Skolem Functions and Herbrand Universes in a Tree Generalation of
First Order Logic

Roger Villemaire Sylvain Hadl Omar Cherkaoui

Department of Computer Science, Univegsiu Quebeca Montréal
C.P. 8888, Succ. Centre-ville, Mogal (Canada) H3C 3P8

villemaire.roger@ugam.ca

Abstract

Skolem functions and Herbrand universes are fundamenialegs in first-order logic that form
the basis of many works in artificial intelligence. In thispgs we study a fragment of the XML
Query Language (XQuery) that generalizes first-order Idgi@ setting where variables form a
forest instead of a set. A formal description of the logic #@ademantics is given; Skolem functions
and Herbrand universes are generalized to this setting.

1. Introduction

Trees, forests and hierarchical structures in generaliem@gaimental in computer science. The
advent of the Extensible Markup Language (XML) in recentrgess thede factostandard for
the representation and transmission of information overnkernet, especially in the area of web
services, has further confirmed the importance of so-caléedi-structureddata. Consequently,
logical formalisms such as XPath [8] and XQuery [4] have béeveloped to express properties
and extract data from these structures.

Although considerable work has been carried around thegeslérom a database and computa-
tional complexity standpoint, fewer works have investghthem in an Al perspective. First-order
logic (FOL) has long become a household name with the suaifegsneral purpose reasoning
tools like Prolog; in this field, skolemization and Herbranddels are fundamental concepts that
form the basis of a large corpus of works in artificial inggdince [12, 16], particularly in automated
deduction and reasoning such as the Otter theorem provgrtfglSNARK [1] tool, the Protheo
software verification project [2]; on the other hand, MACE]&nd SEM [22] are tools that find
and generate models and counter-examples for first-or@erids. However, the same methods
remain yet to be developed for tree logics.

In this paper, we investigate a subset of the XML Query LagguéQuery that we call Config-
uration Logic (CL). We show that CL is a pure generalizatidfrOL where the variables, instead
of forming a “flat” set structure, are hierarchically orgeatd into forests. Our aim is then to restore
into this setting the Skolem functions and Herbrand unegssmilarly to classical FOL. Equipped
with these constructions, we show how properties of FOLsfierrdirectly to CL; in particular, tree

We gratefully acknowledge the financial support of the Nat@ciences and Engineering Research Council of
Canada on this research.

structures can be automatically generated to fulfill soneglgfined constraints by using the same
model-building procedure as for classical FOL.

The motivation for studying skolemization in CL stems frasuse as a formalism expressing
constraints in the configuration of network routers. Thaggles described in this paper are being
integrated into an existing automated validation toolezhNalidMaker [10].

The paper is structured as follows. Section 2 motivatesropks examples from network config-
uration the kind of Skolem functions we need and summarigiased work. The proposed logic is
defined in section 3; Skolem functions are generalized to gl Herbrand universes are presented
in section 4. Finally, section 5 concludes the paper.

2. Examples and Motivation

The development and study of Configuration Logic as a suligbeavell-known tree language
XQuery originates from the representation of the configonabf network devices such as routers.
All properties of a given router configuration are represdriy attribute-value pairs. However,
these pairs are organized in a hierarchy that takes the foartree structure. The tree representation
is a natural choice, since it reflects dependencies amongaents, and it is in close relatioship to
the XML format used by many network configuration managerpeatiocols such as Netconf [11].

2.1. Network Configuration Examples

Figure 1 depicts a portion of a configuration representingPaaddress with its subnet mask.
According to the IP addressing scheme, the declarationeofRraddress of a device must always
be accompanied by its mask. This example gives a first, ba&sqtoperty.

device = router-1

/\

interface = loopback0 bgp = 100

ip address = 10.10.10.1 neighbor =10.10.10.2

mask = 255.0.0.0
Figure 1. A portion of the configuration tree for a router

As a more complex example Mrtual Private NetworkVPN) service [19] is a private network
constructed within a public network such as a service pexgdetwork. Usually, the VPN is used
to link together several geographically dispersed sites@fstomer by a protected communication
throughout the provider's network. Most of the configuratad a VPN is realized in routers placed
at the border between the client’s and the provider’s néta/dDn the client side, these routers are
calledcustomer edgéCE) routers, and on the provider side, they are cglledider edgegPE).

An important issue is to ensure the transmission of routifigrimation between the sites forming
a VPN without making this information accessible from thésale. One frequently used method
consists in using the Border Gateway Protocol (BGP). Thithoweinvolves the configuration of
each PE to make it a “BGP neighbor” of the other PEs [18]; thisiés that one interface in each
PE router must have its IP address declared as a BGP neighbach other PE router.

These are only two examples of network properties that meistabdated on configurations of
routers. Actually, each network service imposes dozensi@f sonstraints, and in turn dozens of
different services can coexist on networks formed of hudslief devices.

2.2. A Case for Generalizing First-order Logic

It is important for the network engineer to validate a givenfiguration against a set of service
rules; however, it is also equally important for a configiaratool to allow the suggestion of correct
values to the user, as well as the automated generation tsfqfathe configuration that ensure no
rule is violated. These two features require automated hmmestruction, a property that is not
readily available when using tree languages like CL.

To this end, Skolem functions and Herbrand universes areknelvn model construction tech-
niques. Let us examine skolemization with this simple nekwwoperty: every IP address has a
mask. In a classical first-order setting, one would intredacSkolem functiorfasi@) giving for
an IP address its maskfnasa). But this is misleading: the mask is not really a functionted t
IP address. With network address translation (NAT), thees#address can be used at different
sites and there is no reason why the mask should always bautte $n fact, the mask is really a
function of thenode’sIP address: it is the mask of the IP addresshid specific interface in the
router’s configuration.

One could think that considering configuration nodes asghiped (e.g. a type for the nodes
containing IP addresses) would be sufficient. This is notHse, for IP addresses appear as values
in many different locations in a configuration. For instgre®GP neighbor (right branch in Figure
1) is specified by giving the IP address of an interface of #ighbor, but not its mask. The mask
is provided only when configuring the interface. Neverthgleéhe IP address given for an interface
or for a BGP neighbor configuration has the same structurerarsl be comparable. We need to
check whether a device is indeed a BGP neighbor of some otheornparing an interface’s IP
address with an IP address appearing in a neighbor node &Geconfiguration. The issue is
therefore that one must consider the hierarchical posttf@aparameter: the mask is present below
the ip addressof the interface of a device it is not present in theeighbordeclaration of thebgp
configuration of adevice

Our approach is simply to consider a Skolem function to reqwt just a value but a descendant
of a specific node. In the case of the mask, givafeaicex, aninterfacey of this device and the
ip address of this interface, the Skolem function returns a node cairtgi the mask, the mask’s
node being at the end of the path

(device= z)(interface= y)(ip address= z)

We hence denote our Skolem function by

(device= z)(interface= y)(ip address= z) fimasK %)

prefixing the function symbol by the path to the return nodeteNhat in this case containse, y, z
but in general it could contain more variables, since theevaf the returned node could be function
of values on other branches.

Even if this approach seems quite different from the usuabn@f Skolem functions, we show
in this paper that simply adding a forest structure on thefsedriables allows to give a precise and
formal presentation following the lines of classical fiostler logic.

2.3. Related Work

In the context of network configuration, quantifiers are meeh express properties of the form
“for all routersr, there exists an interfageof »”. However, quantification oall nodes (as in “for
all parameters”) is never necessary. The situation is fiveresimilar to multi-modal logics like

LTL and CTL [9] where the operators) and[a] respectively denote “there exists an actidrand
“for all actionsa”. Configuration Logic uses a similar syntax wheres a parameter. Modab(O)
and multi-modal (a), [a]) logics trace a path and allow to refer to properties of nadeise future.
Hence classical modal and multi-modal logics can be seenom®site: one refers to properties
of individual future states and basic relations are on th@ests of a single node. On the other
hand properties like those of the previous examples invibagc relations on tuples of nodes as in
first-order logic. This has been explained in more detaiPdj pnd makes modal logics insufficient
for the task.

Guarded logic is a fragment of first-order logic allowineary relations, that generalize multi-
modal logic. Guarded logic and a further generalizatioedalveakly-guarded logic have been
showed to have the small model property [3, 15]. Unfortugatewas shown in [20] that network
properties have no guarded or loosely guarded equivalatersees. Therefore, neither guarded nor
weakly guarded logics are sufficient for describing prapsrof configurations.

Finally, the Tree Query Logic (TQL) [5, 6], a logic for quemg XML documents, was used
in [13, 14] to verify configuration properties of network giees. However, TQL is a very powerful
query logic that has undecidable model checking [7], and loickwv only a small fragment was
actually needed.

3. Configuration Logic

In this section, we formally present CL as a fragment of X@userd define the special concepts
that generalize FOL.

3.1. Names and Forests

In CL, the names of the parameters are considered static iged heforehand. We fix a set
Names of parameter nameffor short just names). In classical first-order logic, teenantics are
defined on a set and the variables form a set. Similarly in & semantics are defined onamed
forest

Definition 1. A named forest is a set of trees whose nodes are labeled bysn#méis a node of
a forest, we writdabel (N) for its label.

Since a configuration is a forest whose nodes contain natne-pairs, it is therefore a named
forest. We will also make the set of variables of the logicectmamed forest.

Definition 2. A named path is a finite non-empty sequence of names. The ngaitedf an element
in a named forest is the sequence of names encountered oatthign a root to this element.

A valuation is a way to associate values to variables. Siacmbies and values form named
forests, the valuations have to preserve this structure.

Definition 3. A named forest morphism (n.f.m. for short): F; — F3 from a hamed foresk}
to a named foresk;, is a partial function from the nodes @ to the nodes of;, (with domain
dom(«)) such that:

e dom(a) is a sub-forest (i.e. the parent of an elemeni@f.(«) is also indom(«)).

e if N isaroot, therv(N) is a root

o label(a(N)) = label(N)

e if Nyis achild of Ny, thena(Ny) is a child ofa(NVy).

3.2. Syntax and Structures

CL is syntactically similar to first-order logic, but agafretset of variables forms a named forest
instead of a simple set. In this sub-section we formally @&e@ih and its semantics.

Definition 4. A Configuration Logidanguage (for short a Clanguage CL is formed of

e anamed forest’ of variablesv, w, v1, va, w1, . ..
e a setR of relation symbolsk; (v), R2(w), . .. wherew, w are finite sequences of variables.

e a setF of partial function symbols.f(v), w.g(w), ... wherev, w, ... (called theprefix) are
either variables or the empty string; in the latter case wells just write f(v), g(w), . . .
Thev,w, ... are finite sequences of variables. Similarly to variablesheof these partial
function symbols also has a name attached to it.

In the above definition, the arity d®(v) and of f(v) is the length ofs. The arity ofv. f(v) is the
length ofv plus one.

Definition 5. Let CL be a CL language anfi be a named forest. BL-valuation for F' (if the
context is clear we will just say valuation) is an n.fm.: V — F, whereV is the forest of
variables oflC L.

In order to formally define configurations (the structuresadnich CL will be interpreted), we
must define how relations and partial functions symbols@betinterpreted. Since in CL, variables
form a named forest, the interpretation of a relation origbftinction symbols must preserve this
structure.

This is not always the case. Consider for example a binaayioel R(z, y) wherey is a child of
x. This relation cannot be interpreted as a set of pairs of sya&lace this would not preserve the
fact thaty is a child ofz. In fact, this is not surprising if one keeps in mind that &htes cannot be
mapped to arbitrary values but must be mapped using namest fmorphisms. The interpretation
of a relationR can hence be defined to be the set of n.f.m. malirigld.

Similarly, the interpretation of a partial function. f(w) will be a partial function sending a
valuationp to the interpretation ofv. f (w) which will be a child ofp(w), in accordance with the
intuition thatw. f (w) denotes a child of.

For technical reasons, when considering a relation or épérhction symbol it is convenient to
restrict ourselves to valuations defined only on varialdésvant to the relation or the partial func-
tion symbols. This set of variables must obviously contaentariables appearing in the relation or
partial function symbol but it must also contain their arices since an n.f.m.'s domain is always
a sub-forest.

Definition 6. Let F' be a named forest and be a finite sequence of elementskaf The sub-forest
generated byn, noteds f (m), is the smallest sub-forest containing all the elemente@bequence
m (i.e. the closure under parenthood).

Definition 7. LetCL be a CL languagel’ be a named forest and: V' — F be aCL-valuation. Let
alsov be a finite sequence of variables. We will say thét “a valuation orv” if dom(p) = sf(v).

Definition 8 (Configuration) LetCL be a CL language. &L£-configuration (if the context is clear
we will often just speak of a configuration) is a structure

M = (M; Rpm(0), w.fr(w))

where

R ranges oveRR

w. f(w) ranges over

e)M is a named forest

R (0) is a set of valuations fab/ onv

w. fap(w) is a partial function sending a valuatigrfor M onw, w to a child of p(w) in M
or to aroot ofM, if w is empty. Furthermore this node must have the same namefé®).

We abuse notation and writee R4(v) to mean thatlom(p) O sf(v) and that the restriction
of pto sf(v) isin Ry(v). Therefore, the interpretation of a relation symbol is see relation
on the set of valuations. Similarly, for partial functionnglyols, we consider that a valuatipns
in the domain of the interpretation dom(p) 2 sf(w) and if the restriction op to sf(w) is in
dom(w.fr(w)). Therefore, we consider that the interpretation of a pafitiaction symbol is a
partial function from the set of all valuations to the set ofles.

Finally, even if we writew. f((w) for the partial function interpretation, we write. fo4(p) for
the application of this function to the argumer(iwhich is a valuation) in order to simplify notation.

3.3. Terms, Substitutions, Formulas and Sentences

To define the terms (composition of partial function sympolsthe language, we must define
how substitutions of variables are done. Here again, ablarieannot be replaced by any term
but only by terms that preserve the named forest structuree r@ust therefore define terms and
substitution by a mutually recursive definition by givingthaefinitions simultaneously.

Note that terms will naturally form a named forest, takingf (w) to be a child ofw wherew, w
can either be variables or terms. For instance, if a substitution, we write. f (v)n for the term
obtained by replacing the variablesv with the terms given by).

Definition 9 (Term and Substitution)Let CL be a CL language.

e Aterm of CL is either a variable or the result of applying a substitutiora partial function
symbol (in notatiornv. f (v)n). We will denote the set of terms Wyerms(CL) or justTerms
if the context is clear.

e A substitution ofCLisanfmn:V — Terms(CL).
The notion of formula now becomes similar to FOL.

Definition 10 (Formula) LetCL be a CL language. A formula ¢ is built from atomic formulas
(which areRn whereR € R andn is a substitution), using the usual Boolean connectives, —
as well as the following two quantifiers:

e Existential quantifier{v)y, wherev is a variable ang a formula.
¢ Universal quantifier{v]e, wherev is a variable ang a formula.

We say that a variable is free in a formulaif it has a descendant which is not bounded by
a quantifier. Free(¢) denotes the set of free variables @f As usual, asentenceds a formula
having no free variable. In order to simplify the presewtatiwe will consider that every variable
is quantified at most once.

3.4. Semantics

To give the formal semantics for interpreting formulas onfigurations, we first need to give
the interpretation of terms.

Consider a partial function symbel. f(w) and its interpretatiom. fo in a configurationM. If
a valuationp is defined on the variables eff (w, w), thenp can be extended to. f (w) by setting
p(w.f(w)) to bew.f(p). This extension is an n.f.m. by Definition 8. The followingfidéion
extends valuations to arbitrary terms.

Definition 11. Let M = (M; Ry (0), w. faq(w)) be aCL-configuration for the CL languagec.
Letv.f(v)n be a term. A valuation for M can be extended to.f(v)n by recursively defining
p(v.fn) = (v.fa)(pon).

This definition makes sense jifo 7 is defined (i.e.p is defined for all terms in the range 9f
andp on € dom(v.fam).

Since n.f.m.'s are closed under compositipre 7 is indeed a valuation. Therefore, a valuation
p defined on the variables of a term can be recursively extehgdtde above method to the term
itself. In the following we will not distinguish between thraluation and this extension. Similarly,
we say thap o 7 is defined ifp can be extended to all terms in the rangey.of

Definition 12. Leta : F} — F» be an n.f.m. and let be an element of’. We say that : F; —
F, extendsx to a or that it is an extension af to a if dom(a) C dom(a’), a € dom(a’) anda
and«’ agree onlom(«).

Definition 13 (Semantics) Let CL be a CL language and1 be a configuration. Lep be a CL
formula andp be a valuation fol\ on Free(yp) (if dom(p) is greater tharF'ree(y) we consider,
by notation abuse, thatis replaced by its restriction tBree(y)).
We say thatM, p satisfiesy (in notation M, p = ¢), if we have recursively:

e if o = Rn, thenp o nis defined and is ik x4

o if Y= 1/)1 A 1/)2, thenM7p ': wl andMup): 1/)2

o if Y= 1/)1 \/1/)2’ thenM7p ': wl OrM7p ': ¢2

o if Y= _‘¢11 thenMup l7£ 1/)1

e if ¢ = (v)y, then there exists an extensiphof p to v such that\, o’ = v

e if ¢ = [v]¢)1, then for all extensiong’ of p to v, M, p’ =+ holds.

The above recursive semantics gives a model checking #igofor CL. Note that if one con-
siders the configuration size to be constant, then this ithgois linear in the size of the formula.

4. Skolem Functions and Herbrand Configurations

We show in this section how Skolem functions and Herbrandanges can be generalized to CL.
Herbrand universes give a configuration construction ntetho

4.1. Skolem Functions

As for classical first-order logic, skolemization is the gges of expanding the language by
adding function symbols, in order to replace a sentence bgoaivalent universal sentence. To
simplify the presentation of Skolem functions, we consithait every formula has been converted
to negative normal form (NNF) by pushing negations down torét¢ formulas.

Definition 14 (Skolemization) Let CL be a CL language and be a sentence in this language. We
define recursively a skolemization gfas:

e an extensiort L of the languag€ £ by adding new partial functions symbols

e auniversal sentenc&kolem(p) in SL
in the following way:

e Skolem(Rn) = Rn

e Skolem(—Rn) = —Rn

e Skolem(p A1) = Skolem(p) N\ Skolem(1))

e Skolem(p V1) = Skolem(p) V Skolem (1))

o Skolem({v)y) = Skolem(p{v/w.f(w)}) wherew is the parent ob, the variableso are

the free variables ofv)y andw. f(w) is a new partial function symbol added.$d. having
the same name as

e Skolem([v]p) = [v]Skolem(p)

As for classical first-order logic, one can for a configunatief on CL create a configuration on
SL calledSkolem ExtensioS M to SL, in the following way:

e SM agrees withM for all relations and partial functions G

o for new partial functions, one defines recursively (i.e.imiyithe recursion of definition 14):
If w.f(w) is introduced for(v)y, let the domain ofw.fsx(w) be the set ofp such that
SM, p E (v)p and pickp/, an extension op to v, such thatSM, p’ = ¢. Finally, define

w. fsm(p) to bep'(v).

We can now show that as for first-order logic, the skolemiratf a CL formula preserves its
validity.
Proposition 1. LetCL be a CL languagey be a sentence in this language asifl and Skolem(y)
be a skolemization af. Let alsoM be aC L-configuration andSM be aSkolem Extensionf M
toSL.

We have that for any valuatiom and formulay of SL met during skolemizatior§ M, p = ¢
holds if and only ifSM, p &= Skolem(v) holds.

Proof. By induction on the number of connectors and quantifierg.in

For ¢ an atomic formula, the negation of an atomic formula, a aoctjon, a disjunction or a
universal quantified formula the result easily holds.

Fory = (v)p, we have that sincE M is a Skolem extension of1, it follows thatSM, p |=
(v)pifand only if SM, p = ¢ {v/w.f(w)}.

By induction hypothesis, we have that

SM,p E p{v/w.f(w)} ifand only if SM, p = Skolem(p {v/w.f(w)})
By definition of skolemization,Skolem({v)yp) = Skolem(yp{v/w.f(w)}). Therefore, the
claim holds. O
4.2. Herbrand Configurations

Now that we have generalized Skolem functions to CL, we cald lbonfigurations using Her-
brand universes as we show in this section.

Definition 15. A term is said to be closed if it contains no variables. We teety CT(CL) the
closed terms of a configuration languagg.

As for classical first-order logic, the value of a closed tatoes not depends on the chosen
valuation.

Proposition 2. Lett be a closed term and p be a valuation. The nodg(t) is independent of the
valuation chosen.

Proof. The proof goes by induction. If the term is a function symile&n it is a term of the form
(), with empty prefix and no variables. Therefaten(f()) contains a unique valuation (the
empty valuation).

If the result holds for the terms of the rangerpthen sincep(v. fn) = (v.fa)(p o n) and since
p o n does not depend op by induction hypothesis, we have that the value of the teresdwt
depend ormp. O

Herbrand configurations are, as for classical first-ordgiclothe configurations built using
closed terms.

Definition 16. LetCL be a CL language an#! be aC L£-configuration. The Herbrand configuration
of M is the configuration

HM = (HM; Rym (), w. frm(w))

R ranges oveR

w. f(w) ranges overr

HM = {p(t);t € CT(CL)}, wherep is a valuation
Rym =RpmforRe R

V. frm (D) = v.fpm(0), forv. f(v) € F

Proposition 2 shows thdf M is well defined. Finally, as for classical first-order logatisfiability
of a universal sentence is preserved by sub-structure.

Proposition 3. LetCL be a CL languageM be aCL-configuration andH.M be the Herbrand
configuration ofM. If ¢ is a universal sentence satisfied vy, theny is also satisfied b M.

Proof. A valuationp of HM is also a valuation of\. One can show the result by induction on
the structure of the formula. O

As in classical first-order logic, Herbrand configurations a way to build a configuration sat-
isfying a given sentence. Takesuch a sentence. Talde! a configuration satisfying, SM be
its Skolem extension ant{SM be the Herbrand universe 8iM. SinceSM agrees withM
for all relations and partial functions of the original larrge,SM = ¢ holds. By Proposition 1,
SM = Skolem(yp) holds. Finally by Proposition 3{SM = Skolem(y) holds, thus reducing
satisfiability to buildingHS M.

5. Conclusion and Future Work

This paper gave a presentation of a suitably chosen subset 8ML Query Language XQuery
called Configuration Logic as a generalization of first-otdgic in which the set of variables forms
a forest. It also provided a formal semantics and genetadizmof Skolem functions and Herbrand
universes to this setting.

Support for defining and verifying network properties in @guaration Logic has already been
integrated into the network configuration tool ValidMak&@]. Current work is ongoing to further
extend the tool by adding a configuration construction fionetity based on the results of this
paper as well as to give a precise computational complerigyyais of the logic.

More generally for logic in Al, this work shows that adding restructure to the set of variables
of a first order logic can keep the validity of classical camstions while giving a new range of
applicability. We considered a forest of variables but mgeeerally, it should be interesting to
investigate the range of applicability one could obtaimgslternative structures such as graphs.

References

[1] A guide to SNARK. http://www.ai.sri.com/snark/tutati
[2] The PROTHEO project home page. http://protheo.loria.f

[3] H. Andréka, J. van Benthem, and |. Németi. Modal larggsaand bounded fragment of predicate logic. Technical
Report ML-96-03, ILLC Research Report, 1996.

[4] S. Boag, D. Chamberlin, M. F. Fernandez, D. FloresciRahie, and J. Siméon. XQuery 1.0: An XML query
language, W3C working draft, 2005.

[5] L. Cardelli. Describing semistructured da®GMOD Rec.30(4):80-85, 2001.

[6] L. Cardelliand G. Ghelli. Tql: a query language for setmistured data based on the ambient lo§iathematical.
Structures in Comp. S¢il4(3):285-327, 2004.

[7] W. Charatonik and J.-M. Talbot. The decidability of mbdeecking mobile ambientd.ecture Notes in Computer
Science2142:339-354, 2001.

[8] J.Clark and S. DeRose. XML path language (XPath) ver&i@n W3C recommendation, 1999.
[9] E. M. Clarke, O. Grumberg, and D. A. Peledodel CheckingMIT Press, Cambridge, MA, 2000.

[10] R. Deca, O. Cherkaoui, and D. Puche. A validation sotufor network configuration. ICNSR pages 273-275.
IEEE Computer Society, 2004.

[11] R. Enns. Netconf configuration protocol, IETF Interdeaft, February 2006.
[12] M. Genesereth and N. J. Nilssdnogical Foundations of Artificial IntelligenceMorgan Kaufmann, 1987.

[13] S. Hallg, R. Deca, O. Cherkaoui, and R. Villemaire. @émated validation of service configuration on network
devices. In J. B. Vicente and D. Hutchison, editdvdyINS volume 3271 ol ecture Notes in Computer Science
pages 176-188. Springer, 2004.

[14] S.Hallé, R. Deca, O. Cherkaoui, R. Villemaire, and DcRe. A formal validation model for the netconf protocol.
In A. Sahai and F. Wu, editor9SOM volume 3278 ofLecture Notes in Computer Sciengeges 147-158.
Springer, 2004.

[15] I. M. Hodkinson. Loosely guarded fragment of first-ardegic has the finite model propertyStudia Logica
70(2):205-240, 2002.

[16] W. McCune. Skolem functions and equality in automateduttion. INAAAI, pages 246-251, 1990.

[17] W. McCune. MACE 2.0 reference manual and guide. Tedcmigport, Argonne National Laboratory, May 2001.
Technical Memorandum No. 249.

[18] I. Pepelnjak and J. GuicharPLS VPN ArchitecturesCisco Press, 2001.
[19] E. Rosen and Y. Rekhter. BGP/MPLS VPNSs. Technical REREIC 2547, IETF, 1999.

[20] R.Villemaire, S. Hallé, and O. Cherkaoui. Configuoatiogic: A multi-site modal logic. ITIME, pages 131-137.
IEEE Computer Society, 2005.

[21] L. Wos and G. W. PieperAutomated Reasoning and the Discovery of Missing and Etégyaofs Rinton Press,
2003.

[22] J. Zhang and H. Zhang. System description: Generatiodets by SEM. In M. A. McRobbie and J. K. Slaney,
editors,CADE, volume 1104 of_ecture Notes in Computer Scienpages 308-312. Springer, 1996.

