPO cannot
be used in other operations.

2The software developed by all CANARIE funded development teams
is freely available from their site http://www.uclpv2.ca.

4

Within the UQAM-UO UCLP environment, a customer
can use a graphical interface where available network re-
sources are shown to the user, who can operate on them to
create the desired connection.

Once the link is finished, the sequence of operations re-
quired to create it from the initial resources can be saved as
a script and “played back” at a later time at the request of
the user to provide him with the desired connection. Under
the hood of this graphical engine is a web service environ-
ment. Each provider gives access to its resources in an Ar-
ticulated Private Network (APN) via an LPO-factory web
service from which LPOs can be controlled and consumed.
Each LPO is identified by a unique ID, and the UCLP oper-
ations usually manipulate these IDs.

The script built by the user in the graphical interface is
actually a BPEL process that invokes LPO operations by
means of XML messages like for any other web service
interaction. The corresponding BPEL operation for LPO
concatenation takes as input an array of LPOs to concate-
nate. A simplified version of the concatenateRequest mes-
sage structure is shown below:

<message>
<operation>concatenateRequest</operation>
<LPO-ID>i1</LPO-ID>
<LPO-ID>i2</LPO-ID>
. . .
<LPO-ID>in</LPO-ID>

</message>

The response of such an operation is the following:

<message>
<operation>concatenateResponse</operation>
<LPO-ID>i</LPO-ID>

</message>

Similarly, the corresponding BPEL operation for LPO
partition takes as input the reference to an LPO and returns
an array of references to spawned lightpaths, each of the
desired bandwidth. A request is therefore of the following
form:

<message>
<operation>partitionRequest</operation>
<LPO-ID>i</LPO-ID>
<bandwidth>b</bandwidth>
<login>`</login>

</message>

where i is the ID of the LPO to partition, b is the bandwidth
of the desired fragments and ` is a string representing the
login name for accessing that resource. The response from
this request is a message of the following form:

<message>
<operation>partitionResponse</operation>
<LPO-ID>i1</LPO-ID>
<LPO-ID>i2</LPO-ID>
. . .
<LPO-ID>in</LPO-ID>

</message>

Therefore, the GUI is just a lightpath-oriented rendition
of a standard BPEL workflow design environment. Al-
though the interface is adapted for LPO manipulation, the
processes contain full-fledged BPEL code that can have
loops, conditional branching, and even interact with other,
non-UCLP web services. Moreover, users can bypass the
GUI and program their own scripts involving UCLP re-
sources using the BPEL environment of their choice. Figure
4 presents a simple pattern of messages exchanged between
a customer BPEL process and a provider LPO-Factory ser-
vice.

3.2 UCLP Service Constraints

While a service oriented network offers much more flex-
ible use of network resources, a major bottleneck is making
sure that these resources are correctly used. The consumer
of lightpath resources from a provider is subject to two
kinds of restrictions on its use and composition of LPOs:

• Technical constraints: these constraints arise because
of the physical or logical nature of the resources in-
volved in the operations.

• Policy constraints: these constraints arise for non-tech-
nical reasons, often dealing with business logic; this
may include membership restrictions, QoS require-
ments or other reasons.

These constraints are capital to avoid publicizing erroneous
services that could modify in a wrong way the physical re-
sources they represent. We now proceed to show that a num-
ber of these constraints are data-aware temporal properties.

Let us examine the case of partition as a first example.
This operation takes as input the ID of some LPO x and
returns new LPOs y, z corresponding to the results of the
partition. From there on, it does not make sense to again
use x as an argument of a UCLP operation such as concate-
nate. Although the LPO still physically exists, it has been
logically superseded by its fragments y, z. The script could
even have applied further operations on y and z, like con-
catenating them to other LPOs or further partitioning them.
In this context, invoking an operation with x is at best se-
mantically unsound and at worst plain dangerous for the re-
liability of the whole UCLP environment. We must there-
fore enforce the following constraint on any UCLP script:

5

Figure 4. Pattern of messages exchanged between a customer BPEL process and a provider LPO-
Factory service

UCLP Service Constraint 1. An LPO used as the input of
an operation (concatenate, partition) cannot be the input of
some other operation during the lifetime of the result of the
first operation.

This constraint is data-aware, as it relates the content of
two messages at two different moments in time: the LPO
IDs appearing in a request must be different from the LPO
IDs appearing in any future request. A second constraint
involves the concatenate operation. As has been said earlier,
concatenated LPOs must have identical bandwidths. This
can be formulated in the following way:

UCLP Service Constraint 2. Every LPO occurring as an
input of the concatenate operation must be of the same
bandwidth.

Constraints can also link together invocations of differ-
ent operations. For example, the semantics of the concate-
nate operation supposes that the LPOs to be concatenated
are adjacent (i.e. they have exactly one extremity in com-
mon). Therefore, although it would be semantically per-
fectly valid, it does not make sense to take two LPOs origi-
nating from the same partition operation and attempt to con-
catenate them, as these two LPOs are actually the same end-
to-end connection. This calls for a third, mixed constraint:

UCLP Service Constraint 3. If two LPOs are the result
of the same partition response, they cannot be involved to-
gether in the same concatenate request.

These first three constraints are in the realm of technical
restrictions: they arise because of the specific nature of the
web services involved.

Business logic can also be a source of data-aware tem-
poral properties. Suppose a small UCLP resource provider
wants to limit management overhead of its LPOs; it might
want to expect from all users of its resources to avoid over-
partitioning its links by imposing that LPOs can only be
partitioned once.

UCLP Service Constraint 4. If an LPO is the result of
a partition response, it cannot be involved in a partition
request.

This constraint clearly has nothing to do with the se-
mantics of the partition operation, but rather with some ad-
ditional business logic imposed by one particular service
provider.

Another constraint related to business logic is the follow-
ing. Once an LPO is partitioned, the IDs for the spawned
LPOs consisting of the fragments of the original LPO are
returned to the user of the script. Because of UCLP Service
Constraint 1, the original LPO cannot be used by anyone
during the lifetime of its fragments. Therefore, partition-
ing an LPO without using any of its fragments in a future
operation in a script wastes resources by making the orig-
inal LPO unavailable to anybody without ever using it. A
UCLP resource provider might therefore impose the follow-
ing constraint:

UCLP Service Constraint 5. At least one of the LPOs con-
tained in a partition response must be involved in an oper-
ation at some point later in the script.

With this solution, each UCLP service provider can de-
fine for its own services custom rules that take into account
the specifics of each service: intra- or inter-domain, brand

6

and framing type (Ethernet, SONET), etc. These rules act
both as restrictions that prevent a user from using a service
incorrectly, and as guarantees that if respected, the service
should behave as expected.

4 A Data-Aware Temporal Logic

The use of temporal logic to express the behaviour of
a system is a common approach to most related work on
verification of web service workflows. Temporal logics
are commonly used in model checking for describing be-
havioural properties of systems. However, classical tempo-
ral formalisms are propositional, and Section 2 has shown
how these works are only partially appropriate to the mod-
elling and validation of data-aware properties. In this sec-
tion, we introduce CTL-FO+, an extension of the classi-
cal temporal logic CTL, and analyze the complexity of its
model checking algorithm.

4.1 Workflow Modelling

We start by briefly recalling the basics of temporal logic.
A transition system —also called a Kripke structure— is a
set of Boolean variables and a directed graph where each
node represents a state of the system uniquely identified by
the values of the Boolean variables in this state. Formally, a
Kripke structure is a quadruple K = (S, I,R, L), where S
is the set of states, I is the set of initial states, R ⊆ S×S is
a transition relation and L is a labelling function S → 2AP ,
for AP a set of atomic propositions. For the sake of clarity,
we can abuse notation and use state variables that take their
values in arbitrary discrete sets instead of Boolean; the set
AP is therefore the set of atomic propositions that encode
into Boolean variables the discrete values occurring in the
structure. Moreover, we can assume each structure has only
one initial state by adding a dummy start state in the case
it does not. The set of states, together with the transition
relation, forms a directed graph. A path in this graph from
a given start state is called an execution sequence.

In the present context, a suitable transition system for
representing a web service workflow should model the ac-
tual messages that are exchanged. Each state represents a
message that is either sent or received; it contains state vari-
ables that represent the content of that message. Such a
transition system is a generalized construction of a classical
Moore machine [18]. Any path in the system corresponds
to a possible sequence of messages in a service interaction.
Properties about message sequences become properties on
sequence of states that can then be expressed using temporal
logics.

4.2 Syntax and Semantics of CTL-FO+

The Computation Tree Logic with Full First-order Quan-
tification (CTL-FO+) is an extension of the well-known
temporal logic CTL [8]. CTL and a related logic called
LTL are the most commonly used languages for describ-
ing sequentialities in finite-state systems. All major model
checking tools, such as SPIN [17] and NuSMV [7], ver-
ify temporal formulæ expressed in one of these logics. The
reader is referred to [8] for a deeper coverage of CTL and
other temporal logics.

CTL-FO+ is aimed at describing sequentialities in a
finite-state system while allowing full quantification over
data. Formulæ are built from Boolean variables and the
constants true and false using the classical connectors: ∧
(and), ∨ (or), → (implies) and ¬ (not). CTL-FO+ further
provides temporal operators that can be used on top of tra-
ditional propositional logic formulæ to specify the temporal
conditions.

We briefly recall these operators, which are taken di-
rectly from CTL. They can be divided into two classes.
The first class is composed of universal operators that as-
sert properties about all executions starting from the cur-
rent state. The first of these operators is AG, which means
“globally”. For example, the formula AGϕ means that for-
mula ϕ is true in every state of every execution starting at
the current state. The operator AF means “eventually”; the
formula AFϕ is true whenever for all executions, ϕ holds
for some future state. The operator AX means “next”; it
is true whenever ϕ holds in any possible next state of the
current state. Finally, the AU operator means “until”; the
formula AϕUψ is true if, in any execution sequence, ϕ
holds for all states until ψ holds.

The second class of operators are called existential and
are designated by EG, EF, EX and EU; they are defined
in the same way as their universal equivalents, except that
the condition holds only for some instead of all possible
sequences.

We extend the expressiveness of the traditional CTL by
adding first-order quantification over state variables. The
resulting language has the following formal syntax and se-
mantics.

Definition 1 (Syntax). The language CTL-FO+ (Compu-
tation Tree Logic with Full First-order Quantification) is
obtained by closing CTL under the following construction
rules:

1. If x is a variable or a constant, and y is either a vari-
able, a constant or a state variable, then x = y is a
CTL-FO+ formula;

2. If ϕ and ψ are CTL-FO+ formulæ, then ¬ϕ, ϕ ∧ ψ,
ϕ∨ψ, ϕ→ ψ, AGϕ, EGϕ, AFϕ, EFϕ, AXϕ, EXϕ,
AϕUψ, EϕUψ, are CTL-FO+ formulæ;

7

3. If ϕ is a CTL-FO+ formula and x is a free variable
in ϕ, then ∃x : ϕ(x) and ∀x : ϕ(x) are CTL-FO+

formulæ.

Definition 2 (Semantics). Let K = (S, I,R, L) be a tran-
sition system and s0 ∈ S be a state. Define a path
π = s0, s1, . . . as a sequence of states in S such that
(si, si+1) ∈ R for every i ≥ 0. Let Dom(x) be the (finite)
domain of a quantified variable x, p be some state variable
in K and c1 and c2 be constants. We say the pair K, s0 sat-
isfies the CTL-FO+ formula ϕ if and only if it respects the
following rules:

K, s0 |= p = c1 ⇔ p is equal to c1 in state s0
K, s0 |= c1 = c2 ⇔ c1 is equal to c2

K, s0 |= ¬ϕ ⇔ K, s0 6|= ϕ

K, s0 |= ϕ ∨ ψ ⇔ K, s0 |= ϕ orK, s0 |= ψ

K, s0 |= AFϕ ⇔ for each π = s0s1s2 . . . ,

K, si |= ϕ for some i

K, s0 |= EXϕ ⇔ there exists π = s0s1s2 . . .

such that K, s1 |= ϕ

K, s0 |= EϕUψ ⇔ there exists π = s0s1s2 . . . such

that K, sj |= ψ for some j and

K, si |= ϕ for i < j

K, s0 |= ∃x : ϕ(x) ⇔ there exists a ∈ Dom(x) such

that K, s0 |= ϕ(a)

By extension, we write K |= ϕ if the initial state s0 of K is
such that K, s0 |= ϕ.

The set of operators AF , EX , EU , ¬, ∨ and ∃ is called
an adequate set of connectives in that all other operators
can be derived from a combination of them. This result is
classical [8].

CTL-FO+ is reminiscent of [22] which introduces a
logic called EQCTL that extends CTL by allowing exis-
tential quantification over state variables. EQCTL is not
closed under negation; therefore, universal quantification
cannot be obtained. CTL-FO+ quantifies over values and
is is closer to true first-order quantification, but is also
richer: the model checking of EQCTL is NP-complete,
while we show later that model checking in CTL-FO+ is
in a higher complexity class. A closer work is QCTL [28]
which extends CTL by including first-order quantification
and monadic second-order quantification over arbitrary al-
gebraic data structures. Such expressiveness is not required
in our case. Finally, CTL-FO+ can freely mix temporal and
data quantification without restriction. This is an extension
over the logic CTL-FO defined in [9], which does not allow
formulæ containing temporal operators to be existentially

quantified. We suspect the inclusion to be strict: for exam-
ple, it is not known whether CTL-FO can express UCLP
Constraint 5, while we shall see later that CTL-FO+ does.
The following theorem is a natural consequence of this ob-
servation.

Theorem 1. CTL-FO is a subset of CTL-FO+.

4.3 Formalizing Web Service Properties

The values of the variables appearing in a CTL-FO+ for-
mula are quantified according to specific parts of the XML
message that is received or sent in the current state of the
system. When referring to message data, it is never neces-
sary to quantify over all values of all elements in the mes-
sage; rather, we normally want to quantify for all values of
a specific element name. To indicate this, we add a sub-
script to the quantifier indicating the name of the element.
A quantifier like ∀LPO-IDx therefore means “for all values x
of elements named LPO-ID in the current message”.

Hence, UCLP Service Constraint 1 becomes the follow-
ing CTL-FO+ formula:

UCLP Formal Service Constraint 1.
AG (∀operation x1 : x1 = concatenateRequest →
∀LPO-ID x2 : AX AG (∀operation x3 :
(x3 = partitionRequest ∨ x3 = concatenateRequest)
→ ∀LPO-ID x4 : x2 6= x4))

This formula states that at any time in any execution
of the script, if the operation x1 of the message is con-
catenateRequest, then for every LPO ID x2 appearing in
this message, we have that for every future message whose
operation element value x3 is partitionRequest or concate-
nateRequest, any value x4 for its LPO ID is different from
x2. In other words, once an LPO has been concatenated, no
further partition or concatenation involves this LPO, which
is indeed equivalent to UCLP Service Constraint 1. A sim-
ilar formula constrains the use of the results from a parti-
tionRequest.

In the same way, UCLP Service Constraint 2 can be en-
forced in various ways; in the present context, we can limit
ourselves to assuming that all original LPOs have the same
bandwidth, and check for example that no attempt is made
to concatenate an LPO resulting from a partition operation
with an LPO that has not been partitioned. We obtain the
the following CTL-FO+ formula:

UCLP Formal Service Constraint 2.
AG (∀operation x1 : x1 = partitionResponse →
∀LPO-ID x2 : AX A (¬(∀operation x3 :
∀LPO-ID x4 ∀LPO-ID x5 :
x3 = concatenateRequest ∧ x2 = x4)
U (∀operation x6 ∀LPO-ID x7 :
x4 = partitionResponse ∧ x5 = x7)))

8

This formula states that at any time in any execution of
the script, if a message received is a partition response, then
for every LPO ID x2 appearing in this message, no mes-
sage with operation concatenateRequest involving x4, when
x2 = x4, can appear unless all other LPOs x5 also result
from a previous partitionResponse. In other words, a parti-
tioned LPO can only be concatenated with other partitioned
LPOs, which is equivalent to UCLP Service Constraint 2.

A simpler constraint is UCLP Service Constraint 3,
which becomes in CTL-FO+:

UCLP Formal Service Constraint 3.

AG (∀operation x1 : x1 = partitionResponse →
∀LPO-ID x2 ∀LPO-ID x3 : AX AG
(∀operation x4 ∀LPO-ID x5 ∀LPO-ID x6

x4 = concatenateRequest →
(x2 6= x5 ∧ x3 6= x6)))

UCLP Service Constraint 4 has exactly the same struc-
ture as UCLP Service Constraint 1. We will omit it from
the remainder of this paper; the reader can assume that any
technical discussion on Service Constraint 1 also applies to
Service Constraint 4.

Finally, UCLP Service Constraint 5 is the following:

UCLP Formal Service Constraint 5.

AG (∀operation x1 : x1 = partitionResponse →
∃LPO-ID x2 : AF (∀operation x3 :
x3 = concatenateRequest∧
∀LPO-ID x4 : x2 = x4))

5 Validating CTL-FO+ Properties

In this section, we show how CTL-FO+ formulæ can be
actually validated on a web service workflow by present-
ing a complete model checking algorithm. The complexity
of this algorithm is then established and discussed. In par-
ticular, we show that CTL-FO+ model checking is a prob-
lem as tractable as the LTL model checking problem that is
widely used in the industry, and that any web service model
that uses a data-aware workflow, but propositional proper-
ties cannot efficiently simulate data-awareness.

5.1 Model Checking CTL-FO+

We now present a complete algorithm for model check-
ing CTL-FO+ formulæ. It is derived from the classical
CTL model checking algorithm and is presented below. The
procedure CHECK performs by structural induction on the
CTL-FO+ formula ϕ and consists in forming recursively
the set of states s such that K, s |= ϕ. If the subformula
to check is of the form ¬ϕ, ϕ ∧ ψ, AFϕ, EXϕ, EϕUψ,

the algorithm is identical to the model checking of a CTL
formula.

Differences arise when the main operator of the formula
is an existential quantifier, ∃x : ϕ(x). In such a case, the
algorithm successively applies the model checking of ϕ(x)
for each value a in the domain of x and keeps states which
are in at least one of the subsets. Finally, model check-
ing of ground terms is composed of equality testing. Two
cases must be considered. For an equality the form c1 = c2,
where c1 and c2 are constants, either the entire Kripke struc-
ture satisfies it if the assertion is true, or no state satisfies it
if the assertion is false. For an equality of the form p = c,
where p is a state variable, the set of states where p = c is
returned.

A Kripke structure K satisfies the global CTL-FO+ for-
mula ϕ if and only if its initial state is in the set returned by
CHECK(ϕ).

5.2 CTL-FO+ Model Checking is Tractable

We now establish the complexity of model checking
CTL-FO+ formulæ and show that data-aware properties
cannot be modelled effectively by propositional properties.

Theorem 2. Let ϕ be a CTL-FO+ formula and K be a
Kripke structure over finite domains. Determining whether
K |= ϕ is decidable and is PSPACE-complete.

Proof. We first show the model checking problem is
PSPACE-hard by reducing the quantified Boolean formula
problem (QBF), known to be PSPACE-complete [15], to
CTL-FO+ model checking. A quantified Boolean formula
ϕ is of the form Q1x1Q2x2 . . . Qnxnϕ, where Q1 is either
the existential (∃) or the universal (∀) quantifier and the xi

are Boolean variables (their domain is {0, 1}). In fact, ϕ is
a CTL-FO+ formula with no temporal operators and which
refers to no state variables. Therefore, if ϕ is satisfiable,
then K |= ϕ for every Kripke structure K; conversely, if ϕ
is unsatisfiable, then K 6|= ϕ for every K. Therefore, QBF
satisfiability can be solved using CTL-FO+ model checking
of an arbitrary Kripke structure.

The second step consists in showing that the procedure
CHECK is in PSPACE. It suffices to observe that each re-
cursive call returns a subset of the set of states of the
Kripke structure to check; therefore, the space consumed
by each recursive call is constant. Since the number of calls
is bounded by the depth of the formula, this algorithm is
polynomial in the size of the CTL-FO+ formula and the
transition system. Remark that the PSPACE class of de-
cision problems only requires polynomial use of memory
space; the algorithm is clearly exponential with respect to
time.

The PSPACE-completeness result places CTL-FO+

model checking for finite domains in the same complexity

9

Table 1. The recursive model checking procedure for CTL-FO+

class as model checking of an LTL formula [8]. LTL is a
temporal logic widely used in the industry in conjunction
with the SPIN model checker, and many works with propo-
sitional properties mentioned in section 2.2 use LTL as their
language for expressing constraints on message sequences.
Therefore, although CTL-FO+ allows to fully access the
data content of the messages, its model checking problem
is no less tractable than many other existing solutions that
do not provide data-aware temporal capabilities.

5.3 Simulating Data-awareness with Proposi-
tional Properties

Studying the complexity of the CTL-FO+ model check-
ing algorithm can teach us more. Since the domains for
each variable are considered finite, it is possible to use the
semantics of Definition 2 and convert each quantifier into
a conjunction or a disjunction of a finite number of terms.
The resulting expression is a plain CTL formula where all
references to data are static. In turn, the expansion of a
CTL-FO+ formula ϕ into a propositional CTL formula ϕ′

is exponential in the number of quantifiers, since each quan-
tified subformula must be repeated once for each possible
value in the domain. However, the model checking algo-
rithm of a CTL formula in in P: it has a worst-case running
time linear in the size of the formula to check, and linear

in the size of the Kripke structure. Therefore, using CTL
model checking on ϕ′ takes exponential time, which is no
worse than using CTL-FO+ model checking on ϕ.

One might then think that CTL-FO+ is simply CTL with
an additional level of syntactic sugar, and that data-aware
workflows with propositional properties, as described in
Section 2.2, are already sufficient to model any data-aware
property by simply extending the message alphabet. How-
ever, this is not the case; the following theorem shows that
a translation of CTL-FO+ to CTL is highly unlikely to lead
to an algorithm more efficient than the procedure CHECK
described previously.

Theorem 3. If there exists a polynomial reduction of CTL-
FO+ model checking to CTL model checking, then P = NP.

Proof. A polynomial reduction of CTL-FO+ model check-
ing to CTL model checking entails that for every Kripke
structure K and every CTL-FO+ formula ϕ, there exists a
Kripke structureK ′ and a CTL formula ϕ′ such thatK |= ϕ
if and only if K ′ |= ϕ′. Moreover, the size of K ′ and ϕ
are respectively polynomial in the sizes of K and ϕ. Since
CTL-FO+ model checking is PSPACE-complete and CTL
model checking is in P, we have PSPACE ⊆ P. The result
follows since P ⊆ NP ⊆ PSPACE.

Therefore, unless P = NP, any attempt at using data-
aware workflows with propositional properties to model

10

data-aware properties will either blow the size of the for-
mulæ or the size of the model by an exponential factor;
the PSPACE-completeness of the model checking algorithm
is not preserved and therefore the translation is not opti-
mal. In other words, CTL-FO+ is exponentially more suc-
cinct and efficient than any propositional modelling of data-
awareness.

More practical reasons also justify this position. The
translation of constraints into temporal logic becomes
tightly coupled with the actual script on which it has to
be checked. This is because the translation of the quanti-
fiers shown depends on the values occurring in the script. It
is, however, unrealistic that a UCLP resource provider ad-
vertises its constraints in such a manner: one would have
to know in advance all possible LPO values occurring in
scripts prepared by third-parties to include them in the large
disjunction.

6 Conclusion

In this paper, we have shown how “data-aware” tempo-
ral properties can be used to express constraints on the be-
haviour of a web service composition. These properties en-
able complex temporal relationships to be expressed, while
at the same time allowing full first-order quantification on
the content of the messages. We presented a real-world
scenario where data-aware properties arise naturally, and
showed how existing related work is only partially appro-
priate for the validation of such properties. To this end, we
introduced the logic CTL-FO+, showed its model check-
ing algorithm and studied its complexity. We conclude
that model checking data-aware temporal properties is a
tractable problem and that any web service model that uses
a data-aware workflow, but propositional properties cannot
efficiently simulate data-awareness.

This project lends itself to many further developments.
We are currently working on an adaptation of the NuSMV
model checker to CTL-FO+ and on efficient CTL reduction
techniques. Moreover, static, a priori model checking on
scripts could be complemented with runtime monitoring of
CTL-FO+ properties for a given transaction.

References

[1] Tenth IEEE International Enterprise Distributed Ob-
ject Computing Conference (EDOC 2006), 16-20 Oc-
tober 2006, Hong Kong. IEEE Computer Society,
2006.

[2] J. Arias-Fisteus, L. S. Fernández, and C. D. Kloos.
Applying model checking to BPEL4WS business
collaborations. In H. Haddad, L. M. Liebrock,

A. Omicini, and R. L. Wainwright, editors, SAC, pages
826–830. ACM, 2005.

[3] D. Berardi, D. Calvanese, G. D. Giacomo, R. Hull,
and M. Mecella. Automatic composition of transition-
based semantic web services with messaging. In
Böhm et al. [4], pages 613–624.

[4] K. Böhm, C. S. Jensen, L. M. Haas, M. L. Kersten,
P.-Å. Larson, and B. C. Ooi, editors. Proceedings of
the 31st International Conference on Very Large Data
Bases, Trondheim, Norway, August 30 - September 2,
2005. ACM, 2005.

[5] A. Brogi, C. Canal, E. Pimentel, and A. Vallecillo.
Formalizing web service choreographies. Electr.
Notes Theor. Comput. Sci., 105:73–94, 2004.

[6] T. Bultan, X. Fu, R. Hull, and J. Su. Conversation
specification: a new approach to design and analysis
of e-service composition. In WWW, pages 403–410,
2003.

[7] A. Cimatti, E. M. Clarke, E. Giunchiglia,
F. Giunchiglia, M. Pistore, M. Roveri, R. Sebas-
tiani, and A. Tacchella. NuSMV 2: An opensource
tool for symbolic model checking. In E. Brinksma
and K. G. Larsen, editors, CAV, volume 2404 of
Lecture Notes in Computer Science, pages 359–364.
Springer, 2002.

[8] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. MIT Press, 2000.

[9] A. Deutsch, L. Sui, and V. Vianu. Specification
and verification of data-driven web services. In
A. Deutsch, editor, PODS, pages 71–82. ACM, 2004.

[10] A. Deutsch, L. Sui, V. Vianu, and D. Zhou. Verifica-
tion of communicating data-driven web services. In
S. Vansummeren, editor, PODS, pages 90–99. ACM,
2006.

[11] Z. Duan, A. J. Bernstein, P. M. Lewis, and S. Lu.
A model for abstract process specification, verifica-
tion and composition. In M. Aiello, M. Aoyama,
F. Curbera, and M. P. Papazoglou, editors, ICSOC,
pages 232–241. ACM, 2004.

[12] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-
based analysis of obligations in web service choreog-
raphy. In AICT/ICIW, page 149. IEEE Computer So-
ciety, 2006.

[13] X. Fu, T. Bultan, and J. Su. Analysis of interacting
BPEL web services. In S. I. Feldman, M. Uretsky,
M. Najork, and C. E. Wills, editors, WWW, pages 621–
630. ACM, 2004.

11

[14] X. Fu, T. Bultan, and J. Su. Model checking XML ma-
nipulating software. In G. S. Avrunin and G. Rother-
mel, editors, ISSTA, pages 252–262. ACM, 2004.

[15] M. R. Garey and D. S. Johnson. Computers and in-
tractability, a guide to the theory of NP-completeness.
W. H. Freeman, 1979.

[16] P. Greenfield, A. Fekete, J. Jang, and D. Kuo. Com-
pensation is not enough. In EDOC, pages 232–239.
IEEE Computer Society, 2003.

[17] G. J. Holzmann. The SPIN Model Checker: Primer
and Reference Manual. Addison-Wesley Professional,
2003.

[18] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Intro-
duction to Automata Theory, Languages, and Compu-
tation, Second Edition. Addison Wesley, 2000.

[19] J. E. Johnson, D. E. Langworthy, L. Lamport, and
F. H. Vogt. Formal specification of a web services
protocol. Electr. Notes Theor. Comput. Sci., 105:147–
158, 2004.

[20] R. Kazhamiakin, M. Pistore, and L. Santuari. Analy-
sis of communication models in web service composi-
tions. In L. Carr, D. D. Roure, A. Iyengar, C. A. Goble,
and M. Dahlin, editors, WWW, pages 267–276. ACM,
2006.

[21] M. Koshkina and F. van Breugel. Modelling and ver-
ifying web service orchestration by means of the con-
currency workbench. ACM SIGSOFT SEN, 29(5),
September 2004.

[22] O. Kupferman. Augmenting branching temporal log-
ics with existential quantification over atomic proposi-
tions. In P. Wolper, editor, CAV, volume 939 of Lecture
Notes in Computer Science, pages 325–338. Springer,
1995.

[23] N. Lohmann, P. Massuthe, C. Stahl, and D. Weinberg.
Analyzing interacting BPEL processes. In S. Dustdar,
J. L. Fiadeiro, and A. P. Sheth, editors, BPM, volume
4102 of Lecture Notes in Computer Science, pages 17–
32. Springer, 2006.

[24] G. Meredith and S. Bjorg. Contracts and types. Com-
mun. ACM, 46(10):41–47, 2003.

[25] S. Nakajima. Model-checking of safety and security
aspects in web service flows. In N. Koch, P. Frater-
nali, and M. Wirsing, editors, ICWE, volume 3140 of
Lecture Notes in Computer Science, pages 488–501.
Springer, 2004.

[26] S. Parastatidis, J. Webber, S. Woodman, D. Kuo, and
P. Greenfield. SOAP service description language
(SSDL). Technical Report CS-TR-899, University of
Newcastle, Newcastle upon Tyne, 2005.

[27] M. Pistore, M. Roveri, and P. Busetta. Requirements-
driven verification of web services. Electr. Notes
Theor. Comput. Sci., 105:95–108, 2004.

[28] A. Rensink. Model checking quantified computation
tree logic. In C. Baier and H. Hermanns, editors,
CONCUR, volume 4137 of Lecture Notes in Computer
Science, pages 110–125. Springer, 2006.

[29] K. Schmidt and C. Stahl. A Petri net semantic for
BPEL4WS validation and application. In Proceed-
ings of the 11th Workshop on Algorithms and Tools
for Petri Nets (AWPN 04) / Ekkart Kindler (Ed.),
pages 1–6. Bericht tr-ri-04-251, Universität Pader-
born, September 2004.

[30] K. J. Turner. Formalising web services. In F. Wang,
editor, FORTE, volume 3731 of Lecture Notes in Com-
puter Science, pages 473–488. Springer, 2005.

[31] M. Venzke. Specifications using XQuery expressions
on traces. Electr. Notes Theor. Comput. Sci., 105:109–
118, 2004.

[32] C. D. Walton. Model checking multi-agent web ser-
vices, 2004.

[33] J. M. Zaha, M. Dumas, A. ter Hofstede, A. Barros, and
G. Decker. Service interaction modeling: Bridging
global and local views. In EDOC [1], pages 45–55.

12

