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Abstract. We perform trace validation of LTL formulæ by exclusively
using readily-available XML technologies. We first provide a translation
between LTL and a subset of the XML Query Language XQuery, and
show that an efficient validation of LTL formulæ can be achieved through
the evaluation of XQuery expressions. Moreover, since LTL maps to a
small fragment of XQuery, we show that that extending it to LTL-FO+,
which includes full first-order quantification over message contents, can
be supported without additional cost. All these capabilities, which come
“for free” in any web service environment providing a standard XQuery
engine, are tested using a representative choreography scenario.

1 Introduction and Related Work

Web service choreographies define collaboration protocols between cooperating
web service peers which communicate through a set of messages. These protocols
can specify the order in which some messages must be received or sent by the
peers, or provide conditions under which a particular sequence of messages can
appear. An actual execution of a collaboration between services produces a trace
of messages that is called a conversation. Protocols such as WS-Coordination can
be used at runtime to ensure that each participant respects a given protocol; how-
ever, such constraints can also be checked statically on a recorded message trace.
When an external observer records a conversation between services, the process
of looking for violations of a specific choreography on the trace of exchanged
messages is called trace validation.

In recent years, the importance of specifying choreographies manifested itself
in the development and use of numerous languages to define cooperations be-
tween services. Among them, we find Conversation Specifications [5], the Web
Service Choreography Description Language (WS-CDL) developed by the W3C
[18], the re-use of UML Sequence Diagrams [14] in a web service context [11],
SSDL Message Exchange Patterns (MEP) [21], the Let’s Dance
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choreography description language [9], and the Web Service Choreography In-
terface (WSCI) [1].

Linear Temporal Logic (LTL) has also been suggested for the expression of
choreography constraints. [20] uses LTL to express behavioural constraints on
the execution of a web service. Multi-agent web services are modelled in [23]
using a custom protocol language called MAP which is then translated into
SPIN models and model-checked with LTL formulæ. In [10], model checking of
LTL formulæ expressed in Promela on BPEL processes is attempted using SPIN.
Similarly, many approaches use equivalent, finite automata methods to express
protocol specifications. For example, [19] models web service compositions by
finite-state systems. An extension of LTL called LTL-FO+ is presented in [15] to
express choreography constraints that correlate the sequentiality of the messages
and their data content.

However, although these initiatives provide structured, expressive languages
to describe a variety of choreographies, the question of actually enforcing these
choreographies on web services in production environments remains open. Most
of these works provide specific algorithms for checking a trace of messages. These
algorithms, though, are not part of production environments and have to be
implemented. In our view, leveraging existing technologies and providing ways
to minimize the changes required to a web service environment is a critical factor
in the widespread adoption of validation techniques by providers and users.

In this paper, we study the validation of web service choreographies on XML
message traces from the angle of the XML processing languages XPath and
XQuery. The use of XML methods for validation of temporal message exchange
patterns has been little studied. The only work we are aware of is [22] which
translates Hoare’s event-condition-action and request-response patterns into
XQuery expressions; however, the translation is much more complex than the
one we provide here, and does not apply for full-fledged temporal logic operators.

In Section 2, we recall web service choreographies and provide examples of
choreography constraints based on a typical web service scenario. We show in
Section 3 how these constraints can be expressed in LTL, or in an extension
allowing quantification on data content called LTL-FO+. In Section 4, we argue
for the use of XML methods to validate these formulæ on message traces. We
provide a mapping from LTL to a subset of XQuery called XPath 2.0 and perform
an empirical validation of our approach by checking traces of more than 1,500
messages with the Saxon XQuery engine. Moreover, we show that the more
expressive LTL-FO+ can also be translated into XPath 2.0. This shows that
trace validation of web service choreographies can be done using technologies
already present in web service environments.

2 Web Service Choreographies

Web services interact between each other through the transmission of data
units in the form of SOAP messages, whose general structure is defined by
WSDL specifications. Numerous use cases arguing for web service choreography
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specifications have been presented in the literature. To illustrate these concepts,
we shall present one of them and show examples of choreography constraints.

2.1 An Example

Let us consider the case of an online trading company, adapted from [17]. A
trading company is responsible for selling and buying stocks for its customers;
it exposes its functionalities through a web service interface. An external buyer
(which can be a human interfacing through a web portal, or another web service
acting on behalf of some customer) can communicate through a set of XML
messages, each representing a business operation performed by the trading com-
pany. This general context is appropriate to represent the basic requirements of
e-commerce applications. Figure 1 shows the set of business operations available.

At first, a customer can connect to the trading company and ask for the list of
available products. This is done through the exchange of a getAllStocks message,
to which the company replies with a stockList message. The customer can then
decide to get more information about each stock, such as its price and available
quantity, using a getStockDetails message giving the list of stock names on which
information is asked:

<message>
<action>getStockDetails</action>
<stocks>

<stock-name> s1 </stock-name>
. . .
<stock-name> sn </stock-name>

</stocks>
</message>

Get all stocks

Get stock details

Place buy order(s)

Place sell order(s)

Confirm buy order(s)

Confirm sell order(s)

Cash transfer

Cancel transaction

Customer

Online stock trading

Fig. 1. Messages exchanged with the online trading company
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The trading company replies with a stockDetails message listing the information
of each stock:

<message>
<action>stockDetails</action>
<stocks>

<stock>
<name> s1 </name>
<price> p1 </price>

</stock>
. . .
<stock>

<name> sn </name>
<price> pn </price>

</stock>
</stocks>

</message>

Finally, the customer can buy or sell stock products. In the case of a buy, this
is done by first placing a placeBuyOrder message of the following form, listing
the name and desired amount of each products to be bought:

<message>
<action>placeBuyOrder</action>
<stock>

<name> s1 </name>
<amount> a1 </amount>

</stock>
. . .

<stock>
<name> s1 </name>
<amount> a1 </amount>

</stock>
</message>

The trading company checks the availability of each product and returns a con-
firmation of the transaction giving a bill identifier:

<message>
<action>placeBuyOrderConfirm</action>
<bill-id> b </bill-id>

</message>

The last step is for the customer to complete the transaction by proceeding
to a cash transfer. This is achieved by providing an account number:
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<message>
<action>cashTransfer</action>
<account> a </account>
<bill-id> b1 </bill-id>
. . .
<bill-id> bn </bill-id>

</message>

The transfer can be done for multiple buy orders at the same time. Alternatively,
instead of a cash transfer, a cancelTransaction message listing some bill-ids can
be sent to revoke these transactions before payment. A sell operation works
similarly.

All these operations can be intertwined. At any moment, a customer can
ask information about particular products, place concurrent buy/sell orders,
complete or cancel any number of pending transactions.

2.2 Choreography Constraints on Message Traces

During a transaction between web services, several message traces can be ob-
tained:

– An external observer can record the global pattern of messages sent by each
service and align them in the order in which they are intercepted. This global
trace has been called in [5] a conversation.

– A service can record the messages that are received or sent from its ports.
There exists one such local message trace for each service cooperating in a
transaction.

The WSDL specification for the online trading company does not prevent
messages from being called in any sequence, as web services were initially de-
signed as stateless. However, as was pointed out in [17], it is well-known that
not all message traces represent valid transactions, i.e. interactions between ser-
vices that lead to the successful completion of the cooperation. An increasing
number of web services operate in a stateful manner, and conditions ensuring a
safe and sound cooperation between services must therefore be specified at the
choreography level.

Constraints without Data. For example, a user can call a cash transfer by
sending a cashTransfer message without having first specified whether a stock
should be bought or sold, or which precise stock is concerned by the transaction.
A first choreography constraint would then be:

Choreography Specification 1. No cash transfer can be initiated before a buy
or sell confirmation has been issued.

The validation of such a constraint assumes that a global trace file be partitioned
into independent “sessions” for each client interacting with the online trading
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company. It is straightforward to imagine additional, similar sequencing depen-
dencies between invoked operations. For example, in order to force a buyer to
get the most up-to-date prices on stocks, the trading company might require
that no stock order can be placed before the user asks for stock details at least
once. This leads to a second choreography constraint:

Choreography Specification 2. No buy order can be placed before some stock
information has been asked.

A guarantee on the termination of pending transactions can also be imposed.
More precisely, the system can require that all transactions eventually complete
in two possible ways:

Choreography Specification 3. Once a buy/sell order has been placed, no
other buy/sell order can be placed until the first one is completed by a payment
or a cancellation.

This last constraint is imperfect, since a same cash transfer can “unlock” both a
buy and a sell order. Moreover, if multiple transactions can be cancelled or paid
in a same message, it is not clear that this constraint will always represent the
desired behaviour.

Data-Aware Constraints. Choreography Specification 3 requires the con-
straints to go beyond a mere sequencing of operations and to express correla-
tions on the actual content of the messages exchanged between the buyer and
the company. A more precise version of Choreography Specification 3 could be
the following:

Choreography Specification 4. Every buy/sell order is eventually completed
by a cash transfer or a cancellation referring to the same bill ID.

By referring to “every buy and sell order”, this new constraint requires that each
bill ID appearing in a confirmation eventually appears inside a cancellation or
a cash transfer. It implies an access to the data content of the message (the bill
ID), and moreover correlates data values at two different moments along the
message trace.

This need to access and correlate the data content in multiple messages is not
an exception and appears in many other natural properties. For example:

Choreography Specification 5. No cash transfer can occur for a buy order
that has previously been cancelled.

Indeed, to make sure that a cash transfer occurs for a previously cancelled trans-
action, one is required to correlate the bill-id of two different messages.

These last two choreography specifications are called “data-aware”, because
the sequence of messages and their content are interdependent. The reader is
referred to [16] for a deeper exposition of data-aware constraints.

Additional constraints can complexify the monitoring process: asynchronous
communications, lost, delayed or out-of-order messages can distort an otherwise
valid interaction. These issues are out of the scope of the present paper.
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3 LTL Choreography Specifications

We now briefly recall how Linear Temporal Logic (LTL) can be used to formally
express the previous choreography requirements. LTL has been introduced to
express properties about states and sequences of states in systems called Kripke
structures [8]. In the present case, the states to be considered are messages
inside a conversation. Formally, let us denote by M the set of XML messages.
A sequence of messages in M is called a message trace:

Definition 1 (Message trace). A message trace σ is a sequence of messages
σ1σ2 . . . , where σi ∈ M for every i ≥ 1.

We write σi to denote the i-th message of the trace σ, and σi to denote the trace
obtained from σ by starting at the i-th message.

The ground terms of LTL formulæ are Boolean expressions on states. In the
present case, these ground terms are assertions about individual messages. We
therefore define a domain function, which is used to fetch and compare values
inside a message. This domain function receives an argument π representing a
path from the root to some element of the message. This path is defined using
standard, XPath 1.0 expressions.

Definition 2 (Domain function). Let D be a domain of values, and Π be the
set of path expressions. A domain function Domm(π) is an application M×Π →
2D which, given a message m ∈ M and a path π ∈ Π, returns a subset of D.

For example, if we let Π be the set of XPath formulæ, π ∈ Π be the particular
formula “/message/stock-name”, and m ∈ M be the following message:

<message>
<name>placeBuyOrder</name>
<stock-name>stock-1</stock-name>
<stock-name>stock-2</stock-name>

</message>

then Domm(π) = {stock-1, stock-2}.
LTL’s syntax is based on classical propositional logic, using the connectives

¬ (“not”), ∨ (“or”), ∧ (“and”), → (“implies”), to which four temporal opera-
tors have been added. An LTL formula is a well-formed combination of these
operators and connectives, according to the usual construction rules:

Definition 3 (LTL syntax). Let π be a formula in some language, and S ⊆ D
be a subset of D. Then we have the following:

1. π = S is an LTL formula
2. If ϕ and ψ are LTL formulæ, then ¬ϕ, ϕ∧ψ, ϕ∨ψ, ϕ → ψ, G ϕ, F ϕ, X ϕ,

ϕ U ψ are LTL formulæ.
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Boolean connectives have their usual meaning. The temporal operator G means
“globally”. For example, the formula Gϕ means that formula ϕ is true in every
message of the trace, starting from the current message. The operator F means
“eventually”; the formula Fϕ is true if ϕ holds for some future message of the
trace. The operator X means “next”; it is true whenever ϕ holds in the next
message of the trace. Finally, the U operator means “until”; the formula ϕUψ
is true if ϕ holds for all messages until some message satisfies ψ. The semantics
below formalizes these definitions:

Definition 4 (LTL semantics). Let ϕ be a LTL formula, π and S be defined
as previously. We say that a message trace σ satisfies ϕ, and write σ |= ϕ, if
and only if it respects the following rules:

σ |= π = S ⇔ Domσ1(π) is equal to S

σ |= ¬ϕ ⇔ σ 	|= ϕ

σ |= ϕ ∨ ψ ⇔ σ |= ϕ or σ |= ψ

σ |= X ϕ ⇔ σ2 |= ϕ

σ |= G ϕ ⇔ σi |= ϕ for every i ≥ 1
σ |= ϕ U ψ ⇔ there exists k such that σk |= ψ and σi |= ϕ for every i < k

As usual, we define ϕ ∧ ψ ≡ ¬(¬ϕ ∨ ¬ψ), F ϕ ≡ ¬G ¬ϕ and π 	= S ≡ ¬(π = S).
We extend the notation and allow to write π = d when Domm(π) = {d}.

Equipped with LTL, the choreography constraints of the previous section can
be revisited and expressed in this formal language. For example, Choreography
Property 1 becomes the following LTL Choreography Specification:

LTL Choreography Specification 1

(G message/name 	= cashTransfer) ∨ (message/name 	= cashTransfer
U (message/name = placeBuyOrder ∨ message/name = placeSellOrder)) (1)

This formula explains that either no “cashTransfer” does not hold until either
a message with name “placeBuyOrder” or with name “placeSellOrder” has been
observed.

Similarly, properties 2 and 3 can be translated in LTL:

LTL Choreography Specification 2

(G message/name 	= buyOrder) ∨ (message/name 	= cashTransfer
U message/name = getStockInfo) (2)

LTL Choreography Specification 3

G (message/name = placeBuyOrder →
X (¬message/name = placeBuyOrder U

(message/name = cashTranfer
∨ message/name = cancelTransaction))) (3)

We postpone the translation of properties 4–6 to the next section.
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4 From LTL to XQuery

In this section, we show how LTL choreography constraints can be checked on
message traces using XML methods. More precisely, we present a translation
from LTL to XQuery that allows trace validation using XML query processors.

Three powerful languages on XML documents, standardized by the W3C, are
currently available: the XML Path Language XPath version 1.0 [7] and 2.0 [3],
and the XML Query Language [4]. These three languages represent increasing
degrees of expressiveness, i.e.

XPath 1.0 ⊂ XPath 2.0 ⊂ XQuery 1.0

Therefore, an XPath 1.0 expression is also an XPath 2.0 expression, which
itself is an XQuery 1.0 expression. Various environments provide XPath and
XQuery; these languages are intended to become the standard way of accessing
and processing XML-based data.

4.1 A Case for XML Methods

Since the message traces considered are formed of XML documents, is is natural
to think that properties on such traces can be validated using XML methods.
Remark that a message trace σ = σ1σ2 . . . , defined as above, can be seen as
an XML document by itself. It suffices to encapsulate each message sequentially
into a global trace element as follows:

<trace>
<message> σ1 </message>
<message> σ2 </message>
. . .

</trace>

Since child elements in XML documents are ordered, the sequential ordering
of the messages in σ is carried through the sibling ordering of the <message>
elements. This property can be used to map temporal operators in LTL into
sibling-ordering functions in an XML processing language. We list a few advan-
tages of doing so:

1. XML query processors are common. Many existing solutions for trace valida-
tion require changes to the web service execution environments. For example,
runtime monitors in [2, 16] require the implementation of their own moni-
toring algorithms. In contrast, most (if not all) web service execution envi-
ronments provide XML processing capabilities natively; hence, translating
LTL into XML query evaluation allows to perform trace validation without
any new technology. Using XML query engines to perform trace validation
is a powerful way of leveraging existing resources available in production
environments while minimizing the modifications required to a service.
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2. XML query languages are standardized. This entails that the validation of
a trace need not be expressed in LTL: as long as it can be translated into
an XML query expression, any standard implementation of the query engine
will be able to process it.

3. XML query processors are efficient. Experimental results shown later in this
section indicate that, in contexts where data domains of 100 elements and
transactions formed of up to 1,500 messages, the validation of a trace requires
less than 10 ms per message.

It remains to determine which, if any, of the three XML languages XPath
1.0/2.0 or XQuery 1.0, is the most appropriate for the task.

Validating a trace of events against an LTL formula ϕ amounts to check-
ing whether a particular word is accepted by a Büchi automaton built from ϕ;
according to this classical result, the size of this automaton is exponential in
the length of ϕ [12]. This contrasts with the complexity of checking a document
against an XPath expression, which has been shown to be P-complete [13]. From
these two results, the following conclusion can be drawn:

Theorem 1. XPath 1.0 cannot be used for LTL trace validation.

Indeed, XPath 1.0 lacks the quantification mechanism that is required for the
translation. However, XQuery 1.0, as well as its subset XPath 2.0, are Turing-
complete [13]. Therefore, both are powerful enough to model LTL. The main
difference between the two is the presence in XQuery of a powerful node selec-
tion mechanism called FLWOR expressions. Since FLWOR expressions are not
necessary for the translation shown below, the required language is therefore
XPath 2.0. In the following, we nonetheless call our formulæ “XQuery expres-
sions” to avoid confusion with XPath 1.0; the reader must keep in mind that our
translation actually belongs to the stricter subset XPath 2.0.

4.2 Translation to XQuery

Based on the previous observation, we develop a recursive translation function
ωρ, which takes as input an LTL formula and produces an equivalent XQuery
expression. The function also carries a parameter ρ, which is a pointer to the
root of the first message of the current trace. When starting the translation, ρ
must point to the first message of the trace document. The XPath expression
/*/*[1] can be used to designate this first message: it points to the first element
under the root element.

It then suffices to define ωρ for each LTL operator. The translation of XML
path expressions is direct: for π a path in a message and d ∈ D a value at the
end of that path, we have:

ωρ(π = d) ≡ ρ/π = d (4)

It is important to remark that the path π is relative to the current message
of the trace; hence π must be appended to ρ. Since XQuery allows all logical
connectors, the translation of ¬, ∨ and ∧ is also straightforward:
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ωρ(¬ϕ) ≡ not (ωρ(ϕ)) (5)
ωρ(ϕ ∨ ψ) ≡ (ωρ(ϕ) or ωρ(ψ)) (6)
ωρ(ϕ ∧ ψ) ≡ (ωρ(ϕ) and ωρ(ψ)) (7)

ωρ(ϕ → ψ) ≡ (not(ωρ)(ϕ) or ωρ(ψ)) (8)

It remains to translate the temporal operators into equivalent XQuery code.
We consider first the case of the G operator. According to the semantics of
LTL, a formula of the form G ϕ is true on the trace which starts at the current
message, if and only if all subsequent messages (including the current one),
satisfy ϕ. Since ρ is a pointer to the current message, then the XPath expression
ρ/following-sibling::* denotes all the messages following ρ. We perform the union
of this set with ρ to obtain the desired messages: ρ union ρ/following-sibling::*.
The XQuery formula must then express that each message in this set satisfies
the remaining formula ϕ, or more precisely, the translation of ϕ into XQuery.
We obtain the following expression:

ωρ(G ϕ) ≡ every $x in (ρ union ρ/following-sibling::*) satisfies ω$x(ϕ) (9)

In this translation, $x is a fresh XQuery variable, bound to the every statement,
that is introduced to designate successively each message in the set of desired
messages. Remark that since ϕ must be true on each such message, the root on
which of ϕ is evaluated is $x.

The translation of the “next” (X) operator, can be seen as a special case of
G, where the set of desired states contains only the immediate successor to ρ.
This candidate set can be obtained by the XPath expression ρ′ =ρ/following-
sibling::*[1]: the first message following the one pointed by ρ. The rest of the
translation is identical:

ωρ(X ϕ) ≡ every $x in (ρ/following-sibling::*[1]) satisfies ω$x(ϕ) (10)

One can see that the translation to XQuery, although yielding a more verbose
expression, closely sticks to the original semantic definition for LTL. We omit the
details for the remaining temporal operators and give directly their translation
pattern into XQuery:

ωρ(F ϕ) ≡ some $x in (ρ union ρ/following-sibling::*) (11)
satisfies ω$x(ϕ)

ωρ(ϕ U ψ) ≡ some $x in (ρ union ρ/following-sibling::*) satisfies (12)
every $y in ($x/previous-sibling::* intersect (ρ union

ρ/following-sibling::*)) satisfies ω$y(ψ)

As an example, applying ω to LTL Choreography Specification 2 yields the
following XQuery expression:
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(every $ 0 in /*/*[1] union /*/*[1]/following-sibling::* satisfies
not($ 0/name = “placeBuyOrder”))

or
(some $ 0 in /*/*[1] union /*/*[1]/following-sibling::* satisfies

(every $ 0 in (/*/*[1] union /*/*[1]/following-sibling::*)
intersect ($ 0/preceding-sibling::*) satisfies

not($ 0/name = “placeBuyOrder”
and $ 0/name = “getStockDetails”)))

An interesting consequence of this mapping is that any other notation trans-
latable into LTL can also be validated using XPath. This includes UML Sequence
Diagrams [14] (or more specifically Message Sequence Charts), since various al-
gorithms to translate them into LTL have been developed, for instance in [6,11].
This also includes SSDL’s Message Exchange Patterns (MEP) and Rules proto-
col frameworks [21], and the Let’s Dance choreography description language [9].

4.3 Support for LTL-FO+

Up to now, Choreography Specifications 4 and 5 have been left out of the dis-
cussion. These constraints require a correlation between data content of multiple
messages in the trace and have been dubbed “data-aware” for that reason. How-
ever, traditional temporal logics such as LTL are not expressive enough to model
these constraints, as has been shown in [16].

An extension to LTL called LTL-FO+ is required. This extension allows a
first-order quantification on the content of messages; it was introduced in [15]
and is defined as follows:

Definition 5 (LTL-FO+ syntax). Let π ∈ Π be defined as previously. We
have the following:
– Any LTL formula is an LTL-FO+ formula
– If ϕ is a LTL-FO+ formula, xi is a free variable in ϕ, π ∈ Π is a path

expression, then ∃πxi : ϕ and ∀πxi : ϕ are LTL-FO+ formulæ.

Definition 6 (LTL-FO+ semantics). Let ϕ be a LTL-FO+ formula, π and S
be defined as previously. We say that a message trace σ satisfies ϕ, and write
σ |= ϕ, if and only if it respects the rules in Definition 4, plus the following rules:

σ |= ∃πx : ϕ ⇔ σ |= ϕ[x/k] for some k in Domσ1(π)
σ |= ∀πx : ϕ ⇔ σ |= ϕ[x/k] for every k in Domσ1(π)

Properties 4–6, which require an extension to LTL to include first-order quan-
tification, can now be translated using this extension.

LTL-FO+ Choreography Specification 4

G (message/name = placeBuyOrderConfirm →
∀ message/bill-id x : F ((message/name = cancelTransaction ∨

message/name = cashTransfer) ∧ ∃ message/bill-id y : x = y)) (13)
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This property reads as follows: globally along the whole message trace, when-
ever a placeBuyOrderConfirm message is observed, the following holds: for every
bill-id x inside that confirmation message, eventually in the future, a cancel-
Transaction or a cashTransfer message is be observed; moreover, there exists a
bill-id y inside that message which is the same as x. This indeed expresses the
requirement that every buy/sell order is eventually completed by a cash transfer
or a cancellation. Remark that universal and existential quantifiers on message
content are needed to express this specification.

Similarly, Choreography Specification 5 can be expressed as the following
LTL-FO+ formula:

LTL-FO+ Choreography Specification 5

G (message/name = cancelTransaction →
∀ message/bill-id x : G ¬(message/name = cashTransfer ∧

∀ message/bill-id y : x = y)) (14)

An interesting question is to determine whether the mapping from LTL to
XPath 2.0 can be extended to include LTL-FO+. The result, positive, follows
from the Turing-completeness of the language. Indeed, it suffices to add the
following two mapping rules to the original ω to support LTL-FO+’s quantifiers
on data using XPath 2.0:

ωρ(∃πx) = some $x in ρ/π satisfies ωρ(ϕ) (15)
ωρ(∀πx) = every $x in ρ/π satisfies ωρ(ϕ) (16)

To follow XQuery’s syntactical requirements for variables, every occurrence of
the quantified variable x in ϕ must be prefixed by a $.

This result is noteworthy. It shows that performing trace validation on an
extension of the temporal logic LTL that includes full first-order quantification
over message contents can be supported without any additional modification by
existing XML processing engines.

4.4 Experimental Results

To support these claims, we performed an experimental evaluation of the method
on automatically-generated traces taken from the stock trading company exam-
ple described in Section 2. The goal of these experiments was to show that
validating choreography constraints expressed in LTL and LTL-FO+ on XML
message traces can be effectively done using an XML processing engine.

To this end, we produced a set of 100 trace files of length ranging from 10 to
approximately 1,500 messages, each containing a randomly created sequence of
the messages described in the example: stock products are displayed, information
for some stocks is retrieved, and an arbitrary number of buys, sells, payments
and cancellations occurs in various orderings. Each individual message could
refer to a maximum of 100 different stocks.
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Each of these traces was then sent to an XQuery engine, which evaluated the
XQuery translation of each Choreography Specifications 1–5. The total running
time for evaluating each formula on each trace was then measured. Scatterplots
of the results are shown in Figure 2.
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Fig. 2. Scatterplots of total validation time for Choreography Specifications 1–5. The x-
axis plots the number of messages in the trace, and the y-axis plots the total validation
time of the trace in milliseconds. The data domain is of size 100.

The XQuery engine chosen for the tests was Saxon-B 9.0 running on an
AMD Athlon XP 2200+ system under Cygwin. Saxon-B is a mature, industry-
level, and freely available engine.1 It was not modified in any way. A simple

1 http://www.saxonica.com/
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front-end was coded to automatically translate LTL(-FO+) formulæ into XQuery.
Translation times are negligible.

One can observe that barring exceptional cases, the average time required
to process one message does not exceed 5 milliseconds; it never went above 10
milliseconds for all traces. There seems to be, however, a fixed cost of around
200 ms to invoke the XQuery engine, no matter the length of the trace; therefore
the highest processing times per message have been encountered on the smallest
traces.

Processing times grow in roughly the same fashion for each of the five formulæ.
An interesting point is that the total processing time remains similar between
the group of Constraints 1–3, which are plain LTL formulæ, and the group of
Constraints 4–5, which require LTL-FO+’s first-order quantification mechanism
to be expressed. This indicates that, for the Choreography Specifications studied
in these experiments, extending trace validation to temporal first-order proper-
ties added no noticeable load on the XML query engine, and can therefore be
performed “for free”, using the same XML technologies that are required for the
more traditional LTL.

5 Conclusion

In this paper, we have shown how representative web service choreography con-
straints can be checked on traces of messages using XML methods. In particular,
we showed how any formula in the Linear Temporal Logic LTL can be translated
into an equivalent XQuery expression on a message trace. This allows standard,
off-the-shelf XML query processors such as Saxon to validate choreography con-
straints. Moreover, we have shown that extending the language to LTL-FO+,
which includes full first-order quantification over message contents, can be sup-
ported without additional cost. Since the translation takes a temporal logic as
an input, any other language translatable into LTL or LTL-FO+ can directly tap
onto this method. This includes, among others, UML Sequence Diagrams. Fi-
nally, we showed how the validation of representative choreography constraints,
expressed both in LTL and LTL-FO+, can be done efficiently using an XQuery
processor. We hope these results will open the way to other works leveraging the
power of XML query processors available in web service execution environments
for the formal validation of collaborations between peers.
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