Flexible and Reliable Messaging using Runtime Monitoring

Sylvain Hallé Roger Villemaire
University of California Universie du Qebeca Montréal
Santa Barbara, CA, USA Montréal, Canada
Email: shalle@acm.org Email: villemaire.roger@ugam.ca

Abstract—The asynchronous nature of communications in they are involved. Consequently, we argue that keeping trac
message-based systems like service-oriented architeatsrin- of the state of the conversation on each peer, using some
troduces two major issues: inability to detect lost and out- form of runtime monitoring, and sharing this information

of-sequence messages, and unrealizability of some messagi - - .
protocols. We show that these problems are actually diffenst to uncover any discrepancies, should help alleviate both of

manifestations of the same phenomenon: communicating peer these problems.
ending up with divergent views of the message exchange There already exists a large body of work on runtime

in which they are involved. We introduce the concept of monitoring which can be put to good userdatime monitor
monitor-based messenger (MBM), which processes messages eavesdrops the messages sent and received by a given peer,

locally through a runtime monitor enforcing a specific protocol
of interaction, and stamps them with a monitoring token. and makes sure that the sequence of such messages follows

We demonstrate that: 1) some unrealizable protocols become @ Set of constraints, called @rotocol In Section IlI, we
realizable using MBMs; 2) MBMs offer protection against introducemonitor-based messengdMBMs), which locally

unreliable messaging, and can decrease delivery time and stamp each outbound message with a token depending on
required queue size compared to strict messaging solutions i state. We first show how divergent views of the same
protocol can be detected by communicating peers; in some

Keywords-messaging; runtime monitoring; middleware; cases, their views can even be made to re-converge to a
asynchronous communications; common state of the protocol, without the need for a cen-

tralized mechanism. This entails that there exist unrahble
protocols which become realizable with MBMs.

An increasing number of systems rely on message-based An interesting side effect of this property is that desyn-
exchanges for their means of communication: for exampleghronizations can also bmlerated on purpose when re-
the Service-oriented Architecture (SOA) relies mostlylo@ t convergence of the protocol views is inevitable. In Section
exchange of SOAP messages through standard communicg, we show how this behaviour makes MBMs robust
tion prOtOCO|S. In most cases, the communication SChemggainst Out_of-sequence messages, and can actua”y decrea
employed is asynchronous, and allows a sent message to kgir waiting time in receiving queues. To illustrate ouinip
picked by the receiver at a later time from a local receivingwe describe in Section V the MBMonitor, a messaging layer
queue. in Java that implements these principles. Our results atdic

While the asynchronous mode simplifies communicationthat, for arbitrarily shuffled message sequences, reliaiels-

in situations where blocking is not necessary, it introduce saging based on runtime monitoring can decrease delivery
two new problems. The first one isnreliable messaging time and required queue size.

there is no way for the receiver to detect that a message
never made it to its destination, or that messages in the re-ll. DIVERGENT VIEWS IN MESSAGEBASED SYSTEMS

ceiving queue were actually sent in a different order. Sdcon e take aprotocol as a specification of a global pattern

two communicating peers following the same protocol canpf sequences of messages. These sequences can be thought
deadlock or produce non-compliant traces of messages, eveR being taken by a global observer, writing down each

in the case of perfeCt channels and infinite gueue sizes: th.ﬁ]essage as it isent Protocols are common p|ace in service

is calledunrealizability oriented architectures, where they are cattedreographies

In Section Il, we describe these seemingly separate issugs$] or conversationg2]. They can, for example, represent
and observe that they are actually different manifestationconstraints on the way a service can be accessed.

of the same phenomenon: communicating peers ending up o
with divergent “views” of the message exchange in whichA. Asynchronous Communications and Message Protocols

o _ To formalize the notion of protocol, a formal model of
We gratefully acknowledge the financial support of the Nalt@tiences b d L . ired. Wi
and Engineering Research Council of Canada (NSERC) and ohelsF message- ase_ _Com_mun'cat'ons '5_ requ”e - We concentrate
québeécois de recherche sur la nature et les technolog@BNT). our study on bidirectional communications between exactly

I. INTRODUCTION

Definition 2. A channel systenf follows a protocol speci-
ficationC if every global trace ofZ, trimmed of its receive
events, is a trace dof.

Examples of message-based protocols abound in the lit-
erature for various contexts. The IBM Conversation Support
[3] provides a library of protocol templates for various
business activities. RosettaNet [4] defines 107 predefined
patterns of interaction between business partners, called
Partner Interface Processes (PIP); Figure 2 shows a portion
of an exchange between a buyer and a seller, following
such a PIP. Moreover, any specification expressed using,
for example, UML Message Sequence Charts [1] or web
service choreography languages such as WS-CDL [5] are
two peers. We view each peer as a system composed @y definition finite, message-based protocols which can be
a finite-state control and a message queue. A transitiofranslated into the above form, and analyzed through the
between two control stateg and ¢’ can be of two forms: techniques presented in this paper.
g—mq’ indicates that some messagemust be sent (to the However, the interplay of asynchronous communications
only other peer), while;—+,,¢" indicates that the control and protocol specifications is the source of two issues, hwhic
state can go frong to ¢’ if m is the first message in the \we now describe.
receiving queue. In such a case, the message is removed
from the queue. B. Unrealizable Protocols

A channel systenf is a state transition system composed Because of the nature of asynchronous communications,
of a set of such peers. The global state of a channel systeinis possible that two peers end up in deadlock, or generate
is the unique combination of each peer’s control state and global message trace outside the specification. This can be
queue contents. Transitions from one global state to anothehe case, even when both peers individually follow the same
are the result of exactly one peer either sending or reagivinprotocol specification.

a message. This channel system represents asynchronougigure 1 shows an example of such a protocol. Both
communications, since the send and receive events in eageers A and B have the choice of starting the exchange of
channel can be arbitrarily far apart in time. messages. However, if each peer makes this choice without

A protocol is a description of admissible sequences ofknowledge of the other’s decision, the following situation
send events in a channel system. It can be represente@an occur:
by a special case of finite-state machine called a guarded 1) B sends messageto A
automaton. Each state of the automaton represents a state2) Beforeb reaches A, A sendato B
in the protocol; a transition between two states represents 3) The messages cross over the communication link, and
the sending of a message, and is augmented by logical eventually reach their destination, with A mistakenly

Figure 1. A simple protocol specification

expressions, calleduards which must evaluate to true for believing it is initiating the conversation
the transition to be taken. For the sake of simplicity, wetomi 4) B wrongly assumes tha it receives is in response to
guards in our analysis; their introduction is straightfaru b, and replies withc

Figure 1 shows an example of a protocol_ .spe<_:ification-|-he global trace of messages sebag is not part of the
between two peers, A and B. Each transition is notedyotocol and constitutes a violation. However, the problem
X — Y :m, denoting that X sends messageto Y. does not lie in wrongdoing from any of the peers: neither
one took an illegal transition, given their local state and
the content of their queues. The problem rather stems
from the protocol itself, which provokes such unexpected
behaviours when asynchronous communications are used.
A protocol spared of these side effects exhibits a property
called realizability:

Definition 1. A protocol specificationC is a tuple
(S, s, F, M,5) whereS is a set of control stateg, € S is
the initial state,/" C S is a set of final or accepting states,
M is a set of messages, and S x M — S is a transition
function

The transitiond is assumed to be a partial function; it - T . :
. Definition 3. A protocol specificatiorf is realizable if the
maps any pair of state and message to at most one control__ ..~ . :

i . o possible interactions of each peer produces exactly all the
state; we writed(s,m) = () to indicate that message

. . send traces of.

cannot be sent or received from stateMe can now define
what it means for a channel system to follow a protocol One can see that the protocol in Figure 1 is not realizable.

specification: More precisely:

B—S: PoReqAct

S—B: ReceiptAck

S—B: PoConAct

B—S: ReceiptAck . " .
CeeIptac Figure 3. A protocol sensitive to message shuffling

B—S: NOK g (AT>2h)
communication link or even server downtime.

Figure 2 can be seen as a protocol sensitive to unreliable
messaging, since various message transmission times can
PIPOAL PIP3B12 take the receiver to different next states. As an additional
example, Figure 3 shows how the sequence of messdyes
sent through an unreliable link, can be shuffled and arrive
at its destination as the sequer® impacting B'’s reply.

Observation 1. The protocol in Figure 1 isunrealizable Hence, unreliable messaging will have the same con-

when peer A reaches state and peer B reaches state 3, Sequence as for realizability: messages received out of
invalid global sequence of messages will be produced. sequence can take two peers on different states of the same
protocol.
A concrete example of an unrealizable protocol is pro-

vided by [6]; by studying the RosettaNet PIP shown in(_)bservation 2_. The protocol in FigureB’_is sensitive tore-
Figure 2, it shows that a failure to deliver a valid messagdi2P!e messagingf messages are received out of sequence,
within its time constraint can cause mutually conflicting t€re exists a message trace which can take peer A to state
views of an interaction. The problem arises when the sellef and peer B to state 5.

sends aNOK message in time, but tha!OK is either lost There exist approaches which, although not directly re-
or reaches the seller after the two-hour limit. In such a cas€ated to the present problem, bear some similarifleans-
buyer and seller will continue their exchange of messagesction processing systemsnost prominent in databases,

in two different contexts. focus on the atomicity of a sequence of operations, but

Current solutions basically amount to statically analyzenot necessarily to the order in which they are performed;
the protocol to determine if it is realizable. In [7], an two- and n-phase commit protocols require a centralized
algorithm is presented to generate from a protocol locatoordinator and additional messages in order to dovese.
patterns of interactions for each peer; if the protocol istual synchrony[9] is used to synchronize state information
realizable (ordocally enforceably the composition of these among distributed members of a group; however, it focuses
patterns will produce exactly the desired behaviours. on broadcast messages and not one-to-one communications.

However, there currently does not exist necessary and In [10], various architectures are enumerated to cope with
sufficient conditions for a protocol to be realizable; it is unreliable messaging. For example, the application itself
not even known whether the general problem is decidablesan take care of reliable messaging, awaiting confirmation
[8] provides a set of sufficient conditions for realizalyifit of reception and retransmitting messages through various
these conditions can be statically analyzed on the pratocomeans. Another solution is to add a messaging layer between
yet, the authors remark that there exist real-world prdgco the application and the communication link; this so-called
which fail these realizability conditions. message-orientediddlewareinterfaces with the application
and transparently ensures that messages are correctigdela
to their intended receiver.

Since they impose constraints on the sequencing of mes- For example, to communicate through the WS-
sages, protocols are also sensitive to imperfect communicdreliableMessaging (WS-RM) protocol [11], the sender first
tions, where messages can be received out of sequence @pens asequenceon the receiving end; this sequence is
lost. This can be due to different messages taking differerdicknowledged by the receiver. The sender can then transmit
paths in the network, variable network latency or processmessages to the receiver, adding to each SOAP message
ing time in some of the nodes along the path, a severedn additional WS-ReliableMessaging header. This header

Figure 2. A portion of a Partner Interface Process from Rablet

C. Unreliable Messaging

contains a sequence number that increments by 1 for everyeaning to its different states. A first application of such a
new message sent. This operation ensures that any lostodel is to detect non-compliance of a messaging peer to
messages are detected and can be retransmitted througtprotocol specification. To this end, it suffices to define a
appropriate acknowledgements. In addition, a sequence cduanction f : Q — O returning a value from a set of possible
be opened with the property that the message ordering h&sutcomes”O for each statey € @ of the monitor. One of

to be respected; guided by the unique sequence numbetfsese outcomes, labelled (meaning “fail”), indicates that
stamped with each message, the receiver can temporaritiie protocol has been violated; another outcome, labélled
gueue out of sequence inputs, and relay to the applicatiofmeaning “OK"), indicates that the protocol has not (yet)
(albeit with a potential delay) the same sequence that walseen violated. This is what was done in [19].

sent. There exist a variety of other reliable messaging

middleware and protocols, mostly using similar principles A. Monitor-Based Messenger

Some of them only take care of detecting lost messages;) L .
this is the case of HTTPR [12], an extension of the standar% In general, a runtlme_mo_nltor is placed at the _mterface
HTTP protocol which allows additional payload information _et\{veen each communlcgtlng peer anpl the out3|dg world,
to ensure that each message is either delivered exactE))m'larly to messaging rmddlewa_re. It_ IS thgrefore .|deaIIy
once, or correctly reported as missing. Some of them ca cated to perform auxiliary functions in addition to its-en

provide guarantees on both ordering and loss, such as IBI\f)Prcement purpose: its knowledge of the interaction prakoc
WebSphere M® or Microsoft Message Queuirfg can be put to use to help protocol-based reliable messaging

Reliable messaging has also spawned a fair amount of acg_etween commgnlcatlng Peers.

demic work. Systems based barmonized messagird3] _ Rather than S|m_ply assomat_ln_g an out<_:ome to each mon-
and HCM3 [14] require a central coordinator for all peers!tof Staté, we define a tokenizing functian: Q — T,

to ensure proper delivery of messages. Other projects offNich associates to a monitor states @ a symbolt € T
reliable protocols guarantee message delivery by peatiglic caIIe(_:i amonitor token We then define Fhe token outgome
retransmitting messages for which no acknowledgement hd¥nction f : T' x 1" — O as a mapping betweepairs
been received [15]-[17]; inversely, some others guarantegf maonitor tokens_ and some outcome.séampingfunction
that all messages are received in the exact order they afe: ¥ x T — M is a function that takes a message and a

sent [18] monitor token and returns a new message with the stamp.
The stamp can be read usiig: M — T, and can be
I1l. M ONITOR-BASED MESSAGING removed using’ : M — M.

o . . In the following, for M a set of messages, we denote
. The key point in _the_observatlons we previously madeb M* the set of finite sequences of messages from the
is that both messaging issues are actually a consequence q¥ habetl/: such a Sequence.. m . iS Written
the same phenomenon: the possibility for two peers to reac%ﬁ/en a m'essagm c (J:IW . 2;1 (rle’s'b';n '"m) designatés
Fjlvergent s_tates in thglr protocol. This se<_:t|0n centerthen _the concatenation of: at the end (resp. beginning) af;
idea of using a monitor to stamp outgoing messages Wlthm1 designates the sequence of messagesm, m
tokens based on the state of some protocol. It distinguishes ; . Do e

P 9 We writem € T to indicate that there is&> 0 such that

itself from previous work in that: 1) no central coordinator "~ " the notationm — m desianates the sequence of
is required; 2) all message sequences preserve the propeﬁl}/_ "My . . e m g : d
of being protocol compliant which in many cases is a essages? identical tor, but where the first occurrence of
H H e/ —// T

looser constraint than exact ordering assumed by existing has_ beel reT(/)ved._Slmllarly,_t?n = mm, We define
approaches cursivelym —m’ = (m —m) —m”. Such notation allows

P ' ™ to be also manipulated as a multiset of elementa/in
Definition 4. A monitoris a tuple A = (Q, qo, §) where: Q Equipped with these tokenizing and stamping primitives,
is a set ofstates qo € @ is the initial state;é : Q x M — we can build anonitor-based messengéviBM):

Q is the transition orupdatefunction from a state and a L i
message to another state. Deflnltlon_S. An M_BM is atl_JpIe(A, S, 7, f, A) where:A =
(@, q0,96) is a runtime monitor,5 C Q x M* x M* x M*
Formally, a monitor is a special case of finite-state au4s a set of statesr is a tokenizing functionf is a token
tomaton. The monitor starts in its initial statg; then, outcome function, anad\ is a transition function.
for each message: that is monitored, the update function _ o
5(g,m) is called to take the monitor into its updated state A State of the messenger is a tule gin, Gour, Wir') €

¢ As such, a monitor only follows the conversation without @ Wheres is a monitor stateg;, is an incoming message
doing anything about it; it is then up to its user to attach adU€U&dous IS @n outgoing message queue. In additior,
is a multi-set of messages received by the messenger, but not

Lhttp://www-3.ibm.com/software/mgseries/messaging yet relayeq to the application layer. The transition relati
2http://www.microsoft.com/msmq is then defined as follows:

Definition 6. The transition functiom : @ x M U {e} x conversation it believes is the global state of the protocol
{in,out} — Q is defined as follows(s’, G, Gout , Win') € A problem arises whenever two peers fork and follow
A(S, Gin, Gout, Win'), m, a) if and only if: different paths in the protocol. Since communications are

1) m =€, Wi, = Wiy, and either asynchronous, this can be detected as soon as one of the
peers realizes that, from its current state, it could neatic
up with the state of its partner. This is equivalent to the
outcome function returning. for a pair of states.

Stamping messages with additional information to prevent
desynchronizations of some sort was suggested by [20],
where a timestamp from the sender’s local clock was used
to keep its recipient’s clock synchronized. The goal of

&) Tin' = Tin'» Qout' = Jout » §' = 5, O
b) Towt’ =Tout's Tin' =Tin'» ' =5
2) m#e¢, s =8, Gn = Gn and either
a) a = out, Goutr = Gour - 0(m, 7(s")), Win,
s € d(s,m) and f(6(m), 7(Wsm)) =T
b) a =in, Wy = Wi U{m}, Gour’ = Gour OF

A
_winy

3 m = N E/re eiStsm; € Wout such thats’ /& this approach was to provide a total ordering of events in
5(§’7m/)1 Gout’ = Tout * 0 (m'), Win' = Win —{m'}, the absence of a global timekeeping mechanism. However,
o(6(m/),s") =T the approach assumes reliable messaging and bounds on

Informally, the transition relation works as follows. The Message delivery time; moreover, it requires that addition
first message in the incoming or outgoing queue can p&ynchronization messages be sent to all peers involved in a
removed at any time (cases la and 1b). If a message &ommunicat_ion. Our appro_ach rath.er takes_protocol states,
to be sent, the messenger checks whether from its currefitstead of time, as theartial ordering that is used as a
monitor state, it represents a valid transition; if it is trese, ~ Stamp.
the monitor state is updated, the message is stamped with aG0ing back to the unrealizable protocol in Figure 1, we
monitor token for that new state, and appended to the outpoW how unrealizable sequences can be detected. Suppose
queue —the other queues and sets remain unchanged (Cagey:h peer mistakenly bglieves it initiates the conyerBatio
2a). If a message is to be received, it is simply put in thel "én A sendsa to B, while B sendsb to A, as previously.
waiting multi-set of incoming messages (case 2b). However, the message is now stamped with the monitor

Finally, for any message:’ in the waiting multi-set, if token 2, while the messageis stamped with the monitor
consumingn’ results in a valid transition to a statein the ~ token 3. Since state 2 is not reachable from 3 (and vice
runtime monitor, and that’ is compatible with the monitor Versa), thenf1(2,3) = f1(3,2) = L, and both peers will
token inm/, thenm’ is removed from the waiting multi- realize, upon receiving (respectivelya) that their views of
set and appended to the incoming message queue with {{8€ protocol are divergent.

monitor token removed (case 3). If we assume perfect communication between the peers,
This model is a generalization of the classical runtimeWe can show that this messenger can prevent global traces

monitor. Indeed, defining the stamping functionsgsn) = Violating the protocol from stretching too long. Once two

m for all m, the tokenizing function as(s) = e the empty ~ Peers diverge on their view of a protocol, the erroneous

string for all statess, and the outcome functiofi(s,s’) = Sequence of messages they each send ends as soon as

T if and only if s = s/, the monitor-based messenger’s they receive a new message from their partner. This is the

behaviour reverts to a classical runtime monitor as define@est that can be done without a central synchronization

in [19]. mechanism, since the information piggybacks the normal
o flow of messages.
B. Consequences on Realizability We show that MBMs are strictly “safer” messengers than

Obviously, a monitor-based messenger can hence perfortnaditional FIFO queues, in that some unrealizable prdoco
runtime monitoring, by raising an error when a messagédecome realizable with MBMs:
received or to be sent is forbidden in the current state o
the protocol. However, by redefining the monitor tokens
and outcome functions, such a messenger can accompli§
an additional function.

tI'heorem 1. Let Prro be the set of realizable protocols

ith classical, perfect FIFO messengers, afiyjgm be

e set of protocols realizable with perfect MBMs. Then
o _ _ Priro C Pvewm:

Deflr_ntlon /- De_flneT = @ and7(q) =0 Le the se.t of Proof: If a protocol is realizable with FIFO messengers,

monitor tokens is exactly the set of its states. Define th% is

outcome functionf;(¢,¢’) = T (meaning “OK”) if and ! .”"’"”?”y re_ahzable b.y an MBM with an empty
P . C e monitor with a single state; the outcome function becomes
only if ¢’ is reachable frony in C, and L (meaning “fail”)

. f(s,s) = T, and the messenger always dispatches messages
otherwise. .
as soon as they are received.
Following this definition, each peer stamps its outgoing To show that the inclusion is strict, we must exhibit a
messages with the current monitor state. By doing so, eacprotocolC unrealizable with FIFO messengers and realizable
peer can effectively “tell” its partner what state of the with MBMs. Figure 1 shows such a witness. We already

to be taken, as long as they eventually “amount to the
same thing”. To this end, from a protocol specificat®r-
(S, so, F, M, ¢), let us define a monitad: = (Q, qo, 0.4,)
where the set of states @ C S*. Therefore, the states of
A are (finite) sequences of states @f let ¢ = so. For
a messagen, a state ofC s’ € S and two states of4
q = s1,...8; and¢’, we have thaty € §4.(¢,m) if and
only if ¢ =¢q-m ands’ = d¢ (s, m).

The monitor Ac is therefore a runtime monitor of the
protocolC, but such that each state keeps track of the history
of previously visited states. For two traces= s, ... sk

Figure 4. Two simple protocol specifications

and ¢ = ¢,...s,, we define the lassynchronization
know thatC is unrealizable with FIFO messengers. For everyPoint as the highestw > 0 such thats, = s,. Define
trace inC, there exists a global run where A and B behave" = Sn;Sn+1,-- -,k andr’ = 5,5, .4,..., s, the desyn-

synchronously: a message sent by A is received by B ifhronized suffixes of each token.

the next step, and no messages cross over the wire. In suchGiven a sequence of states . .., s,, a possible message

a case, each of their MBM will follow the same sequencetrace is a sequence of messages,...,m,—1 such that

of states in their runtime monitor, and the trace is hencdor everyl < i < n —1, §(si;,m;) = si41. Intuitively, it

realized. represents a trace of messages that can be possibly produced
Conversely, we must show that no global trace outsiddy following a path in the automaton.

C can be produced. The only possible such tracahs Definition 8. LetC = (S, s, F, M, §). For statess, s’ € S

however, forc to be transmitted by peer B, its MBM must 5,4 4 sequence of messagase M*, the relation~C
first be in state 3 and receiefrom peer A. In addition, the ¢,)+« 5 noteds ~ s’ is defined recursively as follows:

monitor tokent on messaga must be such thaf; (3,¢) =

T. By definition of fi, this is only possible ift = 5 or

t = 6. We excludet = 6, since it depends on B sendiray
which has not happened yet. Therefore 5. Hence, when
sendinga, peer A was in state 3: it had already received B's
message, and therefore the global tracbads]

An important element is that for a protocol to be real-
izable, it must be possible to produce every global trace In other words, any scrambling of a trace betweeand
of messages. Our MBMs allow every trace of the witnesss’ can only be reconstructed in ways that reathWe are
protocol to be possibly realized. This is different from now ready to define the new outcome function:
approaches_that merely trim a protocol to a realizable SUbS%)efinition 9. Letq = s1,
of its beh_awours (for example, the branch 1-2-4) to ensure onitor tokens, and, b
no undesirable trace can ever be produced.

« for e the empty sequence,, s’ if s = s/, ands 4 s’
if s#£ s

« if N0 messagen is such thatn € T andd(s, m) = s”
for somes” € S, thens + s', otherwise

« for every message: and every state” € S such that
m € m and (s, m) = s”, we have thas” ~7_,, 8’

...sp andq’ = si,...s, be two
e their respective desynchronized
suffixes. For a possible trace of messagedor r» and a
IV. M ANAGING DESYNCHRONIZATIONS possible trace of messages for 1/, definern = m — m’

. : andm’ = m' —m. We have ') = T if and only if
MBMs hence provide a safer context for enacting messagfherglexist;na sgte such thgii’@A s and ¢ ~o.- ys
m Y4 m’ ’

ing protocols. However, up to now, t_he (_)nly possible way for 2(¢,¢') = L if no paths fromg and ¢’ can ever reach the
two peers to cpntlnue a cor_1versa_\t|on is to follow .the same., e states, and fo(q, ¢') = A otherwise.
sequence of visited states in their monitor. If a divergence
is detected, it is assumed that the conversation cannot be Informally, the outcome functiorf, checks whether, for
extended by sending new messages. However, consider tiwo peer's divergent states since they last agreed on the
protocol in the left part of Figure 4. Again, the situation global conversation, there exists a way for both peers to
where both A and B believe they initiate the exchange willconverge back to a common state with the messages they
be detected, with A reaching state 2, B reaching state 3, anglach need to process. If yes, the message is delivered,
f1(2,3) = f1(3,2) = L. Yet, in this case, this conflicting on the contrary, if the tokens are in two branches of the
view has no harmful consequence, since battrandbaare protocol that can never be reconciled, the function returns
valid sequences which eventually converge back to state 4. Otherwise, the function returns a new value(meaning
]] “wait”), which has for effect of keeping the message in an

A. MBMs with History internal queue for later processing.

It is therefore desirable to relax the definition of the For example, in Figure 4 (left), if peer A receives message
outcome functioryy, to allow divergent paths in the monitor b, stamped with monitor token (1,3), while it is in state

©) Strict ordering Protocol ordering
1 || »b e[»>b [ITT+ b>»
2 || »d [Tefdl »>d [TT-
3 || »a [eld a>» | »a W]~ a>
4 ([T b>» (I d»
5 [(ITIT~ d»
Figure 5. A fixable protocol specification Figure 6. Processing of a scrambled message sequence bggness

components ensuring strict (left) and protocol-compli@ight) ordering.

(1,2), computing the outcomg((1, 3), (1, 2)) evaluates that

B can processa and reach state (1,3,4), while A can process Using an MBM, the receiver will be able to relay a
b and reach state (1,2,4); both peers are in sync again, artotocol-compliant sequence to its application layer, as
therefore the outcome function returiis On the contrary, in shown in the right part of Figure 6. Messageis first
Figure 4 (right), if peer A receives messagestamped with received, and relayed immediately to the application layer
monitor token (1,3), while it is in state (1,2), computingth thend is received; the outcome functigia returns< and the
outcomefs((1, 3), (1,2)) evaluates that A can processnd message is placed in the MBM's waiting queue. Wizeis
reach state (1,3,4), but B cannot reach state protocol stateceived, however, it can be relayed, which in turn unlocks
4 with a as its message to be processed, and therefore théé By comparison, the left part of Figure 6 shows how a
outcome function returnd., thereby producing the desired receiver enforcing a strict ordering of the messages ogerat
behaviour. on the same scrambled sequence.

Moreover, when a desynchronization is detected between In average, each message spends 2 time steps waiting
two peers, the MBM automatically forbids any behaviourin the queue, compared to only 0.67 time steps with the
that will prevent the peers from converging back to aMBM. The key point is that the definition of the outcome
common state. For example, in Figure 5, if A (resp. B)function f, allows messages to be deliveredter(i.e. with
reaches states 2 (resp. 3), the MBM allows it to consuméower queueing time) than traditional messaging such as
the received message and reach state 4 (resp. 5). Once the®¢$S-RM, taking into account the protocol specification to
the MBM allows c to be sent by A, which will reconcile A deliver messages using an alternate, yet protocol-contplia
and B to state 6; however, the outcome function forkids sequence. This can be formalized as follows:
from being sent, as in B's branch, does not lead _to ;tate .Theorem 2. Let C be a protocol specification, and: be
6. Hence, the MBM not only detects desynchronizations, it : .
also “repairs” them whenever possible. a seguence of messages, Wh'f:h ?nds_mto a st the

specification. For any permutatiom’ of 7o received by an
MBM R, there exists a permutatiom” such that:m” is
a path inC, m” ends ins, and m” is delivered to the
application layer.

B. Consequences on Unreliable Messaging

This new definition of the outcome function has an inter-
esting side effect. By allowing temporary desynchronagi
between two peers, the MBM also becomes robust against Proof: Let m1, mo, ... be the sequence of messages of
desynchronizations caused by unreliable messaging. dhdeem’. Ensuring that the sequence delivered to the application
f2 serves messages to the application layer, even if itayeris a sequence ¢fis trivial, sinceR does not deliver a
sends the peers on different paths, but ensures they will renessage unless it can extend the existing conversation with
converge to the same state at some point in the future. a valid transition. What remains to be shown is that the

In all related approaches surveyed earlier, no high-levesituation where some messages are “stuck” in the waiting
messaging protocol can be specified; therefore, it is imposgueue at the end of the trace, or where the conversation
sible to take advantage of the knowledge of the protocoknds in a different state tha#y never happens. Suppose
to relax the constraints on the delivery of messages. Yegither does. Then there exists a prefi§ of the sequence
Figure 6 shows a situation where such a behaviour wouldf messages delivered to the application layer, leading int
be appropriate. Consider a protocol where A can send tsome control state’, such thatmg is a path inC, but
B either the sequencabd or the sequencéad Receiving either no permutation ofn’ — 77, can be completed into
the sequencédais obviously a violation of the protocol; a path inC, or some path does not lead 4pin other words,
however, the receiver can assume that the sequence Wa’s%»m/_mg s. This contradicts Definition 8, which should
scrambled by the transmission. have prevente® from reaching that point.]

The previous client therefore ensures that any receive@in time steps) of each message in the messenger’s waiting
sequence will be delivered as a protocol-compliant seqgiencqueue, and the maximum size reached by the messenger’s
provided that messages are shuffled but not lost. The speedriting queue during the processing of each trace. In order
up result follows immediately from the fact that the exact-for results to be comparable, the sender in each case gen-
ordering sequences are a subset of the protocol-compliartated the same set of traces, and each individual trace was
sequences. shuffled in the same way in the two scenarios. Therefore,

As a side remark, we shall stress that the messeng&ach receiver dealt with the same shuffled sequences of
delivers sequences of messages that are protocol-pregervi messages, stamped according to either messaging method.
they preserve the semantics of a message exchange only gs
far as the underlying protocol specification does. The case’
where two sequences of messagbsandba are both valid,
but meandifferent things, omperform different actions and
therefore should not be confused, is only partially covéned
our approach. In such a case, a sound protocol specificati
should have the pathsb and ba reach two distinct states,
indicating that two different outcomes result from these

Results and Discussion

We then performed these tests, using fothe protocol
for each of two scenarios.

The first one is the Internet Open Trading Protocol (I0TP)
ng] which supports commerce on the Internet by providing
a familiar trading model and global interoperability. Mple
transactions can be conducted in parallel; however, the
IOTP specification lists several dependencies for messages

sequences. : .
belonging to the same transaction. For example:
V. IMPLEMENTATION AND RESULTS 1) If the consumer starts the exchange, the first message
To illustrate our point, we implemented the MBM as a must be one of either Inquiry, Ping, Authentication

middleware tool in Java. The MBMessenger is a simple 2) The authentication request can only be sent once
object that simulates a communication channel. It offes tw ~ 3) Once a transaction has been completed, a Cancel

methodsput () andget (), to respectively send an XML message can no longer be sent _

message to and receive from an arbitrary communication 4) Two payments sequences cannot overlap, i.e. once a

channel. payment request has been issued, the payment must
When theMBMessenger is instantiated, a protocol au- be confirmed before a new payment request be issued

tomaton can be specified. Thereafter, when a message is The second scenario is the NetConf protocol [22] which
required to be sent througsut () , the messenger sends it defines a simple mechanism for sending and receiving con-
as soon as the protocol allows it, stamping it with its curren figuration information for network devices such as routers
monitor token. When new messages are requested througtd switches. NetConf uses XML messages to encapsulate
get (), the messenger empties its communication channetonfiguration commands and responses and is supported by
into its waiting multi-set, and then processes each message Wide range of devices. It is possible, for example, to

according to our approach. configure a Virtual Private Network (VPN) through the use
of XML-PI. Unless otherwise mentioned in Cisco’s docu-
A. Methodology mentation [23], these commands are atomic and independent

We tested the performance of the MBMessenger byof each other. However, the documentation elicits seqakenti
performing a series of experiments. A sender A sends &ependencies between some of them:
sequence of messages generated through a random walkl) Commands rd, route-target and
in some protocol specificatiod. To simulate imperfect ip vrf forwarding must be entered in the
communication, messages are then randomly shuffled before ~ VRF configuration mode, aftérp vrf
reaching a receiver B, where they are read one by one. 2) The remaining commands must be entered in the BGP
Two cases are then considered. In the first case, A and B configuration mode, aftarout er bgp
communicate through an MBM where protocol monitoring 3) The commands route-target and
is disabled: the sent messages are stamped with a sequential i p vrf forwarding must be applied to a
number, and the received messages are possibly delayed so table already created by the commardi
that they are delivered in the exact order they were sent. 4) The commanchei ghbor updat e- sour ce must
This effectively simulates WS-RM'’s operation when strict be applied to an address already included in the routing
ordering is imposed and no messages are lost. In the second table with the commandei ghbor renot e- as
case, A and B use the MBM described in this paper: each 5) The commands nei ghbor activate and
message is stamped with a monitor token. nei ghbor send-conmmunity must called

We assume that in each discrete time step, at most one after ~ both nei ghbor renote-as and
message can be added to the messenger, and at most one nei ghbor updat e-source
message can be consumed by the receiver’s application layer Table | shows that, for the IOTP scenario, the average
In each of these cases, we measured the average waiting timaiting time per message is decreased by 52% using MBMs

Strict ordering | Protocol ordering
Waiting time 1.42 0.69
Queue size 5.58 2.49

NetConf protocol

Strict ordering | Protocol ordering
Waiting time 0.42 0.38
Queue size 1.81 1.77

IOTP protocol

Table |
AVERAGE WAITING TIME PER MESSAGE AND AVERAGE QUEUE SIZE FOR
TWO SCENARIOS

shown experimentally that for arbitrarily shuffled message
sequences, reliable messaging based on runtime monitoring
can decrease delivery time and required queue size compared
to strict messaging. These results, however, heavily dépen
on the underlying protocol. MBMs appear to be best suited
for protocols situated midway between those imposing a
unique order for their messages, and others where ordering
is irrelevant. The results obtained empirically indicatatt

this principle could be furthered in future work; this indks
studying a symbolic representation of the protocol automa-
ton, extending the communication to request-response and
multi-party protocols, as well as including “data-aware”

protocol constraints.

with protocol ordering. This confirms that providing more
flexible conditions on message delivery can reduce the
delaying of messages required to preserve an acceptablﬁ]
ordering. Consequently, since messages spend less time in
the waiting queue, the average size reached by that queue
during an execution is also decreased, by approximately
49%. (2]

However, for the NetConf scenario, waiting time is de-
creased by 10%, and queue size by 2% only. This can
be explained by the fact that in the VPN configuration
routine, only two messages can be served first (the two mode
commands); as long as either of these message has not been
received, the messenger must delay all the others; this does
not leave room for the MBMessenger to improve over a [4]
strict ordering solution.

In addition, the MBMessenger can be made fully compat-
ible with WS-ReliableMessaging. WS-ReliableMessaging [5]
allows for undefined extra elements to be added to a SOAP
header. These elements are simply ignored by standard im-
plementations of WS-RM, but MBM-based implementations
can take advantage of this additional information to improv [6]
over message transmission. This WS-RM “compatibility
mode” also accounts for lost messages: these messages can
be detected, and retransmissions can be asked, by using the
operations provided by WS-RM. 7]

VI. CONCLUSION

In this paper, we have shown how runtime monitors
monitoring constraints on the sequence of messages ex-8
changed by two peers can be used to alleviate two issue]
related to asynchronous messaging. By stamping messages
with a suitably defined monitor token, some desynchro-
nizations between communicating peers can be detecteqq)
before non-compliant messages are exchanged. This has
for effect that some unrealizable protocols can become
realizable with MBMs. Moreover, MBMs are at the same
time protected against some effects of unreliable mesgagin[lo]
and can perform reliable messaging that is flexible, i.e.
where delivering a protocol-compliant sequence is sufiigie
even if its order is not the exact sending sequence. We have

REFERENCES

H. Foster, S. Uchitel, J. Magee, and J. Kramer, “Model-
based analysis of obligations in web service choreography,
in AICT/ICIW. |EEE Computer Society, 2006, p. 149.

T. Bultan, X. Fu, R. Hull, and J. Su, “Conversation specifi
cation: a new approach to design and analysis of e-service
composition,” inWWW 2003, pp. 403-410.

“IBM conversation support project,” 2002,
http://www.research.ibm.com/convsupport. [Online]. av
able: http://www.research.ibm.com/convsupport

“RosettaNet implementation framework, overview: seg-
ments, clusters and PIPs, version v02.06.00,” January,2009
http://portal.rosettanet.org.

N. Kavantzas, “Web service
scription language 1.0,” 2004.
http://www.w3.org/TR/ws-cdI-10/

choreography de-
[Online]. Available:

C. Molina-Jiménez, S. K. Shrivastava, and N. Cook, “leap
menting business conversations with consistency guasante
using message-oriented middleware,” EDOC. IEEE
Computer Society, 2007, pp. 51-62.

J. M. Zaha, M. Dumas, A. ter Hofstede, A. Barros, and
G. Decker, “Service interaction modeling: Bridging global
and local views,” inEDOC. IEEE Computer Society, 2006,

pp. 45-55.

X. Fu, T. Bultan, and J. Su, “Synchronizability of cornver
sations among web servicedEEE Trans. Software Eng.
vol. 31, no. 12, pp. 1042-1055, 2005.

K. P. Birman and T. A. Joseph, “Exploiting virtual syncimy
in distributed systems,SIGOPS Oper. Syst. Rewol. 21,
no. 5, pp. 123-138, 1987.

S. Tai, T. A. Mikalsen, and I. Rouvellou, “Using message
oriented middleware for reliable web services messagiing,”
WES ser. Lecture Notes in Computer Science, C. Bussler,
D. Fensel, M. E. Orlowska, and J. Yang, Eds., vol. 3095.
Springer, 2003, pp. 89-104.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

R. Bilorusets, D. Box, L. F. Cabrera, D. Dauvis,
D. Ferguson, C. Ferris, T. Freund, M. A. Hondo,
J. Ibbotson, L. Jin, C. Kaler, D. Langworthy, A. Lewis,
R. Limprecht, S. Lucco, D. Mullen, A. Nadalin,
M. Nottingham, D. Orchard, J. Roots, S. Samdarshi,
J. Shewchuk, and T. Storey, “Web services reliable mesgagin
protocol (WS-ReliableMessaging),” February 2005. [On-
line]. Available: http://specs.xmlsoap.org/ws/2003f62ws-
reliablemessaging.pdf

A. Banks, J. Challenger, P. Clarke, D. Davis, R. P. King,
K. Witting, A. Donoho, T. Holloway, J. Ibbotson, and S. Todd,
“HTTPR specification,” Tech. Rep., April 2002. [Online].
Available: http://www.ibm.com/developerworks/librans-
httprspec/

S. W. Sadig, M. E. Orlowska, W. Sadig, and K. A. Schulz,
“Facilitating business process management with harmdnize
messaging,” iNnCEIS (1) 2004, pp. 30-36.

P. Huifang, Z. Xingshe, Y. Zhiyi, and G. Jianhua, “A flble
hybrid communication model based messaging middleware,”
in ISADS |EEE Computer Society, April 2005, pp. 289-294.

A. Erradi and P. Maheshwari, “wsBus: QoS-aware middle-
ware for reliable web services interactions,”"BHEE. |IEEE
Computer Society, 2005, pp. 634-639.

P. Maheshwari, H. Tang, and R. Liang, “Enhancing web
services with message-oriented middleware JGWVS |IEEE
Computer Society, 2004, pp. 524-531.

S. Parkin, D. Ingham, and G. Morgan, “A message oriented
middleware solution enabling non-repudiation evidence-ge
eration for reliable web services,” ISAS ser. Lecture Notes

in Computer Science, M. Malek, M. Reitenspies, and A. P. A.
van Moorsel, Eds., vol. 4526. Springer, 2007, pp. 9-19.

A. Charfi, B. Schmeling, and M. Mezini, “Reliable messag
for BPEL processes,” inCWS |IEEE Computer Society,
2006, pp. 293-302.

S. Hallé and R. Villemaire, “Runtime monitoring of nsage-
based workflows with data,” iEDOC. IEEE Computer
Society, 2008, pp. 63-72.

L. Lamport, “Time, clocks, and the ordering of eventsan
distributed system,Commun. ACMvol. 21, no. 7, pp. 558
565, 1978.

D. Burdett, “Internet open trading protocol (I0TP),'ugust
2000. [Online]. Available: http://www.ietf.org/rfc/rR801.txt

R. Enns, “Netconf configuration protocol, IETF
Internet draft” p. 103, February 2006. [On-
line]. Available: http://www.ietf.org/internet-drafdraft-ietf-
netconf-prot-12.txt

“Configuring a basic MPLS VPN, Cisco systems document
13733,” Cisco Systems, Tech. Rep., 2005.

