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Abstract

We present an algorithm for the runtime monitoring
of business process properties with data parameterization.
The properties are expressed in LTL-FO+, an extension to
traditional Linear Temporal Logic that includes full first-
order quantification over the data inside a trace of XML
messages. The algorithm works “on-the-fly”: it keeps in
memory only the states that are necessary at each step. Ini-
tial results indicate that LTL-FO+ is an appropriate lan-
guage for expressing data dependencies on message traces
and that its processing overhead on sample traces is accept-
able.

1 Introduction

Message-based workflows are structures where the input
and output of operations is composed of “messages” formed
of data elements. Document-passing business processes,
method calls in programming languages and XML-based
web service interactions can all be modelled by this general
representation. In [16], it was shown how such message-
based workflows are subject to “data-aware” constraints
where the sequence of messages and their content are in-
terdependent. To this end, an extension over classical Com-
putation Tree Logic called CTL-FO+ was introduced. CTL-
FO+ includes first-order quantification on message content
in addition to temporal operators; it was shown to be ade-
quate for expressing data-aware constraints.

Although appropriate algorithms for the static validation
of data-aware constraints have been presented and tested
[17], there remains situations in which such validation is
not possible or desirable for various reasons. Therefore, al-
ternative solutions for ensuring the correctness of message-
based workflows must be developed. One of them is to en-
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gage inruntime monitoring, which consists of the observa-
tion of a workflow’s execution in real time, accompanied
with a verification that it conforms to some specification.

In this paper, we present an algorithm for the runtime
monitoring of data-aware workflow constraints. In Section
2, we advocate for the use of runtime monitoring techniques
and present a number of real-world scenarios taken from the
literature in which the specifications are data-aware tem-
poral properties. To express these properties using a uni-
form formal notation, in Section 3 we introduce LTL-FO+,
a counterpart to CTL-FO+ for expressing data-aware prop-
erties of executiontraces. LTL-FO+ is a linear temporal
logic augmented with full first-order quantification over the
data inside a trace of XML messages. We show how LTL-
FO+ is suitable for expressing the constraints previously de-
scribed and explain how it differs from related works on the
subject.

Section 4 is the core of this paper: it describes the
runtime monitoring algorithm for LTL-FO+. This algo-
rithm distinguishes itself from existing approaches in two
respects: 1) the algorithm allows the monitored properties
to quantify over data fields inside messages; 2) it works “on-
the-fly”, without the need to pre-compute an automaton, to
store previous messages or to keep in memory anything ex-
cept its current state.

To assess the feasibility of LTL-FO+ runtime monitor-
ing in practical contexts, we performed a set of experiments
on some of the properties mentioned in Section 2. In Sec-
tion 5, the results of these experiments are presented and
discussed. Initial findings indicate that runtime monitor-
ing of LTL-FO+ can be performed in real-world scenarios,
and that augmenting existing specification languages with
quantification over data does not impose a large overhead
on their processing, even for transactions of 1,000 messages
and domains of over 500 elements. For all these reasons, the
runtime monitoring of data-aware properties on a message-
based workflow can be seen as a viable complementary ap-
proach to its static validation.



2 Motivation

The runtime monitoring of a message-based workflow is
a process which presents itself in various ways. The obser-
vation of the execution can be made by an external agent
intercepting messages to and from a given party, or be con-
ducted by calling internal monitoring code. Similarly, the
observed trace of messages can be analyzed once the execu-
tion is completed or can be performed step-by-step in paral-
lel with the execution of the actual workflow. Despite these
differences, a number of observations apply to all types of
runtime monitoring frameworks.

2.1 A Case for Workflow Runtime Monitoring

Several arguments in favour of runtime monitoring ap-
proaches have been put forward [14]. First, the satisfaction
of requirements sometimes depends on assumptions on the
partners that cannot be verified prior to the actual imple-
mentation of the system. In the particular case of service-
oriented architectures, partners can be discovered dynami-
cally and can even change drastically during execution, in-
validating the assumptions on which the original process
was deemed correct.

Moreover, in some occasions, a static,a priori model
checking of the intended process is simply impossible or
intractable because of the size of data domains [20]. For
example, on the theoretical level, web services communi-
cate through channels of potentially infinite length, thereby
rendering the general model checking problem undecidable
without resorting to some form of simplification or abstrac-
tion of the original model. A runtime monitor has the ad-
vantage of working with the actual implementation of a pro-
cess.

Finally, even cases where model checking is possible can
present a challenge. The partners involved in a business pro-
cess can be implemented in heterogeneous languages and
formalisms that make it hard to have a uniform, global pic-
ture of the whole conversation suitable for a static verifi-
cation; [10] describes a system combining BPEL processes
with Java-based partners and concludes that static analysis
approaches do not handle such features well. There also
exist situations at runtime which, although they do not con-
stitute strict violations of a specification, must be addressed
as soon as they are discovered: [2] gives the example of an
online shop being refused a money transfer by its partner
bank, or of a client repeatedly asking for products that are
no longer in stock.

Independent of these technical aspects, the runtime mon-
itoring of a process is also sound business-wise. [23] re-
marks that monitoring can increase trust in an electronic
marketplace by providing the consumer of a service the
ability to check by itself the transaction that takes place.

2.2 Sample Runtime Monitoring Scenarios

To motivate the need for a data-aware runtime moni-
toring algorithm, we present below three simple scenarios
taken from existing literature, and in which runtime moni-
toring of properties is needed. In each of these scenarios,
the authors enumerated a list of constraints on the pattern of
exchanged messages that have to be monitored. The con-
straints in each scenario were actually expressed in a dif-
ferent language by their respective authors; they are para-
phrased in English for the sake of readability.

2.2.1 Holiday Location-Finder

In [14], a simple web service for finding hotels is described.
A user sends a request for a particular point in geographi-
cal coordinates, provides the maximum distance around that
point where desired hotels should be, and gets in return a list
of locations with their coordinates. This interaction is mod-
elled as sequence of messages with data content. The input
message is of the form:

<RequestSpec>
<departureLocation> L </departureLocation>
<maxDistance> 123 </maxDistance>
<criteria> · · · </criteria>

</RequestSpec>

And the returned message is the following:

<LocationResults>
<location> L1 </location>
. . .
<location> Ln </location>

</LocationResults>

The paper cites a context in which a customer invokes the
service under a temporary trial license, and wishes to mon-
itor the interaction to verify that the location finder delivers
what it promises. A property to monitor in this situation is
the following:

Runtime Property 1 (From [14]). For all the returned lo-
cations, the distance from the requested point should be no
more than the requested distance.

This first example constitutes the most direct applica-
tion of message-based workflows: the modelling of XML
request-response patterns in web service transactions.

2.2.2 User-Controlled Lightpaths

The User-Controlled Lightpath (UCLP) research project [5]
allows end users to self provision and dynamically recon-
figure optical networks resources; these resources are vir-
tualized and exposed to the end user as instances of web
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services that implement functionalities related to lightpath
manipulation.

Lightpaths can be partitioned and concatenated by means
of web service invocations. Typical messages for concate-
nation and partition request are structured as follows:

<message>
<operation>concatenateRequest</operation>
<LPO-ID>i1</LPO-ID>
<LPO-ID>i2</LPO-ID>
. . .
<LPO-ID>in</LPO-ID>

</message>

<message>
<operation>partitionRequest</operation>
<LPO-ID>i</LPO-ID>
<bandwidth>b</bandwidth>

</message>

In [16], it was shown how specific constraints must be
respected on the invocation of these methods. For example,
the original LPO to be partitioned “ceases to exist” as long
as it is not un-partitioned; it cannot appear in further opera-
tions. Therefore, a sample constraint from this environment
is the following:

Runtime Property 2 (From [16]). Any LPO ID appearing
in any partition request must be different from any LPO ID
appearing in any future concatenate request.

This second example is still web service-based; however,
the reader should be aware that the web service paradigm is
simply used as a wrapper around management functionali-
ties for physical resources.

2.2.3 Car Rental System

As a last example of runtime properties, we cite the exam-
ple of a car rental system presented by [20]. In this context,
users can request a given car, hire a car, and enter and exit a
parking lot with their car. These actions are represented as
predicates in the Event Calculus; however, for the needs of
the presentation, such predicates can be encoded as XML
documents. Hence, the fact that carsc1, . . . , cn enter park-
ing p can be expressed as the following “message”:

<message>
<action>enter</action>
<car>c1</car>
. . .
<car>cn</car>
<parking>p</parking>

</message>

A property of the CRS expresses an assumption about
the behaviour of the parking lot sensors that needs to be
monitored for problems:

Runtime Property 3 (From [20]). Every carci entering a
parking lotp must departp before entering any other park-
ing lot.

This last example shows how specific features of sys-
tems modelled with other formalisms can be translated into
message-based workflows. Moreover, it shows a property
in which the time span between the two messages that are
considered (enter and exit) is arbitrary and unknown in ad-
vance.

In each of these scenarios, additional constraints can
complexify the monitoring process: asynchronous commu-
nications, lost, delayed or out-of-order messages can dis-
tort an otherwise valid interaction, without it being any of
the services’ “fault”. In this paper, a focus has been placed
on providing means ofdetectingthat an assumption on the
communication has been violated for one of the collaborat-
ing services, and not on repairing an invalid transaction or
determining the actual cause of the violation.

3 A Logic for Message Traces with Data Pa-
rameters

Runtime monitoring properties are generally expressed
with a variant of a state machine or temporal logic. How-
ever, few of these representations allow a full quantification
over the data fields of the messages, although there exists
situations in which such quantification is necessary. To ad-
dress our point, we highlight the common points of the pre-
vious three scenarios: 1) They involve properties referenc-
ing data elements inside exchanged “messages”; 2) These
data elements are taken at two different moments in the ex-
ecution and need to be compared; 3) The data elements can-
not be enumerated statically; therefore, a form of quantifi-
cation over data must be possible.

In [16], the logic CTL-FO+ was introduced as an appro-
priate formalism for expressing these “data-aware” work-
flow properties. However, CTL-FO+ is aimed at model
checking of workflow properties; all CTL-FO+ sentences
are of the form “for every execution path starting from the
current state”, or “there exists an execution path starting
from the current state”. In a runtime monitoring context,
since we are observing a single trace at a time, such quanti-
fiers are not necessary. The logic we present in this section
is LTL-FO+, a counterpart to CTL-FO+ to express proper-
ties on single execution paths.
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3.1 Messages and Traces

The logic will be defined in relation to a suitable model
of a transaction. In the present context, this suitable rep-
resentation should model the actual messages that are ex-
changed.

We start by defining a setΠ of parameters and a setΩ of
values that are used to represent the content of the messages.
We define a special symbol # that stands for “no-value”.
Couples of parameters and values form a message element:

Definition 1 (Message elements). The set of defined mes-
sage elements isEd = Π × (Ω ∪ {#}). We also consider
the set of undefined message elements, which is the single-
ton Eu = {(#,#)}. A message elementis a member of
E = Ed ∪ Eu.

The concept of message element closely parallels the
structure of a (flat) XML message. The parameters stand
for the tag names, while the values represent the data inside
the tag. A message is then an ordered sequence of message
elements:

Definition 2 (k-messages). Let k be a pos-
itive integer, and for i < k, define Di =
{(e1, . . . , ek) : ei ∈ Eu ∧ ei+1 ∈ Ed}. The set of k-
messages is defined asMk = Ek \ (

⋃k−1

i=1
Di).

Note that this representation does not allow nested tags.
We shall see later on how nested structures can be taken
into account. It suffices then to formally define a trace in
this context:

Definition 3 (Message trace). A message trace(also simply
called atrace) is a sequenceρ = m1m2 . . . such thatmi ∈
Mk for i ≥ 1.

We defineρi to be thei-th message of the traceρ, andρi

the trace obtained fromρ by starting at thei-th message.

Definition 4 (Domain expression). Let m =
((p1, v1), . . . , (pk, vk)) ∈ Mk be ak-message andp ∈ Π
be a parameter name. The functionDom : Mk × Π → 2Ω

is defined as follows:Domm(p) = {vi : pi = p}.

The functionDom simply fetches all values of a given
tag in a message. For example, in the following messagem,
we haveDomm(item) = {A,B,C}.

<message>
<item>A</item>
<item>B</item>
<item>C</item>
<client>10</client>

</message>

Since the number of message elements is bounded byk,
the domain returned byDom contains at mostk elements.

3.2 Syntax and Semantics of LTL-FO+

Using this model of exchanged messages, we can now
define the syntax and semantics of the Linear Temporal
Logic with Full First-order Quantification (LTL-FO+), an
extension of the well-known temporal logic LTL [7]. Many
major model checking tools such as SPIN [18] verify tem-
poral formulæ expressed in LTL. The reader is referred to
[7] for a deeper coverage of LTL and other temporal logics.

Definition 5 (Syntax). The language LTL-FO+ (Linear
Temporal Logic with Full First-order Quantification) is ob-
tained by closing LTL under the following construction
rules:

1. If x andy are variables or constants, thenx = y is a
LTL-FO+ formula;

2. If ϕ andψ are LTL-FO+ formulæ, then¬ϕ, ϕ ∧ ψ,
ϕ ∨ ψ, ϕ → ψ, Gϕ, Fϕ, X ϕ, ϕUψ, ϕV ψ are LTL-
FO+ formulæ;

3. If ϕ is a LTL-FO+ formula, xi is a free variable in
ϕ, p ∈ Π is a parameter name, then∃pxi : ϕ and
∀pxi : ϕ are LTL-FO+ formulæ.

Definition 6 (Semantics). We say a message traceρ satis-
fies the LTL-FO+ formulaϕ, and writeρ |= ϕ if and only
if it respects the following rules:

ρ |= c1 = c2 ⇔ c1 is equal toc2
ρ |= ¬ϕ ⇔ ρ 6|= ϕ

ρ |= ϕ ∨ ψ ⇔ ρ |= ϕ or ρ |= ψ

ρ |= Fϕ ⇔ ρi |= ϕ for somei ≤ 1

ρ |= X ϕ ⇔ ρ2 |= ϕ

ρ |= ϕUψ ⇔ ρj |= ψ for somej andρi |= ϕ

for i < j

ρ |= ∃pxi : ϕ ⇔ ρ |= ϕ[b/xi] for someb ∈ Domρ1
(p)

As usual, we define the semantics of the other connectors
with the following identities:

ϕ ∧ ψ ≡ ¬(¬ϕ ∨ ¬ψ) (1)

ϕ→ ψ ≡ ¬ϕ ∨ ψ (2)

Gϕ ≡ ¬(F¬ϕ) (3)

ϕV ψ ≡ ¬(¬ϕU¬ψ) (4)

∀px : ϕ ≡ ¬(∃px : ¬ϕ) (5)

Equipped with this semantics, the runtime properties 1–
3 in Section 2 can be expressed as LTL-FO+ formulæ. For
example, Runtime Property 3 becomes the following:
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G (∀actionx1 : x1 = enter→ ∀carx2 :
X (¬(∃actionx3 : (x3 = enter∧ ∃carx4 : x2 = x4)) U
(∃actionx5 : (x5 = exit∧ ∃carx6 : x2 = x6))))

It states that globally along the message trace, for every
message whose action is “enter” and for every car in that
message, in the next state the following holds: no message
can be an “enter” containing that car until an “exit” message
has been observed with the car in question. Remark that
quantification is required, since there can be multiple carsin
a single “enter” or “exit” message. The Runtime Properties
1 and 2 can be similarly translated into LTL-FO+ formulæ.

3.3 Comparison to Related Work

A number of approaches to the runtime monitoring of
systems in general have been suggested over the years. In
line with the current concern of the paper to model data
dependencies between messages, these approaches can be
roughly divided into two categories according to the degree
of “data-awareness” they offer. A similar classification was
presented in [16] for works concentrating onstatic verifica-
tion of web services.

3.3.1 Propositional Runtime Monitoring

A first category includespropositionalruntime monitoring
tools, where the sequence of messages is analyzed, but the
content of messages is abstracted away. Conversation speci-
fications [6] are an early example of this approach applied to
web services; however, these conversations were analyzed
under the angle of static verification, and not runtime mon-
itoring.

More recently, propositional runtime monitoring was
used by [10], where patterns of messages exchanged by a
web service are specified using UML 2.0 Sequence Dia-
grams, and then transformed into classical finite-state au-
tomata whose state is updated for each message sent or re-
ceived. [19] uses UML Message Sequence Charts with the
same intent; however, the authors suggest the application
of aspect-oriented programming to call monitoring methods
with the use Javapointcuts. Different patterns of classical
LTL properties were studied by [22], which introduces the
concept ofobstacleto detect possible violations of a speci-
fication.

Finally, in [2] an elegant framework for the automatic
synthesis of monitors is presented. The language suggested
by the authors is called Run-Time Monitor specification
Language (RTML), which is an extension of LTL that al-
lows the expression of Boolean (true/false) and numerical
properties which can count, for example, the number of
times a given message type is received. The content of

messages can be statically referred in the properties, but no
quantification is allowed on data fields.

3.3.2 Runtime Monitoring with Data Parameteriza-
tion

There exist a couple of approaches to runtime monitoring
which allow some form of quantification on data fields. For
example, [3] describes an algorithm for rule-based runtime
monitoring, where the rules are temporal fixpoint functions
that can include data arguments. [25] makes a similar use of
data parameterization for a quantified variant of LTL.

However, these approaches arestate-based: it is possible
to quantify over the state variables of a system, which are
only partially equivalent to message contents. Each state
variable can take one possible value at every state along the
trace. This is different from the quantification over message
content used by LTL-FO+. A similar remark applies to the
Input-Output State Transition Systems (IOSTS) used in [8]
to specify monitoring properties. Although an IOSTS mod-
els input and output, the data parameters are not named and
therefore cannot be quantified. Hence, in all these works,
there is no direct equivalent for the domain functionDom
in Definition 4.

More closely related, [14] suggests a framework in
which correlations between data in multiple messages are
expressed and can be checked at runtime. To the best of our
knowledge, the correlations imply a single request-response
and do not involve messages arbitrarily far apart in time.
Moreover, existential quantification on data fields is not
supported.

An alternative to state machines and temporal logics is
the use of event calculus (EC), as is done in [21]. The event
calculus is a rich extension over first-order logic which al-
lows the expression of constraints over time intervals, in ad-
dition to arbitrary predicates over data fields. The semantics
of LTL-FO+ could clearly be encoded by a set of EC predi-
cates. However, the richness of the language raises concerns
about its applicability in real-world scenarios, as the exper-
iments in [20] suggest. In this respect, we will show that a
simpler logic such as LTL-FO+, although less expressive,
can be more easily used in concrete contexts.

The recent advances in artifact-centric modelling of busi-
ness processes led to the development of a logic called
ABSL [12]. This logic is an extension of CTL that in-
cludes a form of first-order quantification. However, it is
suited to express properties ofintra-artifact behaviours, not
inter-message constraints; moreover, the approach is not
aimed towards runtime monitoring, but rather on static anal-
ysis [11]. This is also true of a logic called LTL-FO studied
in [9]. The underlying model on which LTL-FO is defined
is richer that LTL-FO+’s messaging model; therefore, many
problems expressed in LTL-FO are undecidable.
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Finally, a different approach has been proposed with
specifications using XQuery on traces (SXQT) [26], in
which a trace of XML messages is analyzed by means
of temporal formulæ converted into XQuery expressions.
However, one has to wait for a trace to be complete for
the corresponding XML structure to be generated; there-
fore, this method needs adaptations to be used in a context
where the monitoring should occur in parallel with the exe-
cution of the workflow.

4 A Runtime Monitor for LTL-FO +

We now describe an algorithm that allows for the runtime
monitoring of LTL-FO+ formulæ. We construct awatcher
for a formulaϕ which, when fed with the messages from
a trace one by one, updates its state and warns of eventual
violations ofϕ.

Definition 7 (Watcher). A watcherfor a formulaϕ is a tuple
Wϕ = 〈Q, q0, δ, O, f〉 where:Q is a set ofstates; q0 ∈ Q
is the initial state;δ : Q ×Mk → Q is the transition or
updatefunction;O is a set ofoutcomes, i.e. the possible
conclusions that a watcher can draw on a given trace;f :
Q→ O is an outcome function.

Formally, a watcher is a special case of finite-state au-
tomaton where the set of accepting states is replaced by
a functionf returning an “outcome” for each state. The
watcher starts in its initial stateq0; then, for each message
m that is monitored, the update functionδ(q,m) is called to
take the watcher into its updated stateS′. At any time dur-
ing the monitoring process, the outcome functionf can be
applied on the watcher’s state to decide whether the moni-
tored property is violated, fulfilled, or if nothing can yet be
concluded from the execution up to that point. This defi-
nition makes no assumption about any process instrumenta-
tion or annotation. The watcher can be implemented as a lo-
cal process intercepting messages sent and received, called
by aspect-oriented “pointcuts” [19], or implemented as an
external observer acting as a verifying layer between acting
parties [2].

Although LTL-FO+ is similar in many respects to CTL-
FO+, the model checking algorithm developed in [17] can-
not be adapted for runtime monitoring. Its effectiveness re-
lies on the fact that data quantification can be modelled as
a particular form of branching path quantification. Since
LTL-FO+ provides no such path quantifiers, a whole new
algorithm must be provided to tackle runtime monitoring.

4.1 Transition Function

The algorithm is inspired from [13] and adapted to the
first-order quantification mechanism of LTL-FO+. It is

δ(m, q)
S′ = ∅
For eachN = Γ 
 ∆ ∈ q
N ′ = Θ 
 ∅
S′ = S′ ∪ SPAWN(m,N ′)

End for
ReturnS′

End function

Table 1. The function δ changes the state of
the watcher based on a message observed in
the trace.

based on the principle that the standard LTL temporal op-
erators can be represented through a fixpoint notation con-
necting the current and the next state of the trace. For exam-
ple, the identityFϕ ≡ ϕ ∨ X (Fϕ) indicates that checking
Fϕ on a message amounts to checking ifϕ is true in the cur-
rent message, and if not, wait for the next state and check
Fϕ again. Based on that observation, a simple update algo-
rithm can be developed to keep track of what must be true
now, and what must be true in the remainder of a trace.

To this end, we define anodeas a pairN = Γ 
 ∆,
whereΓ is a set of LTL-FO+ formulæ that must be true in
the current state, and∆ is a set of LTL-FO+ formulæ that
must be true in the next state. We assume without loss of
generality that negations can be pushed down to the ground
terms by use of identities (1)–(5) and the formulæc1 6=
c2 = ¬(c1 = c2) andX ϕ = ¬(X ¬ϕ).

Thestateq ∈ Q of the watcher consists of a (finite) set
of nodes. Intuitively, each node in the watcher’s state repre-
sents one possible way in which the observed trace can fulfil
the propertyϕ. Therefore, the initial stateq0 of Wϕ is com-
posed of the single node∅ 
 {ϕ} —that is, no message has
yet been observed, and the LTL-FO+ formulaϕ must hold
on the next (i.e. the first) message of the trace. Then, each
time a new messagem is observed, the state of the watcher
is updated via a theδ function shown in Table 1.

The update function simply takes each nodeN ∈ q,
moves the contents of the right-hand side of the node to the
left-hand side (leaving the right-hand side empty), and then
calls an auxiliary function SPAWN on that resulting node.
SPAWN takes a node and decomposes the formulæ from its
left-hand side according to the rules shown in Table 2. On
some occasions, the decomposition of a formula produces
more than one node; the decomposition is then recursively
repeated on each resulting node until no further rule applies.
The set of these terminal, “spawned” nodes is then returned
to δ and included in the new state for the watcher.

Intuitively, the function SPAWN decomposes and evalu-
ates all the LTL-FO+ formulæ that must be true in the cur-
rent state, eventually evaluating quantified variables andre-
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Table 2. The decomposition rules for a watcher’s state node. The “X” symbol indicates that the
branch is stopped and should be discarded.
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Figure 1. Maximum number of subformulæ in watcher state for v arious trace lengths, with data do-
mains of respectively 100, 300 and 500 elements.
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placing equalities with their Boolean value. At the same
time, SPAWN transfers to the right-hand side of the node
all the properties that will have to hold in the next iteration
of the update function. The number of nodes spawned by
the application of a single rule is bounded by the number
of elements returned by the functionDom, i.e. k. The
resulting tree is therefore of arity at mostk. As usual,
for a finite trace ρ = ρ1ρ2 . . . ρn, we defineδ(q, ρ) =
δ(δ(. . . δ(δ(q, ρ1), ρ2) . . . ), ρn).

4.2 Acceptance Conditions

It remains to determine how the watcher can conclude
that a trace fulfils or violates a property. The first case to
consider is trace violation:

Definition 8 (Violation condition). A finite trace ρ =
ρ1 . . . ρn violatesϕ if and only ifδ(q0, ρ) = ∅.

Hence, if a call to UPDATE produces no nodes, then there
is no possible way for the trace to continue while still ful-
filling the property, and a violation can be announced.

Conversely, the acceptance condition expresses the fact
that for a trace to respect the property, it suffices that one
of the possible nodes indicates that the property is sure to
be true. This is the case when bothΓ and∆ are empty: in
such a situation, everything that must be true for the current
message has been checked, and nothing more needs to be
verified when the next message is observed:

Definition 9 (Acceptance condition). A finite traceρ =
ρ1 . . . ρn fulfilsϕ if and only if∅ 
 ∅ ∈ δ(q0, ρ).

From these two conditions, the outcome functionf can
be easily defined. Two possible outcomes of that function
are labelled “fulfils” and “violates”. However, since most
observed traces will be finite, it is possible that the watcher
comes to a state where none of the previous conditions ap-
ply, although no further message is coming. At this point,
sinceϕ was neither confirmed nor violated, then the result
is inconclusive.

A more subtle conclusion can be obtained by looking at
the actual formula that needs to be checked. For example,
a formula of the formGϕ must be true for all messages of
the trace; since no more message is expected, the property
is vacuously true and can therefore be considered “not yet
violated” by the trace. On the opposite, the temporal op-
eratorFϕ requires that thereexistsa future message such
thatϕ is true; since the trace is completed, no such future
message will appear and the property is “not yet fulfilled”.
A further discussion on the interpretation of LTL formulæ
on finite traces can be found in [4]; the discussion could be
adapted to LTL-FO+ as well.

The soundness and completeness of this algorithm can-
not be proved here due to lack of space; however, the results

are based on the proofs presented in [13] for LTL runtime
monitoring.

5 Results and Discussion

To evaluate the performance of this runtime algorithm,
we conducted a set of initial experiments that involved the
runtime monitoring of LTL-FO+ formulæ on automatically-
generated traces. The goal of these experiments was to
show that the monitoring of LTL-FO+ formulæ can be ef-
fectively done in concrete contexts and imposes a reason-
able overhead on the execution of a workflow.

5.1 Experimental Results

We chose the Runtime Property 3 because it was the
most complex of the three described in Section 2. 50 traces
of lengths ranging from 10 to 1,000 messages were ran-
domly produced. Each message consisted in one or more
cars either entering or leaving a parking. Each of these
traces was then assigned to an instance of a LTL-FO+ run-
time monitor following the algorithm described in the pre-
vious section. For each run, the total processing time and
the maximum number of subformulæ that needed to be kept
by the watcher were recorded. The results are presented in
the scatterplots of Figure 1 and 2.

A first observation that can be made on these results is
that globally, the time required to process a message re-
mains well under 100 milliseconds. All but a dozen traces
required less than 40 milliseconds per message to be mon-
itored. These times were computed for a runtime mon-
itor the authors programmed in Java and running on an
AMD Athlon XP 2200+ system under Cygwin.1 The num-
ber of subformulæ that needed to be stored by the watcher,
and hence the memory footprint of the algorithm, remains
within reasonable bounds and grows proportionnally to the
trace length.

To measure the influence of the data domain size on the
performance, the experiments were repeated for domains of
100, 300 and 500 cars. We could not conclude that the size
of the data domain has a decisive impact on the performance
of the runtime monitoring algorithm. In this respect, our
results confirm what was observed by [20] for the runtime
monitoring of event calculus formulæ. We believe the same
explanations given in that paper apply here.

These initial findings are encouraging and suggest that
runtime monitoring of LTL-FO+ can be performed in real-
world scenarios, and that augmenting existing specification
languages with quantification over data does not impose a
large overhead on their processing.

1The files used for the experiments are available online at
http://teleinfo.uqam.ca/Members/hallesylvain/watcher.
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Figure 2. Processing time per message for various trace leng ths, with data domains of respectively
100, 300 and 500 elements.

5.2 Further Refinements

A number of adaptations to the original approach can be
made to support a wider range of monitoring properties. We
briefly mention two of them.

5.2.1 Nested messages

The extension of LTL-FO+ runtime monitoring to arbitrary
XPath expressions on messages is straightforward. The in-
terpretation of the functionDoms() can be arbitrary, as
long as it returns a set of values. Therefore, instead of a sin-
gle parameter name, an arbitrary XPath expression could be
entered and evaluated by the monitor by calling an external
XPath engine on the received message. It then suffices to re-
place the subscript in a quantifier by the appropriate XPath
expression. A formula like∃/client/customerIDϕ would in-
dicate thatϕ holds for every “customerID” found under the
“client” element of a message.

5.2.2 Metric Temporal Logic

Metric temporal logic (MTL) is an extension of regular tem-
poral logic to time intervals. Time intervals are used for
expressing time delays in business contracts, as the prop-
erties in [15] demonstrate. MTL formulæ are also used
in [1] to express monitoring properties on plan execution
for NASA’s planetary rover controller K9. For example, an
expression likeG (start(plan) → F1,5 start(drive1)) in-
dicates that if theplan starts, then taskdrive1 should
begin execution within 1 and 5 time units.

Such constraints can be simulated by simply adding a
timestampτ to each message. The actual timestamp need
not even be exchanged through messages, but quantification
onτ could simply amount to fetching the current timestamp
from an internal clock. In the same way as [3], metric tem-
poral logic then becomes a particular case of data parame-
terization. The previous property could hence be translated
into LTL-FO+ as follows:

G (start(plan) → (∀τ t1 :

F (start(drive1) ∧ ∀τ t2 : 1 ≤ |t2 − t1| ≤ 5)))

6 Conclusion

In this paper, we have presented an algorithm for the run-
time monitoring of data-aware workflow constraints. Sam-
ple properties taken from runtime monitoring scenarios in
existing literature were expressed using LTL-FO+, an ex-
tension of Linear Temporal Logic that includes full first-
order quantification over message contents. An on-the-fly
runtime monitoring algorithm was presented and tested on
sample traces. Initial findings indicate that runtime moni-
toring of LTL-FO+ can be performed in real-world scenar-
ios for traces of a thousand messages while still allowing
for quantification over data domains of 500 elements. Fur-
ther experiments in various contexts will be conducted; a
possible extension of this work involves the development
of mappings between LTL-FO+ and patterns in graphical
languages such as UML.
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