
Satisfying a Fragment of XQuery by Branching-Time Reduction

Sylvain Hallé and Roger Villemaire∗

Université du Québec à Montréal
C.P. 8888, Succ. Centre-Ville, Montréal, Canada H3C 3P8

Abstract

Configuration Logic (CL) is a fragment of XQuery that
allows first-order quantification over node labels. In this
paper, we study CL satisfiability and seek a deterministic
decision procedure to build models of satisfiable CL for-
mulæ. To this end, we show how to revert CL satisfiabil-
ity into an equivalent CTL satisfiability problem in order
to leverage existing model construction algorithms for CTL
formulæ.

1 Introduction

The similarity between tree languages and temporal
logic has long been recognized. Recently, fragments of
XPath have been interpreted in terms of CTL [3] and Propo-
sitional Dynamic Logic (PDL) [2]. Complexity and decid-
ability results on semi-structured data are revisited from a
modal logic perspective in [4,15]. Finally, correspondences
between XML Schemata and multi-modal hybrid logic for-
mulæ have also been established [7]. The main interest of
such connections is the “well-behaved” nature of modal log-
ics, an observation that has also led to the development of
guarded logic [5].

The satisfiability of a tree logic is an important question
in a number of practical contexts [6]: database query op-
timization –where the unnecessary calculation of inconsis-
tent queries can be avoided,– information leakage in secu-
rity views and consistency of XML specifications.

The majority of works relating tree languages to modal
logics are considered navigational: they are less flexible
in stating relations between values of different tree nodes.
In contrast, Configuration Logic (CL) includes first-order
quantification over node labels in addition to the usual
Boolean and parent-child connectives. In this paper, we at-
tempt to solve the problem of CL satisfiability from a tem-
poral logic perspective. We first recall the syntax and se-

∗E-mail: halle@info.uqam.ca, villemaire.roger@uqam.ca. The authors
gratefully acknowledge the financial support of the Natural Sciences and
Engineering Research Council of Canada on this research.

mantics of CL in Section 2 and show that its satisfiability is
undecidable in general. We then seek ways of “taming” the
full-blown language CL. This task is delicate, since adding
even a simple hierarchical structure over the variables of a
decidable first-order language is sometimes enough to ren-
der it undecidable. Nevertheless, it can be shown that sat-
isfiability of CL with unary predicates is complete for non-
deterministic exponential time.

However, it is important to note that all previously men-
tioned applications assume a deterministic decision proce-
dure for the language in question. Therefore, from a practi-
cal point of view, we should not be content with the NEXP-
TIME complexity result for CL and look for a deterministic
procedure. We show in Section 3 that given a CL formula
ϕ, there exists CTL formulæ ω(ϕ) and ψ such that ϕ is
satisfiable if and only if ω(ϕ) ∧ ψ is satisfiable. Our con-
struction provides a 2EXPTIME decision procedure which,
under widely-held complexity theoretic assumptions, is op-
timal for deterministic time and restates the problem in a
pure CTL setting.

2 Satisfiability of Configuration Logic

CL is a logic over tree structures whose nodes are name-
value pairs. It has been introduced as an appropriate lan-
guage to express constraints on the configuration of network
routers [18].

2.1 Syntax and Semantics

A configuration is a forest of nodes, each formed of two
parts: a name and a value, represented in the form “name
= value”. We associate to each node of T a unique symbol
that we call a number. This symbol does not play a role in
the logic properly speaking, but will be used in the decision
procedure we present in Section 3. We assume that each
forest is topped with an additional source node and consider
that a configuration is a tree.

The succession of name-value pairs from the source to an
arbitrary node is called a named path; two nodes are consid-
ered identical if they have the same named path. A named

path can also have one or more variables in place of the
“value” part of some nodes. In this case, depending on the
values taken by those variables, the named path will desig-
nate different nodes. Variables standing for the “name” part
of nodes are not authorized.

In addition to the traditional Boolean connectives, CL al-
lows quantification on the “value” part of “name = value”
pairs. Existential quantification takes the form 〈p ; n =
x〉ϕ, where p is a (possibly empty) named path, n is a
name and x is a variable free in ϕ. In this quantification,
only x is bound; the other variables possibly occurring in p
are considered free. In line with the interpretation of CL as
a tree generalization of first-order logic [19], the presence
of named paths in a quantifier amounts to locating, within
the hierarchy, the first-order variable to be quantified; this
location can depend on previously quantified variables.

The formal semantics of CL is shown below, where T
is a tree, ρ is a valuation, Ri is a predicate, x is a tuple of
variables matching the arity of Ri, p is a (possibly empty)
named path, and V is the set of node values. Disjunction
and universal quantification are derived in the classical way.

T, ρ |= Ri(x̄) ⇔ Ri(ρ(x̄)) holds
T, ρ |= ϕ ∧ ψ ⇔ T, ρ |= ϕ and T, ρ |= ψ

T, ρ |= ¬ϕ ⇔ T, ρ 6|= ϕ

T, ρ |= 〈p̄; p = x〉ϕ ⇔ ∃v ∈ V : ρ(p̄), p = v ∈ T and
T, ρ[x/v] |= ϕ

2.2 Necessary Conditions for Decidability

In the following, we study the complexity of the deci-
sion problem for CL: given a formula ϕ with unary predi-
cates, determining whether there exists a tree that satisfies
ϕ. Trakhtenbrot showed that for any first-order language
with n-ary relations (n ≥ 2) other than equality, satisfiabil-
ity for finite structures is undecidable [17]. CL being a gen-
eralization of first-order logic, this theorem also applies to
it. However, while in the case of first-order logic, restricting
the signature of the language to unary relations and equal-
ity is sufficient for ensuring decidability, this condition no
longer holds with CL.

Theorem 1. There exists a CL formula ϕ(x, y) such that for
every structure 〈S,R〉, where R is a binary relation over S,
there exists a configuration T such that R(s1, s2) ⇔ T |=
ϕ(s1, s2).

Proof. Let T be the tree constructed with dummy name p as
follows: there exists a named path p = u, p = v if and only
if R(u, v) holds. Then R(u, v) is equivalent to ϕ(u, v) =
〈 ; p = x〉〈p = x ; p = y〉x = u ∧ y = v.

Using the fact that variables in CL are organized in a tree
structure instead of a flat set, CL with unary relations and
equality over infinite domains can simulate first-order logic
with arbitrary binary relations and is therefore undecidable.
To restore decidability, assuming no restriction on the struc-
ture of formulæ, CL must be restricted to unary predicates,
or equivalently to equality over finite domains. Decidability
then comes as no surprise:

Theorem 2. The satisfiability problem for CL with equality
is NEXPTIME-complete given fixed sets A and B of names
and values.

Proof. For the lower bound, it suffices to remark that CL
with unary predicates is a generalization of monadic first-
order logic, whose satisfiability is NEXPTIME-complete
[8, section 6.2.1]. For the upper bound, let ϕ be a CL for-
mula using only names and values in A and B. By the se-
mantics of CL, the arity of trees is bounded by C = |A||B|
(since no two children of the same parent can have the
same “name=value” pair), and the depth of the trees is
bounded by |ϕ| (since recursion on paths is not allowed).
The maximum size of a tree is then bounded by O(2|ϕ|);
by [10], model checking of a single tree of size |T | is in
O(|ϕ| · |T ||ϕ|) and the problem is in NEXPTIME.

Numerous works have considered the satisfiability of re-
lated fragments of tree languages; each of them differs from
the others in the set of features they support: first-order
quantification on node values, “next-sibling” relation, num-
ber and type of Boolean connectives (∨, ¬, ∧), “child” rela-
tion, recursion or transitive closure, equality between node
values. We refer the reader to [2, 11–13, 16] for complexity
results on each of these fragments.

3 Satisfiability as a Temporal Logic Problem

The decision procedure presented in Theorem 2 is non-
deterministic. A straightforward determinization would
consist of generating all possible finite trees in a sequence
until one that satisfies the desired formula is found. Ter-
mination is guaranteed by the fact that the number of can-
didates to search is finite, due to the semantics of CL
with unary predicates. In this section, CL satisfiability is
rather translated into a CTL decision problem. Since CTL
is decidable in simple deterministic exponential time [9],
it provides an alternate, deterministic CL decision proce-
dure. The advantage of using CTL decision procedures is
twofold: it leverages algorithms for a well-studied logic,
and the decision algorithms (especially [14]) create a model
by decomposing the original formula, therefore making bet-
ter “educated guesses” on the candidate model than a brute-
force enumeration.

ω(〈n = xi , p ; m = xi〉ϕ) = EX (α = n ∧ β = xi ∧ ω(〈p ; m = xi〉ϕ))
ω([n = xi , p ; m = xi]ϕ) = EX (α = n ∧ β = xi ∧ ω([p ; m = xi]ϕ))

ω(〈 ; n = xi〉ϕ) = EX ((α = n ∧ xi = #) ∧ EX (xi 6= # ∧ ω(ϕ)))
ω([; n = xi]ϕ) = AX ((α = n ∧ xi = #) → EX (xi 6= # ∧ ω(ϕ)))

Table 1. Embedding of CL quantifiers into CTL

3.1 Reducing CL to CTL

The first part of the translation consists in converting a
configuration T and a CL formula ϕ with n quantified vari-
ables to a Kripke structure KT,ϕ = (S, I,R, L), where S is
a set of states, I ⊆ S is a set of initial states, R ⊆ S2 is a
transition relation and L is a labelling function. Then ϕ is
translated into a CTL formula ω(ϕ) such that that T |=CL ϕ
if and only if KT,ϕ |=CTL ω(ϕ). The construction we use
is based on the reduction of CL model checking to CTL
model checking presented in [10]. We briefly summarize
this construction.

A state s ∈ S of KT,ϕ corresponds to a node of the
original tree and a valuation of the quantified variables
x1, . . . , xn of ϕ. Let A, B and Γ be respectively the sets of
all names, values and numbers appearing in T . From these
sets, we create the sets A′, B′ and Γ′ by adding to each a
special, unused symbol # that will stand for “undefined”.
For each state variable x, Lx : S → Dom(x) assigns a
unique value to every variable in every state. Formally, let
a ∈ A′, b ∈ B′, c ∈ Γ′ and (b1, . . . , bn) ∈ B′n. Let s
be a state such that Lα(s) = a, Lβ(s) = b, Lγ(s) = c
and for all 1 ≤ i ≤ n, Lxi

= bi. Then s is a state in S
if and only if there exists a node in T with name a, value b
and number c. Hence, for each node in T , there are multiple
states inKT,ϕ associated to it, namely one for each possible
valuation of the x1, . . . , xk; we call these the copies of T .
We extend the term and call a copy the sub-Kripke structure
obtained by taking the restriction of R to S(d1,...,dn). Vari-
able γ is then called a representative of α and β: for every
d ∈ Γ′, there exist values a ∈ N ′ and b ∈ V ′ such that for
every state s ∈ S, Lγ(s) = d implies that Lα(s) = a and
Lβ(s) = b.

The transition relation R is composed of two kinds of
transitions. Tree transitions link the states belonging to the
same copy of T . A tuple (s1, s2) ∈ S2 is a tree transition if
and only if s1 and s2 belong to the same copy. For each tree
transition t = (s1, s2) such that Lγ(s1) = c1 and Lγ(s2) =
c2 and for each 1 ≤ i ≤ n, Lx1(s1) = #, t ∈ R if and
only if node numbered c2 is the child of node numbered c1
in T . A transition (s1, s2) ∈ R is a freeze transition if and
only if there exists 1 ≤ j ≤ n such that Lxj (s1) 6= Lxj (s2)
and for every 1 ≤ i ≤ n (i 6= j), Lxi

(s1) = Lxi
(s2).

A freeze transition (s1, s2) ∈ R is resetting if and only if
Lγ(s2) = #.

Freeze transitions restrict the behaviour of variables
x1, . . . , xn; such variables are aptly called freeze variables.
A freeze variable acts as some kind of permanent “mem-
ory device”: it is originally set to some undefined value,
and once it takes a definite value, it keeps (“freezes”) it
for the remainder of the execution of the system. A vari-
able xi in KT,ϕ is a freeze variable if and only if whenever
Ls(xi) = #, for every s ∈ I , and for every (s1, s2) ∈ R,
either Ls1(xi) = # or Ls1(xi) = Ls2(xi). A freeze vari-
able xi is a memory of state variable β if and only if for
every transition (s1, s2) ∈ R, either Ls1(xi) = Ls2(xi) or
Ls2(xi) = Ls1(β).

Finally, since each copy in K is meant to be an image of
the original tree T , we must ensure that all such images are
identical with the concept of symmetry: K is symmetrical if
any tree transition (s1, s2) ∈ R such that Ls1(γ) = c1 and
Ls2(γ) = c2 either exists in all copies or in no copy of K.

No constraint is imposed yet on the actual paths that the
algorithm takes on each traversal: these constraints are en-
forced by the translation of the CL formula into CTL. Once
the Kripke structure KT,ϕ is obtained, the translation func-
tion ω of the CL formula ϕ into CTL becomes simple. It is
defined recursively on the structure of the formula; ground
equality testing and Boolean connectives are translated in
the traditional way; the quantifiers are translated as shown
in Table 1.

Theorem 3 (from [10]). Let T be a tree, ϕ be a CL formula
and ω be the embedding defined previously. LetKT,ϕ be the
Kripke structure built as described above. Then T |=CL ϕ
if and only if KT,ϕ |=CTL ω(ϕ).

3.2 Bad Models of ω(ϕ)

The mapping produced by ω produces a CTL formula
linear in the size of the original CL formula. By the
EXPTIME-completeness of CTL satisfiability and Theorem
2, providing a model of ω(ϕ) is not sufficient to show there
exists a tree T that satisfies ϕ unless EXPTIME = NEXP-
TIME. For example, consider the unsatisfiable CL formula
〈 ; a = x1〉 [; a = x2]x1 6= x2 whose translation ω(ϕ) is
the following:

Figure 1. A Kripke structure satisfying for-
mula (1). Values of state variable γ are not
shown.

EX ((α = a ∧ x1 = #) ∧ EX (x1 6= # ∧ AX
((α = a ∧ x2 = #) → EX (x2 6= # ∧ x1 6= x2))))

(1)
One can easily check that this CTL formula is satisfi-

able; Figure 1 shows a model of this formula. However,
this model is not a structure of the form KT,ϕ for some tree
T . We give below a property ψ such that ω(ϕ)∧ψ is satisfi-
able in CTL if and only if ϕ is satisfiable in CL, thus giving
a sufficient condition for a Kripke structure to be KT,ϕ for
some tree T . Moreover, we shall see that ψ only depends
on the number of variables in ϕ.

Theorem 4. Let ϕ be a CL formula with n ≥ 1 variables,
and K = (S, I,R, L) be a Kripke structure with state vari-
ables α, β, γ and x1, . . . , xn that respects the following
conditions: 1. In the initial state, all state variables take
value #; 2. The graph 〈S,R〉 is a tree; 3. γ is a repre-
sentative of α and β; 4. The xi are freeze variables that
memorize β; 5. All freeze transitions are resetting; 6. K
is symmetrical. Then K is a tree encoding: there exists a
configuration tree T such that K is KT,ϕ.

Proof. Due to lack of space, we only sketch the proof. It
suffices to remark that a tree T can easily be extracted from
the copy of K where all xi = #. From that tree, we build
KT,ϕ as in Section 3.1 and observe that K = KT,ϕ.

3.3 Tree Encodings

In order to infer CL’s satisfiability from CTL’s, we must
arrange for the CTL decision procedure to return only tree
encodings. The following lemmas show that each of the
conditions in Theorem 4 can actually be expressed as CTL
formulæ, so that the property of being a tree encoding is by
itself a CTL formula ψ. Therefore, searching for a model of

ω(ϕ) that is a tree encoding simply amounts to finding an
arbitrary model of ω(ϕ) ∧ ψ.

All the following lemmas apply to a Kripke structure K
defined as in the previous section. The first three take care
of representatives and freeze variables.

Lemma 1. State variable γ is a representative if and only
if the following holds for K:∧

d∈Γ′

∨
a∈A′,b∈B′

AG (γ = d→ (α = a ∧ β = b)) (2)

Lemma 2. State variable xi is a freeze variable if and only
if the following holds for K:

xi = # ∧
∧

k∈B

AG (xi = # ∨ (xi = k ∧AXxi = k)) (3)

Lemma 3. State variable xi is a memory of state variable
β if and only if the following holds for K:∧
k∈B

AG ((xi = # ∧ β = k) → AX (xi 6= # → xi = k))

(4)

As for the existence of a representative, symmetry can
be imposed by a CTL formula. Special care must be taken,
since “terminal” copies (where all freeze variables are ini-
tialized) do not have successors.

Lemma 4. K is symmetrical if and only if it respects the
following, with state variable γ as a representative:

∧
d1,d2∈Γ′

((n∨
i=1

xi 6= #
)
→ ((AG (γ = d1 → EX γ = d2))

∨ (AG (γ = d1 → ¬(EX γ = d2))))
)

(5)

Lemma 5. All freeze transitions are resetting if and only if
the following holds for K with state variable γ as a repre-
sentative:

n∧
i=1

AG ((xi = # → AX (xi 6= # → γ = #)) (6)

Since the Kripke structure constructed by the CTL deci-
sion procedure can be arbitrary, it is not excluded that such
structure contains cycles. We must therefore impose two
additional conditions restricting the structure to trees.

Lemma 6. K is acyclic if and only if the following holds:∧
d∈Γ′

∧
k1∈B

· · ·
∧

kn∈B

AG ((γ = d ∧ x1 = k1 ∧ · · · ∧ xn = kn) →
¬EF (γ = d ∧ x1 = k1 ∧ · · · ∧ xn = kn)) (7)

Lemma 7. If K is acyclic, then K is a tree if and only if
the following holds:∧

d1,d2∈Γ′

EF (γ = d1 ∧ EX γ = d2) →

(AG (γ 6= d1 → ¬EX γ = d2)) (8)

The combination of Lemmas 1–7 and Theorems 3 and 4
yields the desired result.

Theorem 5. Let ϕ be a CL formula with k quantified vari-
ables. Let ϕ′ = ω(ϕ) be its CTL translation. Let ψ be the
conjunction of (2)–(8). ϕ is satisfiable in CL if and only if
ϕ′ ∧ ψ is satisfiable in CTL.

By this theorem, a model for a CL formula can be
constructed directly using decision procedures for CTL. It
should be noted that in the expression of ψ, the conjunc-
tion of (2)–(8) is exponential in n. But since n ≤ |ϕ|,
then |ω(ϕ) ∧ ψ| ∈ O(2|ϕ|). In turn, satisfiability for CTL
is EXPTIME-complete; hence the resulting decision pro-
cedure for CL is in deterministic double exponential time.
Unless EXPTIME = NEXPTIME, this result is optimal for
a deterministic CL model construction procedure.

4 Conclusion

In this paper, we have shown how to reduce the satisfi-
ability of CL with unary predicates to the satisfiability of
CTL. This leads to a 2EXPTIME upper bound on the de-
terministic decision procedure. Moreover, the reduction of
CL satisfiability to CTL satisfiability, although it requires an
exponential translation of the original formula, still yields
a decision procedure which, under widely-held complexity
theoretic assumptions, is optimal for deterministic time.

References

[1] 21th IEEE Symposium on Logic in Computer Science (LICS
2006), 12-15 August 2006, Seattle, WA, USA, Proceedings.
IEEE Computer Society, 2006.

[2] L. Afanasiev, P. Blackburn, I. Dimitriou, B. Gaiffe, E. Goris,
M. Marx, and M. de Rijke. PDL for ordered trees. Journal
of Applied Non-Classical Logics, 15(2):115–135, 2005.

[3] L. Afanasiev, M. Franceschet, M. Marx, and M. de Rijke.
CTL model checking for processing simple XPath queries.
In TIME, pages 117–124. IEEE Computer Society, 2004.

[4] N. Alechina, S. Demri, and M. de Rijke. A modal perspec-
tive on path constraints. J. Log. Comput., 13(6):939–956,
2003.

[5] H. Andréka, J. van Benthem, and I. Németi. Modal lan-
guages and bounded fragments of predicate logic. Journal
of Philosophical Logic, (27):217–274, 1998.

[6] M. Benedikt, W. Fan, and F. Geerts. XPath satisfiability in
the presence of DTDs. In C. Li, editor, PODS, pages 25–36.
ACM, 2005.

[7] N. Bidoit, S. Cerrito, and V. Thion. A first step towards mod-
eling semistructured data in hybrid multimodal logic. Jour-
nal of Applied Non-Classical Logics, (4):447–476, 2004.

[8] E. Börger, E. Grädel, and Y. Gurevich. The Classical
Decision Problem. Perspectives in Mathematical Logic.
Springer, 1997.

[9] E. A. Emerson and E. M. Clarke. Using branching time
temporal logic to synthesize synchronization skeletons. Sci.
Comput. Program., 2(3):241–266, 1982.

[10] S. Hallé, R. Villemaire, and O. Cherkaoui. CTL model
checking for labelled tree queries. In TIME, pages 27–35.
IEEE Computer Society, 2006.

[11] J. Hidders. Satisfiability of XPath expressions. In G. Lausen
and D. Suciu, editors, DBPL, volume 2921 of Lecture Notes
in Computer Science, pages 21–36. Springer, 2003.

[12] O. Kupferman and M. Y. Vardi. Memoryful branching-time
logic. In LICS [1], pages 265–274.

[13] L. V. S. Lakshmanan, G. Ramesh, H. Wang, and Z. J. Zhao.
On testing satisfiability of tree pattern queries. In M. A.
Nascimento, M. T. Özsu, D. Kossmann, R. J. Miller, J. A.
Blakeley, and K. B. Schiefer, editors, VLDB, pages 120–131.
Morgan Kaufmann, 2004.

[14] W. Marrero. Using BDDs to decide CTL. In N. Halbwachs
and L. D. Zuck, editors, TACAS, volume 3440 of Lecture
Notes in Computer Science, pages 222–236. Springer, 2005.

[15] M. Marx. XPath and modal logics of finite DAG’s. In
M. C. Mayer and F. Pirri, editors, TABLEAUX, volume
2796 of Lecture Notes in Computer Science, pages 150–164.
Springer, 2003.

[16] M. Marx. XPath with conditional axis relations.
In E. Bertino, S. Christodoulakis, D. Plexousakis,
V. Christophides, M. Koubarakis, K. Böhm, and E. Ferrari,
editors, EDBT, volume 2992 of Lecture Notes in Computer
Science, pages 477–494. Springer, 2004.

[17] B. Trakhtenbrot. Impossibility of an algorithm for the de-
cision problem in finite classes. Dok. Akad. Nauk SSSR,
70:569–572, 1950.

[18] R. Villemaire, S. Hallé, and O. Cherkaoui. Configuration
logic: A multi-site modal logic. In TIME, pages 131–137,
2005.

[19] R. Villemaire, S. Hallé, R. Deca, and O. Cherkaoui. Skolem
functions and Herbrand universes for a tree generalization of
first-order logic. In A. Gelbukh and C. A. Reyes-Garcı́a, ed-
itors, Fifth Mexican International Conference on Artificial
Intelligence, Special Session, November 13-17, Apizaco,
Mexico, pages 22–31. IEEE Computer Society, November
2006.

