
Skolem Functions and Herbrand Universes in a Tree Generalization of
First Order Logic

Roger Villemaire Sylvain Halĺe Omar Cherkaoui

Department of Computer Science, Université du Qúebecà Montŕeal
C.P. 8888, Succ. Centre-ville, Montréal (Canada) H3C 3P8

villemaire.roger@uqam.ca

Abstract

Skolem functions and Herbrand universes are fundamental concepts in first-order logic that form
the basis of many works in artificial intelligence. In this paper, we study a fragment of the XML
Query Language (XQuery) that generalizes first-order logicto a setting where variables form a
forest instead of a set. A formal description of the logic andits semantics is given; Skolem functions
and Herbrand universes are generalized to this setting.

1. Introduction

Trees, forests and hierarchical structures in general are fundamental in computer science. The
advent of the Extensible Markup Language (XML) in recent years as thede factostandard for
the representation and transmission of information over the Internet, especially in the area of web
services, has further confirmed the importance of so-calledsemi-structureddata. Consequently,
logical formalisms such as XPath [8] and XQuery [4] have beendeveloped to express properties
and extract data from these structures.

Although considerable work has been carried around these logics from a database and computa-
tional complexity standpoint, fewer works have investigated them in an AI perspective. First-order
logic (FOL) has long become a household name with the successof general purpose reasoning
tools like Prolog; in this field, skolemization and Herbrandmodels are fundamental concepts that
form the basis of a large corpus of works in artificial intelligence [12,16], particularly in automated
deduction and reasoning such as the Otter theorem prover [21], the SNARK [1] tool, the Protheo
software verification project [2]; on the other hand, MACE [17] and SEM [22] are tools that find
and generate models and counter-examples for first-order theories. However, the same methods
remain yet to be developed for tree logics.

In this paper, we investigate a subset of the XML Query Language XQuery that we call Config-
uration Logic (CL). We show that CL is a pure generalization of FOL where the variables, instead
of forming a “flat” set structure, are hierarchically organized into forests. Our aim is then to restore
into this setting the Skolem functions and Herbrand universes similarly to classical FOL. Equipped
with these constructions, we show how properties of FOL transfer directly to CL; in particular, tree

We gratefully acknowledge the financial support of the Natural Sciences and Engineering Research Council of
Canada on this research.

structures can be automatically generated to fulfill some predefined constraints by using the same
model-building procedure as for classical FOL.

The motivation for studying skolemization in CL stems from its use as a formalism expressing
constraints in the configuration of network routers. The principles described in this paper are being
integrated into an existing automated validation tool called ValidMaker [10].

The paper is structured as follows. Section 2 motivates by simple examples from network config-
uration the kind of Skolem functions we need and summarizes related work. The proposed logic is
defined in section 3; Skolem functions are generalized to CL and Herbrand universes are presented
in section 4. Finally, section 5 concludes the paper.

2. Examples and Motivation

The development and study of Configuration Logic as a subset of the well-known tree language
XQuery originates from the representation of the configuration of network devices such as routers.
All properties of a given router configuration are represented by attribute-value pairs. However,
these pairs are organized in a hierarchy that takes the form of a tree structure. The tree representation
is a natural choice, since it reflects dependencies among components, and it is in close relatioship to
the XML format used by many network configuration managementprotocols such as Netconf [11].

2.1. Network Configuration Examples

Figure 1 depicts a portion of a configuration representing anIP address with its subnet mask.
According to the IP addressing scheme, the declaration of the IP address of a device must always
be accompanied by its mask. This example gives a first, basic tree property.

Figure 1. A portion of the configuration tree for a router

As a more complex example, aVirtual Private Network(VPN) service [19] is a private network
constructed within a public network such as a service provider’s network. Usually, the VPN is used
to link together several geographically dispersed sites ofa customer by a protected communication
throughout the provider’s network. Most of the configuration of a VPN is realized in routers placed
at the border between the client’s and the provider’s networks. On the client side, these routers are
calledcustomer edge(CE) routers, and on the provider side, they are calledprovider edges(PE).

An important issue is to ensure the transmission of routing information between the sites forming
a VPN without making this information accessible from the outside. One frequently used method
consists in using the Border Gateway Protocol (BGP). This method involves the configuration of
each PE to make it a “BGP neighbor” of the other PEs [18]; this entails that one interface in each
PE router must have its IP address declared as a BGP neighbor in each other PE router.

These are only two examples of network properties that must be validated on configurations of
routers. Actually, each network service imposes dozens of such constraints, and in turn dozens of
different services can coexist on networks formed of hundreds of devices.

2.2. A Case for Generalizing First-order Logic

It is important for the network engineer to validate a given configuration against a set of service
rules; however, it is also equally important for a configuration tool to allow the suggestion of correct
values to the user, as well as the automated generation of parts of the configuration that ensure no
rule is violated. These two features require automated model construction, a property that is not
readily available when using tree languages like CL.

To this end, Skolem functions and Herbrand universes are well-known model construction tech-
niques. Let us examine skolemization with this simple network property: every IP address has a
mask. In a classical first-order setting, one would introduce a Skolem functionfmask(a) giving for
an IP addressa its maskfmask(a). But this is misleading: the mask is not really a function of the
IP address. With network address translation (NAT), the same IP address can be used at different
sites and there is no reason why the mask should always be the same. In fact, the mask is really a
function of thenode’sIP address: it is the mask of the IP address ofthis specific interface in the
router’s configuration.

One could think that considering configuration nodes as being typed (e.g. a type for the nodes
containing IP addresses) would be sufficient. This is not thecase, for IP addresses appear as values
in many different locations in a configuration. For instance, a BGP neighbor (right branch in Figure
1) is specified by giving the IP address of an interface of the neighbor, but not its mask. The mask
is provided only when configuring the interface. Nevertheless, the IP address given for an interface
or for a BGP neighbor configuration has the same structure andmust be comparable. We need to
check whether a device is indeed a BGP neighbor of some other by comparing an interface’s IP
address with an IP address appearing in a neighbor node of theBGP configuration. The issue is
therefore that one must consider the hierarchical positionof a parameter: the mask is present below
the ip address, of the interface, of a device; it is not present in theneighbordeclaration of thebgp
configuration of adevice.

Our approach is simply to consider a Skolem function to return not just a value but a descendant
of a specific node. In the case of the mask, given adevicex, an interfacey of this device and the
ip addressz of this interface, the Skolem function returns a node containing the mask, the mask’s
node being at the end of the path

(device= x)(interface= y)(ip address= z)

We hence denote our Skolem function by

(device= x)(interface= y)(ip address= z)fmask(x̄)

prefixing the function symbol by the path to the return node. Note that in this casēx containsx, y, z
but in general it could contain more variables, since the value of the returned node could be function
of values on other branches.

Even if this approach seems quite different from the usual notion of Skolem functions, we show
in this paper that simply adding a forest structure on the setof variables allows to give a precise and
formal presentation following the lines of classical first-order logic.

2.3. Related Work

In the context of network configuration, quantifiers are needed to express properties of the form
“for all routersr, there exists an interfacei of r”. However, quantification onall nodes (as in “for
all parameters”) is never necessary. The situation is therefore similar to multi-modal logics like

LTL and CTL [9] where the operators〈a〉 and[a] respectively denote “there exists an actiona” and
“for all actionsa”. Configuration Logic uses a similar syntax wherea is a parameter. Modal (�,2)
and multi-modal (〈a〉, [a]) logics trace a path and allow to refer to properties of nodesin the future.
Hence classical modal and multi-modal logics can be seen as mono-site: one refers to properties
of individual future states and basic relations are on the contents of a single node. On the other
hand properties like those of the previous examples involvebasic relations on tuples of nodes as in
first-order logic. This has been explained in more detail in [20] and makes modal logics insufficient
for the task.

Guarded logic is a fragment of first-order logic allowingn-ary relations, that generalize multi-
modal logic. Guarded logic and a further generalization called weakly-guarded logic have been
showed to have the small model property [3, 15]. Unfortunately, it was shown in [20] that network
properties have no guarded or loosely guarded equivalent sentences. Therefore, neither guarded nor
weakly guarded logics are sufficient for describing properties of configurations.

Finally, the Tree Query Logic (TQL) [5, 6], a logic for querying XML documents, was used
in [13,14] to verify configuration properties of network services. However, TQL is a very powerful
query logic that has undecidable model checking [7], and of which only a small fragment was
actually needed.

3. Configuration Logic

In this section, we formally present CL as a fragment of XQuery and define the special concepts
that generalize FOL.

3.1. Names and Forests

In CL, the names of the parameters are considered static and given beforehand. We fix a set
Names of parameter names(for short just names). In classical first-order logic, the semantics are
defined on a set and the variables form a set. Similarly in CL, the semantics are defined on anamed
forest.

Definition 1. A named forest is a set of trees whose nodes are labeled by names. If N is a node of
a forest, we writelabel(N) for its label.

Since a configuration is a forest whose nodes contain name-value pairs, it is therefore a named
forest. We will also make the set of variables of the logic to be a named forest.

Definition 2. A named path is a finite non-empty sequence of names. The namedpath of an element
in a named forest is the sequence of names encountered on the path from a root to this element.

A valuation is a way to associate values to variables. Since variables and values form named
forests, the valuations have to preserve this structure.

Definition 3. A named forest morphism (n.f.m. for short)α : F1 → F2 from a named forestF1

to a named forestF2 is a partial function from the nodes ofF1 to the nodes ofF2 (with domain
dom(α)) such that:

• dom(α) is a sub-forest (i.e. the parent of an element ofdom(α) is also indom(α)).

• if N is a root, thenα(N) is a root

• label(α(N)) = label(N)

• if N2 is a child ofN1, thenα(N2) is a child ofα(N1).

3.2. Syntax and Structures

CL is syntactically similar to first-order logic, but again the set of variables forms a named forest
instead of a simple set. In this sub-section we formally define CL and its semantics.

Definition 4. A Configuration Logiclanguage (for short a CLlanguage) CL is formed of

• a named forestV of variablesv,w, v1, v2, w1, . . .

• a setR of relation symbolsR1(v̄), R2(w̄), . . . wherev̄, w̄ are finite sequences of variables.

• a setF of partial function symbolsv.f(v̄), w.g(w̄), . . . wherev,w, . . . (called theprefix) are
either variables or the empty string; in the latter case we usually just writef(v̄), g(w̄), . . .
The v̄, w̄, . . . are finite sequences of variables. Similarly to variables, each of these partial
function symbols also has a name attached to it.

In the above definition, the arity ofR(v̄) and off(v̄) is the length of̄v. The arity ofv.f(v̄) is the
length ofv̄ plus one.

Definition 5. Let CL be a CL language andF be a named forest. ACL-valuation forF (if the
context is clear we will just say valuation) is an n.f.m.ρ : V → F , whereV is the forest of
variables ofCL.

In order to formally define configurations (the structures onwhich CL will be interpreted), we
must define how relations and partial functions symbols are to be interpreted. Since in CL, variables
form a named forest, the interpretation of a relation or partial function symbols must preserve this
structure.

This is not always the case. Consider for example a binary relationR(x, y) wherey is a child of
x. This relation cannot be interpreted as a set of pairs of nodes, since this would not preserve the
fact thaty is a child ofx. In fact, this is not surprising if one keeps in mind that variables cannot be
mapped to arbitrary values but must be mapped using named forest morphisms. The interpretation
of a relationR can hence be defined to be the set of n.f.m. makingR hold.

Similarly, the interpretation of a partial functionw.f(w̄) will be a partial function sending a
valuationρ to the interpretation ofw.f(w̄) which will be a child ofρ(w), in accordance with the
intuition thatw.f(w̄) denotes a child ofw.

For technical reasons, when considering a relation or a partial function symbol it is convenient to
restrict ourselves to valuations defined only on variables relevant to the relation or the partial func-
tion symbols. This set of variables must obviously contain the variables appearing in the relation or
partial function symbol but it must also contain their ancestors, since an n.f.m.’s domain is always
a sub-forest.

Definition 6. LetF be a named forest and̄m be a finite sequence of elements ofF . The sub-forest
generated bȳm, notedsf(m̄), is the smallest sub-forest containing all the elements of the sequence
m̄ (i.e. the closure under parenthood).

Definition 7. LetCL be a CL language,F be a named forest andρ : V → F be aCL-valuation. Let
alsov̄ be a finite sequence of variables. We will say thatρ is “a valuation on̄v” if dom(ρ) = sf(v̄).

Definition 8 (Configuration). Let CL be a CL language. ACL-configuration (if the context is clear
we will often just speak of a configuration) is a structure

M = 〈M ;RM(v̄), w.fM(w̄)〉

where

• R ranges overR

• w.f(w̄) ranges overF

• M is a named forest

• RM(v̄) is a set of valuations forM on v̄

• w.fM(w̄) is a partial function sending a valuationρ for M onw, w̄ to a child ofρ(w) in M
or to a root ofM , if w is empty. Furthermore this node must have the same name asw.f(w̄).

We abuse notation and writeρ ∈ RM(v̄) to mean thatdom(ρ) ⊇ sf(v̄) and that the restriction
of ρ to sf(v̄) is in RM(v̄). Therefore, the interpretation of a relation symbol is seenas a relation
on the set of valuations. Similarly, for partial function symbols, we consider that a valuationρ is
in the domain of the interpretation ifdom(ρ) ⊇ sf(w̄) and if the restriction ofρ to sf(w̄) is in
dom(w.fM(w̄)). Therefore, we consider that the interpretation of a partial function symbol is a
partial function from the set of all valuations to the set of nodes.

Finally, even if we writew.fM(w̄) for the partial function interpretation, we writew.fM(ρ) for
the application of this function to the argumentρ (which is a valuation) in order to simplify notation.

3.3. Terms, Substitutions, Formulas and Sentences

To define the terms (composition of partial function symbols) of the language, we must define
how substitutions of variables are done. Here again, a variable cannot be replaced by any term
but only by terms that preserve the named forest structure. One must therefore define terms and
substitution by a mutually recursive definition by giving both definitions simultaneously.

Note that terms will naturally form a named forest, takingw.f(w̄) to be a child ofw wherew, w̄
can either be variables or terms. For instance, ifη is a substitution, we writev.f(v̄)η for the term
obtained by replacing the variablesv, v̄ with the terms given byη.

Definition 9 (Term and Substitution). Let CL be a CL language.

• A term of CL is either a variable or the result of applying a substitutionon a partial function
symbol (in notationv.f(v̄)η). We will denote the set of terms byTerms(CL) or justTerms
if the context is clear.

• A substitution ofCL is a n.f.mη : V → Terms(CL).

The notion of formula now becomes similar to FOL.

Definition 10 (Formula). Let CL be a CL language. A formula ofCL is built from atomic formulas
(which areRη whereR ∈ R andη is a substitution), using the usual Boolean connectives∧,∨,¬
as well as the following two quantifiers:

• Existential quantifier:〈v〉ϕ, wherev is a variable andϕ a formula.

• Universal quantifier:[v]ϕ, wherev is a variable andϕ a formula.

We say that a variable is free in a formulaϕ if it has a descendant which is not bounded by
a quantifier. Free(ϕ) denotes the set of free variables ofϕ. As usual, asentenceis a formula
having no free variable. In order to simplify the presentation, we will consider that every variable
is quantified at most once.

3.4. Semantics

To give the formal semantics for interpreting formulas on configurations, we first need to give
the interpretation of terms.

Consider a partial function symbolw.f(w̄) and its interpretationw.fM in a configurationM. If
a valuationρ is defined on the variables ofsf(w, w̄), thenρ can be extended tow.f(w̄) by setting
ρ(w.f(w̄)) to bew.f(ρ). This extension is an n.f.m. by Definition 8. The following definition
extends valuations to arbitrary terms.

Definition 11. Let M = 〈M ;RM(v̄), w.fM(w̄)〉 be aCL-configuration for the CL languageCL.
Let v.f(v̄)η be a term. A valuationρ for M can be extended tov.f(v̄)η by recursively defining
ρ(v.fη) = (v.fM)(ρ ◦ η).

This definition makes sense ifρ ◦ η is defined (i.e.ρ is defined for all terms in the range ofη)
andρ ◦ η ∈ dom(v.fM).

Since n.f.m.’s are closed under composition,ρ ◦ η is indeed a valuation. Therefore, a valuation
ρ defined on the variables of a term can be recursively extendedby the above method to the term
itself. In the following we will not distinguish between thevaluation and this extension. Similarly,
we say thatρ ◦ η is defined ifρ can be extended to all terms in the range ofη.

Definition 12. Let α : F1 → F2 be an n.f.m. and leta be an element ofF1. We say thatα′ : F1 →
F2 extendsα to a or that it is an extension ofα to a if dom(α) ⊆ dom(α′), a ∈ dom(α′) andα
andα′ agree ondom(α).

Definition 13 (Semantics). Let CL be a CL language andM be a configuration. Letϕ be a CL
formula andρ be a valuation forM onFree(ϕ) (if dom(ρ) is greater thanFree(ϕ) we consider,
by notation abuse, thatρ is replaced by its restriction toFree(ϕ)).

We say thatM, ρ satisfiesϕ (in notationM, ρ |= ϕ), if we have recursively:

• if ϕ ≡ Rη, thenρ ◦ η is defined and is inRM

• if ϕ ≡ ψ1 ∧ ψ2, thenM, ρ |= ψ1 andM, ρ |= ψ2

• if ϕ ≡ ψ1 ∨ ψ2, thenM, ρ |= ψ1 or M, ρ |= ψ2

• if ϕ ≡ ¬ψ1, thenM, ρ 6|= ψ1

• if ϕ ≡ 〈v〉ψ, then there exists an extensionρ′ of ρ to v such thatM, ρ′ |= ψ

• if ϕ ≡ [v]ψ1, then for all extensionsρ′ of ρ to v, M, ρ′ |= ψ1 holds.

The above recursive semantics gives a model checking algorithm for CL. Note that if one con-
siders the configuration size to be constant, then this algorithm is linear in the size of the formula.

4. Skolem Functions and Herbrand Configurations

We show in this section how Skolem functions and Herbrand universes can be generalized to CL.
Herbrand universes give a configuration construction method.

4.1. Skolem Functions

As for classical first-order logic, skolemization is the process of expanding the language by
adding function symbols, in order to replace a sentence by anequivalent universal sentence. To
simplify the presentation of Skolem functions, we considerthat every formula has been converted
to negative normal form (NNF) by pushing negations down to atomic formulas.

Definition 14 (Skolemization). Let CL be a CL language andϕ be a sentence in this language. We
define recursively a skolemization ofϕ as:

• an extensionSL of the languageCL by adding new partial functions symbols

• a universal sentenceSkolem(ϕ) in SL

in the following way:

• Skolem(Rη) = Rη

• Skolem(¬Rη) = ¬Rη

• Skolem(ϕ ∧ ψ) = Skolem(ϕ) ∧ Skolem(ψ)

• Skolem(ϕ ∨ ψ) = Skolem(ϕ) ∨ Skolem(ψ)

• Skolem(〈v〉ϕ) = Skolem(ϕ {v/w.f(w̄)}) wherew is the parent ofv, the variablesw̄ are
the free variables of〈v〉ϕ andw.f(w̄) is a new partial function symbol added toSL having
the same name asv

• Skolem([v]ϕ) = [v]Skolem(ϕ)

As for classical first-order logic, one can for a configuration M onCL create a configuration on
SL calledSkolem ExtensionSM to SL, in the following way:

• SM agrees withM for all relations and partial functions ofCL

• for new partial functions, one defines recursively (i.e. during the recursion of definition 14):
If w.f(w̄) is introduced for〈v〉ϕ, let the domain ofw.fSM(w̄) be the set ofρ such that
SM, ρ |= 〈v〉ϕ and pickρ′, an extension ofρ to v, such thatSM, ρ′ |= ϕ. Finally, define
w.fSM(ρ) to beρ′(v).

We can now show that as for first-order logic, the skolemization of a CL formula preserves its
validity.

Proposition 1. LetCL be a CL language,ϕ be a sentence in this language andSL andSkolem(ϕ)
be a skolemization ofϕ. Let alsoM be aCL-configuration andSM be aSkolem ExtensionofM
to SL.

We have that for any valuationρ and formulaψ of SL met during skolemization,SM, ρ |= ψ
holds if and only ifSM, ρ |= Skolem(ψ) holds.

Proof. By induction on the number of connectors and quantifiers inψ.
For ψ an atomic formula, the negation of an atomic formula, a conjunction, a disjunction or a

universal quantified formula the result easily holds.
Forψ ≡ 〈v〉ϕ, we have that sinceSM is a Skolem extension ofM, it follows thatSM, ρ |=

〈v〉ϕ if and only if SM, ρ |= ϕ {v/w.f(w̄)}.
By induction hypothesis, we have that

SM, ρ |= ϕ {v/w.f(w̄)} if and only if SM, ρ |= Skolem(ϕ {v/w.f(w̄)})

By definition of skolemization,Skolem(〈v〉ϕ) = Skolem(ϕ {v/w.f(w̄)}). Therefore, the
claim holds.

4.2. Herbrand Configurations

Now that we have generalized Skolem functions to CL, we can build configurations using Her-
brand universes as we show in this section.

Definition 15. A term is said to be closed if it contains no variables. We denote byCT (CL) the
closed terms of a configuration languageCL.

As for classical first-order logic, the value of a closed termdoes not depends on the chosen
valuation.

Proposition 2. Let t be a closed termt andρ be a valuation. The nodeρ(t) is independent of the
valuation chosen.

Proof. The proof goes by induction. If the term is a function symbol,then it is a term of the form
f(), with empty prefix and no variables. Thereforedom(f()) contains a unique valuation (the
empty valuation).

If the result holds for the terms of the range ofη, then sinceρ(v.fη) = (v.fM)(ρ ◦ η) and since
ρ ◦ η does not depend onρ by induction hypothesis, we have that the value of the term does not
depend onρ.

Herbrand configurations are, as for classical first-order logic, the configurations built using
closed terms.

Definition 16. LetCL be a CL language andM be aCL-configuration. The Herbrand configuration
of M is the configuration

HM = 〈HM ;RHM(v̄), w.fHM(w̄)〉

• R ranges overR

• w.f(w̄) ranges overF

• HM = {ρ(t); t ∈ CT (CL)}, whereρ is a valuation

• RHM = RM for R ∈ R

• v.fHM(v̄) = v.fM(v̄), for v.f(v̄) ∈ F

Proposition 2 shows thatHM is well defined. Finally, as for classical first-order logic,satisfiability
of a universal sentence is preserved by sub-structure.

Proposition 3. Let CL be a CL language,M be aCL-configuration andHM be the Herbrand
configuration ofM. If ϕ is a universal sentence satisfied byM, thenϕ is also satisfied byHM.

Proof. A valuationρ of HM is also a valuation ofM. One can show the result by induction on
the structure of the formula.

As in classical first-order logic, Herbrand configurations are a way to build a configuration sat-
isfying a given sentence. Takeϕ such a sentence. TakeM a configuration satisfyingϕ, SM be
its Skolem extension andHSM be the Herbrand universe ofSM. SinceSM agrees withM
for all relations and partial functions of the original language,SM |= ϕ holds. By Proposition 1,
SM |= Skolem(ϕ) holds. Finally by Proposition 3HSM |= Skolem(ϕ) holds, thus reducing
satisfiability to buildingHSM.

5. Conclusion and Future Work

This paper gave a presentation of a suitably chosen subset ofthe XML Query Language XQuery
called Configuration Logic as a generalization of first-order logic in which the set of variables forms
a forest. It also provided a formal semantics and generalizations of Skolem functions and Herbrand
universes to this setting.

Support for defining and verifying network properties in Configuration Logic has already been
integrated into the network configuration tool ValidMaker [10]. Current work is ongoing to further
extend the tool by adding a configuration construction functionality based on the results of this
paper as well as to give a precise computational complexity analysis of the logic.

More generally for logic in AI, this work shows that adding more structure to the set of variables
of a first order logic can keep the validity of classical constructions while giving a new range of
applicability. We considered a forest of variables but moregenerally, it should be interesting to
investigate the range of applicability one could obtain using alternative structures such as graphs.

References

[1] A guide to SNARK. http://www.ai.sri.com/snark/tutorial.

[2] The PROTHEO project home page. http://protheo.loria.fr.

[3] H. Andréka, J. van Benthem, and I. Németi. Modal languages and bounded fragment of predicate logic. Technical
Report ML-96-03, ILLC Research Report, 1996.

[4] S. Boag, D. Chamberlin, M. F. Fernández, D. Florescu, J.Robie, and J. Siméon. XQuery 1.0: An XML query
language, W3C working draft, 2005.

[5] L. Cardelli. Describing semistructured data.SIGMOD Rec., 30(4):80–85, 2001.

[6] L. Cardelli and G. Ghelli. Tql: a query language for semistructured data based on the ambient logic.Mathematical.
Structures in Comp. Sci., 14(3):285–327, 2004.

[7] W. Charatonik and J.-M. Talbot. The decidability of model checking mobile ambients.Lecture Notes in Computer
Science, 2142:339–354, 2001.

[8] J. Clark and S. DeRose. XML path language (XPath) version1.0, W3C recommendation, 1999.

[9] E. M. Clarke, O. Grumberg, and D. A. Peled.Model Checking. MIT Press, Cambridge, MA, 2000.

[10] R. Deca, O. Cherkaoui, and D. Puche. A validation solution for network configuration. InCNSR, pages 273–275.
IEEE Computer Society, 2004.

[11] R. Enns. Netconf configuration protocol, IETF Internetdraft, February 2006.

[12] M. Genesereth and N. J. Nilsson.Logical Foundations of Artificial Intelligence. Morgan Kaufmann, 1987.

[13] S. Hallé, R. Deca, O. Cherkaoui, and R. Villemaire. Automated validation of service configuration on network
devices. In J. B. Vicente and D. Hutchison, editors,MMNS, volume 3271 ofLecture Notes in Computer Science,
pages 176–188. Springer, 2004.

[14] S. Hallé, R. Deca, O. Cherkaoui, R. Villemaire, and D. Puche. A formal validation model for the netconf protocol.
In A. Sahai and F. Wu, editors,DSOM, volume 3278 ofLecture Notes in Computer Science, pages 147–158.
Springer, 2004.

[15] I. M. Hodkinson. Loosely guarded fragment of first-order logic has the finite model property.Studia Logica,
70(2):205–240, 2002.

[16] W. McCune. Skolem functions and equality in automated deduction. InAAAI, pages 246–251, 1990.

[17] W. McCune. MACE 2.0 reference manual and guide. Technical report, Argonne National Laboratory, May 2001.
Technical Memorandum No. 249.

[18] I. Pepelnjak and J. Guichard.MPLS VPN Architectures. Cisco Press, 2001.

[19] E. Rosen and Y. Rekhter. BGP/MPLS VPNs. Technical Report RFC 2547, IETF, 1999.

[20] R. Villemaire, S. Hallé, and O. Cherkaoui. Configuration logic: A multi-site modal logic. InTIME, pages 131–137.
IEEE Computer Society, 2005.

[21] L. Wos and G. W. Pieper.Automated Reasoning and the Discovery of Missing and Elegant Proofs. Rinton Press,
2003.

[22] J. Zhang and H. Zhang. System description: Generating models by SEM. In M. A. McRobbie and J. K. Slaney,
editors,CADE, volume 1104 ofLecture Notes in Computer Science, pages 308–312. Springer, 1996.

