
1

Runtime Enforcement of Web Service
Message Contracts with Data

Sylvain Hallé†, Member, IEEE, Roger Villemaire‡, Affiliate Member, IEEE

Abstract —An increasing number of popular SOAP web services exhibit a stateful behaviour, where a successful interaction is
determined as much by the correct format of messages as by the sequence in which they are exchanged with a client. The
set of such constraints forms a “message contract” that needs to be enforced on both sides of the transaction; it often includes
constraints referring to actual data elements inside messages. We present an algorithm for the runtime monitoring of such
message contracts with data parameterization. Their properties are expressed in LTL-FO+, an extension of Linear Temporal
Logic that allows first-order quantification over the data inside a trace of XML messages. An implementation of this algorithm
can transparently enforce an LTL-FO+ specification using a small and invisible Java applet. Violations of the specification
are reported on-the-fly and prevent erroneous or out-of-sequence XML messages from being exchanged. Experiments on
commercial web services from Amazon.com and Google indicate that LTL-FO+ is an appropriate language for expressing
their message contracts, and that its processing overhead on sample traces is acceptable both for client-side and server-side
enforcement architectures.

Index Terms —Web services, runtime monitoring, temporal logic

✦

1 INTRODUCTION

From a messaging point of view, web service interactions
can be considered as processes where the input and output
of operations is composed of self-contained units (“mes-
sages”) formed of various data elements. The precise format
in which such operations can be invoked is detailed in
an interface specification; for SOAP-based interactions, the
Web Service Description Language (WSDL) [1] provides
a way of defining the structure and acceptable values
for XML requests and responses exchanged with a given
service. A third-party, such as a web application developer,
is required to comply with this specification to ensure a
successful interaction with the service. In such a frame-
work, each request-response pattern is supposedstateless
and independent of any history.

Yet, we shall see in Section 2 that two popular web
services, the Amazon e-Commerce Service and the Google
Checkout service, rather exhibit stateful behaviour, where
a successful interaction requires messages to be exchanged
according to additional,sequential constraints. Further-
more, many “data-aware” properties are such that the the
sequence of messages and their content are interdependent.
Due to the intended stateless nature of web services,
existing interface specification languages such as WSDL do
not allow such dependencies to be specified. Most of them
can be found by perusing the plain-text documentation of
a service. Consequently, web service validation approaches
focusing on WSDL compliance lack the ability to enforce
complex sequential patterns of interaction at runtime.

In this paper, we present an algorithm for the runtime

†Université du Québec à Chicoutimi, Canada; e-mail: shalle@acm.org.
‡Université du Québec à Montréal, Canada; e-mail: villemaire.roger@-
uqam.ca.

enforcement of such data-aware web servicemessage con-
tracts. To express them using a uniform formal notation,
in Section 3 we introduce LTL-FO+, an extension of the
well-known Linear Temporal Logic (LTL) providing first-
order quantification over the data inside a trace of XML
messages. We show how LTL-FO+ is suitable for ex-
pressing the message contracts for Amazon’s and Google’s
examples.

In Section 4, we develop a runtime monitoring algorithm
for LTL-FO+. This algorithm distinguishes itself from
existing approaches in two respects: 1) the algorithm allows
the monitored properties to quantify over data fields inside
messages; 2) it works “on-the-fly”, without the need to pre-
compute an automaton, to store previous messages or to
keep in memory anything except its current symbolic state.

To assess the feasibility of LTL-FO+ runtime monitoring
in practical contexts, we performed a set of experiments
on some of the properties mentioned in Section 2. We
developed an open source, freely available Java applet
called BeepBeep, that can be used for runtime enforcement
both on JavaScript clients and Java-based servers. In Sec-
tion 5, the results of these experiments are presented and
discussed. They indicate that runtime monitoring of LTL-
FO+ can be performed in real-world scenarios and does not
impose a large processing overhead, even for transactions of
10,000 messages and data domains of up to 1,000 elements.

The contributions of this paper are manifold. First, the
paper provides an original study of web service interface
specifications: it extracts and formalizes a number of con-
straints where sequential and data constraints are inter-
mixed. It provides a simple and efficient algorithm for the
runtime enforcement of these constraints and demonstrates
its soundness. To the best of our knowledge, this is also the
first systematic empirical study of a runtime enforcement

2

approach on commercial web services, with large message
sequences and realistic data domains.

2 CONSTRAINTS ON WEB SERVICE MES-
SAGE SEQUENCES

The analysis of web service messaging interfaces can
follow a “behaviourist” conception similar to the way it
is actually invoked by a third party: one knows of a web
service only what he can observe by interacting with it. This
includes any message sent to the service, and any response
emitted by that service. The internal state of a service, the
contents of any database it can query are therefore irrelevant
to our study. In this perspective, avalid interaction with a
service is simply a sequence of messages (received and
sent) which does not contain errors, and whose responses
correspond to the behaviour from that service.

In the following, we present two real-world web services,
taken from major players in the field. We show that for
both of them, valid, error-free interactions consist not only
of individual valid messages, but that values in various
messages of asequenceare actually interdependent.

2.1 The Amazon E-Commerce Service

Recent statistics indicate that more than 330,000 developers
are registered in Amazon’s programs and that its daily
web service transactions consume more bandwidth than
the Amazon.com web site itself [2]. Among the broad
palette of offerings, a straightforward one is the Amazon E-
Commerce Service (ECS) [3], which makes Amazon.com’s
inventory available through a web service interface. In
addition to simple search and browsing functionalities, the
ECS also provides shopping cart manipulation operations
that allow a client to create an order.

The semantics of the ECS operations follows the nat-
ural understanding of how a shopping cart should be
handled: operations such as ItemSearch, CartCreate, Car-
tAdd, CartRemove, CartModify and CartClear are self-
explanatory. As expected, error messages will be sent
if nonsensical sequences of commands are attempted. A
simple example is the following:

Runtime Property 1. Until a cart is created, the only
operation allowed is ItemSearch.

As the ECS documentation specifies, trying to per-
form any operation on a cart requires a cart ID, which
is only returned as the response to a CartCreate mes-
sage. Therefore, until that time, the only remaining valid
operation is ItemSearch; performing any other operation
will result in a AWS.ECommerceService.InvalidCartId or
AWS.MissingParameters error messages. Similarly, cart
manipulation follows a couple of natural rules:

Runtime Property 2. A client cannot remove something
from a cart that has just been emptied.

As the ECS documentation specifies, doing so will result
in the AWS.InvalidParameterValue error message being
sent to the application.

However, while it is reasonable to believe that any quality
application will actually check this obvious property by
itself, the ECS documentation lists other constraints which
are much less “natural”; an example is the following:

Runtime Property 3. A client cannot add the same item
twice to the shopping cart.

This constraint, which is indeed part of the docu-
mentation, has nothing to do with the “natural” prop-
erties of a shopping cart, but rather deals with the
particular implementation of the ECS. The service ex-
pects any modifications to items already present in the
cart to be made through an Edit message; adding one
more item therefore becomesediting the quantity of
that item (in this case, incrementing it by one). Adding
an existing item through the Add operation is greeted
by the AWS.ECommerceService.ItemAlreadyInCart error
message.

The previous constraints deal with requirements on the
service consumer side which, if violated, provoke error
messages by the ECS. Conversely, some constraints can
also be elicited from the service’s responses to a client’s
requests. For example:

Runtime Property 4. A shopping cart created with an item
should contain that item until it is deleted.

Constraints on message sequences and parameters are not
specific to shopping cart-like transactions. Requirements
of a similar nature can be found in other Amazon web
services, such as the Amazon Fulfilment Web Service [4].

2.2 Google Checkout

The sequential nature of these constraints is not the result
of an exceptional design decision specific to Amazon. To
prove our point, we provide an additional study from a
second major web service provider, Google. A commercial
web service suite provided by the Google company, called
the Google Checkout API, allows to transfer money to and
from credit card and bank accounts between its registered
members or other financial institutions [5]. In addition to
direct usage by individuals, an organization wishing to
use these functionalities from its own web site can do so
through Google’s web service API.

This service involves a number of interactions between
a client and the server. In particular, the server periodically
sends notifications about the status of a pending order.
The following constraint, taken from the Express Checkout
documentation, indicates that the consumer of the service
is not allowed to continue a transaction until a special
notification has been received:

Runtime Property 5. Before shipping the items in an
order, the client should wait until it has also received the
risk information notification for that order as well as the
order state change notification informing the client that the
order’s financial state has been updated toCHARGEABLE.

Moreover, some constraints in Google’s documentation

3

also relate to the timing between different messages sent
and received:

Runtime Property 6. In a notification-history-request mes-
sage, the start-time element’s value must not be within 30
minutes of the time that the API request is submitted, or
more than 450 days earlier than the time that the API
request is submitted.

The key point in these examples is that assuming “rea-
sonable” interaction with a service is not enough to prevent
error-free communications. Implementation details, specific
to a particular instance of a service, create additional con-
straints on the possible operations that cannot be guessed
unless explicitly specified in some way. Moreover, these
two examples are not exceptional. Other web service con-
texts where the sequence of messages must be taken into
account have been described [6]–[9].

In each of these scenarios, additional constraints can
complexify the monitoring process: asynchronous commu-
nications, lost, delayed or out-of-order messages can distort
an otherwise valid interaction, without it being any of the
services’ “fault”. In this paper, a focus has been placed on
providing means ofdetectingthat an assumption on the
communication has been violated for one of the collaborat-
ing services; to repair an invalid transaction or to determine
the actual cause of the violation, our runtime enforcement
mechanism can be used to call arbitrary functions defined
by a developer.

2.3 A Case for Runtime Enforcement
As these examples show, the combination of sequential and
data constraints forms amessage contractthat interface
description languages such as WSDL are not designed to
express. Nevertheless, both the service provider and an
eventual third-party client must abide with these constraints
to ensure a successful interaction: failure to do so results
in non-sensical interactions, and in most cases, to error
messages.

One possible way to ensure compliance to these con-
straints is to formalize them, and monitor them at runtime.
Such a mechanism can be implemented and used in various
ways.

In client-side enforcement, a client interacting with
some web service is given the formal contract definition and
applies it to the sequence of messages it sends and receives.
The runtime enforcement mechanism acts as a “safety net”
that prevents the relay of non compliant messages to the
web service in case the client’s application logic is faulty.
The same monitor can be used to ascertain that the web
service itself fulfils its part of the contract, and returns what
the contract says it should.

In server-side enforcement, an external runtime moni-
toring module intercepts the messages at the interface on
the web service’s side and performs the same checks as for
client-side monitoring. Depending on the specification to
enforce, a monitor can even be used to detect malicious
patterns of non compliant behaviour such as cross-site
scripting or replay attacks.

The monitoring task can also be sent to an external,
trusted third-party called aprotocol controller [10]. In-
ternal checks can be bypassed if both sides trust that
this controller will block any non-compliant sequences of
messages. Finally, a runtime monitor can be used in offline
mode on a pre-recorded trace of messages to performlog
analysis.

Several arguments in favour of runtime enforcement
approaches have been put forward [6]. First, the satisfaction
of requirements sometimes depends on assumptions on
the partners that cannot be verified prior to the actual
implementation of the system. In the particular case of
service-oriented architectures, partners can be discovered
dynamically and can even change drastically during execu-
tion, invalidating the assumptions on which a process was
initially deemed correct.

Moreover, in some occasions, a static,a priori model
checking of the intended process is simply impossible
or intractable because of the size of data domains [11].
For example, on the theoretical level, web services com-
municate through channels of potentially infinite length,
thereby rendering the general model checking problem
undecidable unless resorting to some form of simplification
or abstraction of the original model. A runtime monitor has
the advantage of working with the actual implementation
of a process.

Finally, even cases where model checking is possible can
present a challenge. The partners involved in a business
process can be implemented in heterogeneous languages
and formalisms that make it hard to have a uniform,
global picture of the whole conversation suitable for a
static verification. [12] describes a system combining BPEL
processes with Java-based partners and concludes that static
analysis approaches do not handle such features well. There
also exist situations at runtime which, although they do
not constitute strict violations of a specification, must be
addressed as soon as they are discovered: [13] gives the
example of an online shop being refused a money transfer
by its partner bank, or of a client repeatedly asking for
products that are no longer in stock.

Independent of these technical aspects, the runtime mon-
itoring of a process is also sound business-wise. [14]
remarks that monitoring can increase trust in an electronic
marketplace by providing the consumer of a service the
ability to check by itself the transaction that takes place.

3 FORMALIZING MESSAGE CONTRACTS

Sequential properties of interactions are generally expressed
with a variant of a state machine or temporal logic. How-
ever, as will be detailed in Section 6, none of the repre-
sentations we surveyed were appropriate in our context.
Many missed the quantification over the data fields of the
messages required in our examples. Those that did imposed
restrictions on quantification that made them unsuitable for
a web service scenario.

The logic we present in this section is LTL-FO+, a
first-order extension of a well-known logic called Linear

4

Temporal Logic (LTL); LTL has already been suggested
for the static verification of web service interface contracts
[15]–[17]. Although we concentrate on LTL, our approach
is general: many other languages can be mapped into
equivalent LTL expressions, or extensions thereof; this
includes, among others, Message Sequence Charts [18],
SSDL’s Message Exchange Patterns (MEP) and Rules pro-
tocol frameworks [19], and theLet’s Dancechoreography
description language [20].

3.1 Messages and Traces

LTL has been introduced to express properties about se-
quences of states in systems called Kripke structures [21].
In the present case, the states to be considered are messages
inside a conversation. Formally, let us denote byM the set
of XML messages. A sequence of messagesm1,m2 . . . ,
wheremi ∈M for every i ≥ 1, is called a message trace.
We write mi to denote thei-th message of the tracem,
andmi to denote the trace obtained fromm by starting at
the i-th message.

A domain function is used to fetch and compare values
inside a message; it receives an argumentπ representing
a path from the root to some element of the message.
This path is defined using standard, XPath 1.0 notation.
Formally, if we letD be a domain of values, andΠ be
the set of XPath expressions, the domain functionDom
is an applicationM × Π → 2D which, given a message
m ∈ M and a pathπ ∈ Π, returns a subsetDomm(π) of
D, representing the set of values appearing in messagem
at the end of the pathπ. For example, if we letΠ be the
set of XPath formulæ,π ∈ Π be the particular formula
“/message/stock/name”, andm ∈ M be the following
message:

<message>
<action>placeBuyOrder</action>
<stock>
<name>stock-1</name>
<amount>123</amount>

</stock>
<stock>
<name>stock-2</name>
<amount>456</amount>

</stock>
</message>

thenDomm(π) = {stock-1, stock-2}.

3.2 Syntax and Semantics of LTL-FO +

LTL-FO+’s syntax is based on classical propositional logic,
using the connectives¬ (“not”), ∨ (“or”), ∧ (“and”), →
(“implies”), to which four temporal operators have been
added. An LTL-FO+ formula is a well-formed combination
of these operators and connectives, according to the usual
construction rules:

Definition 1 (Syntax). 1) If x and y are variables or
constants, thenx = y is a LTL-FO+ formula;

m |= c1 = c2 ⇔ c1 is equal toc2
m |= ¬ϕ ⇔ m 6|= ϕ

m |= ϕ ∨ ψ ⇔ m |= ϕ or m |= ψ

m |= Fϕ ⇔ mi |= ϕ for somei ≥ 1

m |= X ϕ ⇔ m2 |= ϕ

m |= ϕUψ ⇔ mj |= ψ for somej andmi |= ϕ

for i < j

m |= ∃πxi : ϕ ⇔ m |= ϕ[b/xi] for someb ∈ Domm1
(π)

TABLE 1
Semantics for LTL-FO+

. 2) If ϕ andψ are LTL-FO+ formulæ, then¬ϕ, ϕ ∧ ψ,
ϕ ∨ ψ, ϕ → ψ, Gϕ, Fϕ, X ϕ, ϕUψ, ϕV ψ are
LTL-FO+ formulæ;

3) If ϕ is a LTL-FO+ formula,xi is a free variable in
ϕ, p ∈ Π is a parameter name, then∃pxi : ϕ and
∀pxi : ϕ are LTL-FO+ formulæ.

The semantics of each of these symbols is then defined
as follows:

Definition 2 (Semantics). We say a message tracem
satisfiesthe LTL-FO+ formulaϕ, and writem |= ϕ if and
only if it respects the rules in Table 1. As usual, we define
the semantics of the other connectors with the following
identities:ϕ∧ψ ≡ ¬(¬ϕ∨¬ψ), ϕ→ ψ ≡ ¬ϕ∨ψ, Gϕ ≡
¬(F¬ϕ), ϕV ψ ≡ ¬(¬ϕU¬ψ), ∀px : ϕ ≡ ¬(∃px : ¬ϕ).

Boolean connectives carry their usual meaning. The
temporal operatorG means “globally”: the formulaGϕ
means that formulaϕ is true in every message of the trace.
The operatorF means “eventually”; the formulaFϕ is
true if ϕ holds for some future message of the trace. The
operatorX means “next”; it is true wheneverϕ holds in the
next message of the trace. Finally, theU operator means
“until”; the formulaϕUψ is true ifϕ holds for all messages
until some message satisfiesψ.

3.3 LTL-FO+ for Message Contracts

Equipped with this semantics, we can revisit the previ-
ous examples and show how runtime properties can be
expressed as LTL-FO+ formulæ.

The simplest of them is Runtime Property 2, which
stipulates that a CartRemove message cannot be sent for
a cart that has just been cleared (and still does not contain
any item). Its formalization in LTL-FO+ is straightforward:

G (∀CartClear/CartIDc1 : ((∀CartRemove/CartIDc2 : c1 6= c2)
W (∃CartAdd/CartIDc3 : c1 = c3)))

The W operator is called “weak until”; the formula
ϕW ψ is similar toϕUψ, except thatψ is not required to
eventually hold as long asϕ remains true.1 The formula
says that globally, every time a cart IDi1 is seen in
a CartClear message, then this cart ID is not seen in

1. Formally:ϕW ψ ≡ (ϕUψ) ∨ (Gϕ).

5

a CartRemove message until it appears in a CartAdd
message. This indeed ensures that one cannot attempt to
remove something from a cart that has just been cleared.

The previous formula only invokes cart IDs at multiple
moments in the trace. Runtime Property 3 requires to
combine cart and item IDs, as follows:

G (∀CartCreate/Items/Item/ASINi1 :
X (∀CartCreateResponse/CartIDc1 :
G (∀CartAdd/CartIDc2 : ((c1 = c2) →
(∀CartAdd/Items/Item/ASINi2 : i1 6= i2)))))

This formula says that globally, for every itemi1 found
in a CartCreate request and every cart IDc1 found in its
subsequent response, the following holds: from now on,
every CartAdd message involving a cart IDc2 is such that,
if c2 is the same asc1, then none of the item IDs in that
CartAdd message is equal toi1. Hence, any item used to
create a cart cannot be later added to that same cart, which
is equivalent to Runtime Property 3.

For the sake of completion, we provide the LTL-FO+

translation of Runtime Property 4, which is:

G (∀CartAdd/Items/Item/ASINi1 : (∀CartAdd/CartIDc1 :
ϕ(c1, i1)W ψ(c1, i1))))

The formulæϕ(c1, i1) and ψ(c1, i1) take c1 and i1 as
parameters and are defined as:

ϕ(c1, i1) = ∀CartGetResponse/CartIDc5 : (c1 = c5 →
∃CartGetResponse/Items/Item/ASINi5 : i1 = i5)

ψ(c1, i1) = ∀CartRemove/CartIDc4 :
(c1 = c4 ∧ ∃CartRemove/Items/Item/ASINi4 : i1 = i4)

Informally, ϕ(c1, i1) expresses the fact that the current
message is a CartGetResponse with a cart ID equal to
c1 and which contains an item ID equal toi1; ψ(c1, i1)
expresses the same fact, but about a CartRemove message.
Runtime Property 4 then says that for every itemi1 found
in a CartAdd for cart IDc1, then i1 appears in every
CartGetResponse for that cart until it is removed from the
cart. At this point, the reader should be convinced that the
runtime properties shown in Section 2 can be expressed
into equivalent LTL-FO+ formulæ. We omit the translation
of the remaining runtime properties.

The amount of effort required to formulate LTL-FO+

message contracts is not as daunting as it appears. First of
all, extracting the plain-text constraints from the English
documentation of a service should not count as part of
the task, since these constraints must always be taken into
account by the developer when writing an application, even
if they are not to be formally monitored. The intent to
monitor merely provides an incentive to collect them in
a systematic way.

Once each constraint is identified, it generally provides
all the necessary information to formalize it into LTL-
FO+. This amounts to writing the path expressions that
fetch relevant attributes for each message, and inserting

LTL operators in between to specify the proper temporal
relations. Writing down the expressions for the examples in
this paper were a matter of a few minutes: they contain at
most five or six path expressions, and two to three temporal
operators.

3.4 Extension to Metric Temporal Logic

Metric temporal logic (MTL) is an extension of regular
temporal logic to time intervals. Time intervals are used
for expressing time delays in business contracts, as the
properties in [22] demonstrate. The Google Express Check-
out service shows examples of such constraints; Runtime
Property 6 refers to time, and time differences between
messages.

The present framework handles it by adding a timestamp
τ to each message. The actual timestamp need not even
be exchanged through messages, but quantification onτ
simply amounts to fetching the current timestamp from the
system’s clock. In the same way as [23], metric temporal
logic then becomes a particular case of data parameteriza-
tion. For example, Runtime Property 6 becomes:

G (∀actiona : ∀start-timet :
a = “notification-history-request”→
(|t− τ | > 30 ∧ |t− τ | < 450× 1, 440))

It specifies that thestart-time element of any
notification-history-request message must be at last 30
minutes, and at most 450 days away fromτ , the current
value of the system clock.

4 RUNTIME ENFORCEMENT OF MESSAGE
CONTRACTS

Work on runtime monitoring begins with a classical result
on Linear Temporal Logic:

Theorem 1 (From e.g. [24]). For every LTL formulaϕ,
there exists a B̈uchi automatonM such that for every
infinite trace σ, we have thatσ |= ϕ if and only if
σ ∈ L(M).

In other words, this result indicates that given an LTL
formula ϕ, there exists a Büchi automaton that accepts
exactly the infinite traces satisfyingϕ. Performing LTL
runtime monitoring becomes straightforward: it suffices to
build this automatonM , determinize it if required, and then
“follow” a path inM as a particular trace is read. The trace
violatesϕ if, at some point, no valid transition exists from
the current state ofM , given the next event to read. This
is the approach followed in e.g. [25].

4.1 Monitoring with Data

A problem arises with this approach when quantification
on data elements is introduced, as is the case with LTL-
FO+. If the domains are infinite or not known in advance,
the Büchi automaton becomes impossible to build. Even if
the domains are finite, they can be large enough to prevent

6

automaton construction as well (think of the case where a
property is expressed on an item ID, which can be anything
in Amazon’s catalogue).

A key observation comes from the fact that in runtime
monitoring, the Büchi automaton can be constructedon-
the-fly. Only the start state of the automaton is initially
“built”. Then, as the trace is progressively read, only the
parts of the automaton relevant to that particular trace
can be expanded. This result is interesting for classical
LTL in itself: a propositional version of this algorithm is
used internally by the SPIN model checker to transform
an LTL formula into a Büchi automaton [26]. However, it
becomes crucial in LTL-FO+ runtime monitoring. Instead
of generating all states for all possible values of a given
parameter, an on-the-fly algorithm will only create the states
corresponding to values that have actually beenobserved.
Since all messages are finite (yet unbounded), for any finite
prefix of any trace, the set of observed values will be finite,
and so will be the number of states of the partial Büchi
automaton.

This in turn is only possible because of the particular
definition of message quantification in LTL-FO+, where a
quantifier applies to values fetched in thecurrentmessage.
Hence the LTL-FO+ formula ∀πx : Fϕ(x) indicates that
the values at the end of pathπ in the first message of
the trace (i.e.Domm1

(π)) all eventually reappear to fulfil
ϕ. Using a classical first-order quantifier, the previous
formula would rather mean that all valuesx in some domain
Dom·(π) (independent of any message) eventually satisfy
ϕ(x). This is impossible to verify if the domain is not
known in advance, or if it is infinite.

4.2 On-the-Fly Monitoring Algorithm for LTL-FO +

We now describe an algorithm that allows for the runtime
monitoring of LTL-FO+ formulæ. We construct awatcher
for a formulaϕ which, when fed with the messages from
a trace one by one, updates its state and warns of eventual
violations ofϕ.

Definition 3 (Watcher). A watcher for a formula ϕ is a
tupleWϕ = 〈Q, q0, δ, O, f〉 where:

• Q is a set ofstates;
• q0 ∈ Q is the initial state;
• δ : Q×M → Q is the transition orupdatefunction;
• O is a set ofoutcomes, i.e. the possible conclusions

that a watcher can draw on a given trace;
• f : Q→ O is an outcome function.

Formally, a watcher is a special case of finite-state
automaton where the set of accepting states is replaced
by a function f returning an “outcome” for each state.
The watcher starts in its initial stateq0; then, for each
messagem that is monitored, the update functionδ(q,m)
is called to take the watcher into its updated stateq′.
At any time during the monitoring process, the outcome
function f can be applied on the watcher’s state to decide
whether the monitored property is violated, fulfilled, or if
nothing can yet be concluded from the execution up to

δ(q,m)
q′ = ∅
For eachN = Γ
 ∆ ∈ q
N ′ = ∆
 ∅
q′ = q′ ∪ UPDATE(m,N ′)

End for
Returnq′

End function

TABLE 2
The function δ changes the state of the watcher based

on a message observed in the trace.

that point. This definition makes no assumption about any
process instrumentation or annotation. The watcher can be
implemented as a local process intercepting messages sent
and received, called by aspect-oriented “pointcuts” [27],or
implemented as an external observer acting as a verifying
layer between acting parties [13].

Although LTL-FO+ is similar in many respects to an-
other logic called CTL-FO+, the model checking algorithm
developed in [8] cannot be adapted for runtime monitoring.
Its effectiveness relies on the fact that data quantification
can be modelled as a particular form of branching path
quantification. Since LTL-FO+ provides no such path quan-
tifiers, a whole new algorithm must be provided to tackle
runtime monitoring.

The algorithm is inspired from [26] and adapted to
the first-order quantification mechanism of LTL-FO+. It
is based on the principle that the standard LTL temporal
operators can be represented through a fixpoint notation
connecting the current and the next state of the trace. For
example, the identityFϕ ≡ ϕ ∨ X (Fϕ) indicates that
checkingFϕ on a message amounts to checking ifϕ is
true in the current message, and if not, wait for the next
state and checkFϕ again. Based on that observation, a
simple update algorithm can be developed to keep track
of what must be true now, and what must be true in the
remainder of a trace.

To this end, we define anodeas a pairN = Γ
 ∆,
whereΓ is a set of LTL-FO+ formulæ that must be true
in the current state, and∆ is a set of LTL-FO+ formulæ
that must be true in the next state. We assume without
loss of generality that negations can be pushed down to the
ground terms by use of the identities in Definition 2 and
the formulæc1 6= c2 ≡ ¬(c1 = c2) andX ϕ ≡ ¬(X ¬ϕ).

4.2.1 Transition Function

The state q ∈ Q of the watcher consists of a (finite)
set of nodes. Intuitively, each node in the watcher’s state
represents one possible way in which the observed trace
can fulfil the propertyϕ. Therefore, the initial stateq0 of
Wϕ is composed of the single node∅
 {ϕ} —that is, no
message has yet been observed, and the LTL-FO+ formula
ϕ must hold on the next (i.e. the first) message of the trace.
Then, each time a new messagem is observed, the state
of the watcher is updated via a theδ function shown in
Table 2.

7

The update functionδ simply takes each nodeN ∈ q,
moves the contents of the right-hand side of the node to the
left-hand side (leaving the right-hand side empty), and then
calls an auxiliary function UPDATE on that resulting node.
UPDATE takes a node and decomposes the formulæ from its
left-hand side according to the rules shown in Table 3. On
some occasions, the decomposition of a formula produces
more than one node; the decomposition is then recursively
repeated on each resulting node until no further rule applies.
The set of these terminal, “spawned” nodes is then returned
to δ and included in the new state for the watcher.

This form of decomposition is like a variant of sequent
calculus [28] applied to temporal formulæ. Intuitively, the
function UPDATE decomposes and evaluates all the LTL-
FO+ formulæ that must be true in the current state, eventu-
ally evaluating quantified variables and replacing equalities
with their Boolean value. At the same time, UPDATE trans-
fers to the right-hand side of the node all the properties that
will have to hold in the next iteration of the update function.
The number of nodes spawned by the application of a single
rule is bounded by the number of elements returned by the
functionDom, i.e.k. The resulting tree is therefore of arity
at mostk. As usual, for afinite tracem = m1m2 . . .mn,
we defineδ(q,m) = δ(δ(. . . δ(δ(q,m1),m2) . . .),mn).

It shall be noted that the monitoring algorithm does not
require anya priori knowledge of the message’s structure
or its elements’ types. Message contents are only relevant
when evaluating a first-order quantifier, and this only ap-
plies on-the-fly to the current message, by fetching any
values occurring at the end of a path. If the path does not
exist in the message, the quantifier simply evaluates on the
empty set of values.

4.2.2 Acceptance Conditions
It remains to determine how the watcher can conclude that a
trace fulfils or violates a property. To this end, a set of three
outcomes is used:⊤ indicates that the property is fulfilled,
⊥ indicates that the property is violated, and “?” indicates
an inconclusive result: the property cannot be guaranteed
to be neither true, nor false. The outcome function assigns
to each possible watcher state one of these outcomes.

Definition 4 (Outcome function). Let q be a watcher state,
andO = {⊤,⊥, ?} be the set of outcomes. The outcome
functionf is defined as follows:

f(q) =











⊤ if ∅
 ∅ ∈ q

⊥ if q = ∅

? otherwise

The violation condition is straightforward: if a call toδ
produces no nodes, then there is no possible way for the
trace to continue while still fulfilling the property, and a
violation can be announced.

Conversely, the acceptance condition expresses the fact
that for a trace to respect the property, it suffices that one
of the possible nodes indicates that the property is sure to
be true. This is the case when bothΓ and∆ are empty: in
such a situation, everything that must be true for the current

message has been checked, and nothing more needs to be
verified when the next message is observed.

Finally, when neither result can be concluded from the
current state of the watcher, the outcome function returns
the “inconclusive” result.

4.3 Correctness and Complexity

To prove the soundness and completeness of the runtime
monitoring algorithm, we must first assert the correctness
of the structural decomposition defined in Table 3.

Theorem 2. For a set ofk monitor nodes{N1, . . . , Nk}
of the formNi = Γi
 ∆i (0 ≤ i ≤ k), define

Ψ({N1, . . . , Nk}) =
k
∨

i=1

((

∧

Γi

)

∧ X
(

∧

∆i

))

(1)

where
∨

∅ = false and
∧

∅ = true (therefore,Ψ(∅) = false
and Ψ({N1, . . . , Nk}) = true as soon asNi = ∅
 ∅ for
someNi). LetN = Γ
 ∆ be a node andNi = Γi
 ∆i

(0 ≤ i ≤ k) be thek nodes resulting from the application
of one of the rules in Table 3. Letm = m,m1,m2, . . .
be an arbitrary trace of messages. Thenm |= Ψ({N}) ⇔
m |= Ψ({N1, . . . Nk}).

Proof: The proof is done by showing how the equiva-
lence is preserved by the application of each transformation
rule. We omit the trivial cases of operators¬, ∨ and∧, as
well as temporal operatorsX, G, F, U and W, where the
respective parts of the proof in [26] can be adapted. We
still need to prove ground equality and quantification, as
follows.

1) N = c1 = c2,Γ
 ∆. Two cases must be considered.
First, if m |= c1 = c2, then applying the decompo-
sition rule results in a single nodeN1 = Γ
 ∆.
Hence:

m |= Ψ({N}) ⇔ m |= c1 = c2 ∧ Γ ∧ X ∆

⇔ m |= c1 = c2 andm |= Γ ∧ X ∆

⇔ m |= Γ ∧ X ∆

⇔ m |= Ψ({N1})

Second, ifm 6|= c1 = c2, then applying the decom-
position rule does not produce any node and returns
an empty set. The case forc1 6= c2 is symmetrical.

2) N = ∀px : ϕ,Γ
 ∆. Applying the decomposition
for the universal quantification yields a single node of
the formN1 = ϕ[x/b1], . . . , ϕ[x/bn],Γ
 ∆, where
{b1, . . . , bn} = Domm(p). Then:

m |= Ψ({N}) ⇔ m |= ∀px : ϕ ∧ Γ ∧ X ∆

⇔ m |= ϕ[x/b1] ∧ · · · ∧ ϕ[x/bn]

∧ Γ ∧ X ∆

⇔ m |= Ψ({N1})

3) N = ∃px : ϕ,Γ
 ∆. Applying the decom-
position for the existential quantification spawnsn

8

if if

for

...

TABLE 3
Decomposition rules for a watcher’s state node.

nodes of the formNi = ϕ[x/bi],Γ
 ∆, where
{b1, . . . , bn} = Domm(p). Then:

m |= Ψ({N}) ⇔ ∃px : ϕ ∧ Γ ∧ X ∆

⇔ m |= (ϕ[x/b1] ∨ · · · ∨ ϕ[x/bn])

∧ Γ ∧ X ∆

⇔ m |= (ϕ[x/b1] ∧ Γ ∧ X ∆) ∨ . . .

∨ (ϕ[x/bn] ∧ Γ ∧ X ∆)

⇔ m |= Ψ({N1}) ∨ · · · ∨Ψ({Nn})

⇔ m |= Ψ({N1, . . . , Nn})

One can observe that for a messagem and a node
Γ
 ∅, the result of UPDATE(m,N) is a set of nodes
{N1, . . . , Nn}, such that for every nodeNi, we have
Ni = ∅
 ∆i. Indeed, the repeated application of the rules
in Table 3 progressively decomposes the formulæ inΓ until
only atoms of the formc1 = c2 or c1 6= c2 remain. Each
atom is then evaluated, which results either in its deletion
from the setΓ, or in the deletion of the node altogether.
The function UPDATE simply repeats this process for every
node in a stateq. This observation allows us to say:

Theorem 3. Let m = m1,m2,m3, . . . be a trace of
messages, andq = {N1, . . . , Nn} be the set of nodes in
a watcher such that everyNi is of the formNi = ∅
 ∆i.
Let q′ = δ(q,m2). We have thatm1,m2,m3, . . . |= Ψ(q)
if and only ifm2,m3, . . . |= Ψ(q′).

Proof: By definition:

m1,m2,m3, . . . |= Ψ(q) ⇔ m1,m2,m3, . . . |= X Γ

⇔ m2,m3, . . . |= Γ

⇔ m2,m3, . . . |= Ψ(Γ
 ∅)

Then, by Theorem 2, this is equivalent tom2,m3, . . . |=
Ψ(δ(Γ
 ∅,m2)).

It remains to show that the outcome function correctly
assigns a truth value to the state of a watcher.

Theorem 4. Let ϕ be an LTL-FO+ formula, m =
m1,m2, . . . ,mk be a finite trace of messages, andq =
{N1, . . . , Nn} be the set of nodes in a watcher such that
q = δ(∅
 ϕ,m). If f(q) = ⊥ (resp. f(q) = ⊤) then
for any infinite continuationm′ of m, m,m′ 6|= ϕ (resp.
m,m′ |= ϕ).

Proof: By Definition 4,f(q) = ⊥ implies thatq = ∅.
By repeated application of Theorem 3, we have:

m,m′ |= ϕ ⇔ m,m′ |= Ψ(∅
 ϕ)

⇔ m′ |= Ψ(q)

⇔ m′ |= Ψ(∅)

But Ψ(∅) = false by Theorem 2, and hencem,m′ 6|= ϕ.
The proof for the casef(q) = ⊤ is similar.

This result entails that, when the outcome function re-
turns ? after reading some finite prefix of a trace, this prefix
can be extended by at least one more message without
provoking a direct violation of the specification. Note that
this does not mean that the trace itself is guaranteed to
be compliant; for example, the propertyX ⊥ cannot be
satisfied by any infinite trace, yet one needs to reach the
second message of that trace to explicitly violate it. In line
with this observation, the outcome function returns ? until
the second state is read.

Although complexity cannot be demonstrated due to
lack of space, an intuitive argument places it on par with
classical LTL. In the worst case, a Büchi automaton is
exponential in the size of the LTL formula it is based on.

9

Since LTL-FO+ subsumes LTL, the same result applies.
This exponential upper bound, however, is mitigated by the
fact that the algorithm works on-the-fly, and only generates
at any step a small subset of the complete automaton.

4.4 Further Refinements

A number of natural refinements can be applied to this basic
algorithm.

4.4.1 Anticipative Semantics

The previous observation shows that the outcome function
looks one message ahead when computing its truth value.
Therefore, it does not identify a violation that will manifest
itself later on, but is unavoidable nonetheless. One might
therefore be interested in an outcome function with a
greater lookahead, that would return⊥ as soon as no valid
continuation of a trace is possible, even though the current
prefix does not explicitly violate the specification yet —this
is what [29] calls ananticipative semantics.

While in the previous example, recognizing this fact is
easy, one can devise other cases for which this identification
is less trivial. For example, the formulaG¬ϕ∧Fϕ cannot
be true on any infinite trace, since it asserts both that
ϕ is never true, and thatϕ eventually will become true.
Moreover,ϕ can itself be an arbitrarily complex temporal
expression, and its two occurrences can even be written in
equivalent, but completely different ways that makes hard
to realizeG andF actually have the same argument.

In fact, an outcome functionf ′ could be devised so that
f ′(q) = ⊥ whenΨ(q) is a contradiction, i.e. whenΨ(q)
is unsatisfiable. However, deciding satisfiability of “plain”
LTL is PSPACE-complete, so that satisfiability of LTL-
FO+ is PSPACE-hard. Moreover, such a computationally-
intensive decision algorithm must be repeated at every
new message, in order to check that no contradiction is
generated by the last application of UPDATE.

In contrast, the functionf defined in this paper is a
simpler form of outcome function that recognizesΨ(∅),
but not other, more complex forms of contradictions such as
the ones previously discussed. However, it runs in constant
time; in addition, from our experimental study of real-world
services in Section 5, we discovered that such anticipative
semantics was not required.

4.4.2 Additional Truth Values

Since most observed traces will be finite, it is possible that
the watcher comes to a state where neither the acceptance,
nor the rejection condition applies, although no further
message is coming. An example of this is the formulaGϕ
for any formulaϕ. This formula can never become true on
a finite prefix of any trace, as the next message can always
violate ϕ. At this point, sinceϕ is neither confirmed nor
violated, the result is inconclusive. This readily entailsthat
the watcher must return at leastthreevalues: “true”, “false”,
and “?”.

A more subtle conclusion can be obtained by looking at
the actual formula that needs to be checked. For example,

TABLE 4
Modified decomposition rules for an watcher’s state

node when the last message is reached.

a formula of the formGϕ must be true for all messages of
the trace; since no more message is expected, the property
is vacuously true and can therefore be considered “not
yet violated” by the trace. On the opposite, the temporal
operatorFϕ requires that thereexistsa future message such
thatϕ is true; since the trace is completed, no such future
message will appear and the property is “not yet fulfilled”.
A further discussion on the interpretation of LTL formulæ
on finite traces can be found in [29]; the discussion could
be adapted to LTL-FO+ as well.

Therefore, one can run UPDATE once more on the state
of the watcher, but using a modified set of decomposition
rules for UPDATE, shown in Table 4.

The rule for the temporal operatorGϕ can be interpreted
as follows: the propertyϕ must be true for all future
messages of the trace; since no such message exists, the
property is vacuously true and can therefore be eliminated
from the node. On the opposite, the temporal operatorFϕ
requires that thereexistsa future message such thatϕ is
true; since the trace is completed, no such future message
will appear and the property is false, hence suppressing the
node. The modified rules for the other temporal operators
and quantifiers can be deduced in the same way.

Remark that these modified decomposition rules ensure
that every branch will either terminate with an “X” or with
the “accept” node∅
 ∅. Therefore, either the acceptance
or the violation condition will apply to this last state and a
partial conclusion can be drawn.

This conclusion differs from the regular acceptance and
violation condition in that the result is temporary: an
acceptance on the last message actually indicates that the
property has notyet been violated, but could have been if
further messages were sent. In the same way, a violation
on the last message actually indicates that the property has
not yetbeen fulfilled, but could be if further messages were
sent. An outcome functionf ′ can be defined, which returns
these two additional outcomes at the end of a trace.

5 EXPERIMENTAL RESULTS

Although the soundness and usefulness of this algorithm
have been proved in theory, its practical value still needs

10

to be assessed on real-world scenarios. To this end, we
conducted a set of initial experiments that involved the
runtime monitoring of LTL-FO+ formulæ on automatically-
generated traces. The goal of these experiments was to show
that the monitoring of LTL-FO+ formulæ can be effectively
done in concrete contexts and imposes a reasonable over-
head on the execution of a workflow.

5.1 The BeepBeep Runtime Monitor

We developed BeepBeep, a lightweight runtime monitor
running as a Java applet.2 This applet is responsible for
actually keeping track and analyzing the incoming and
outgoing messages with respect to an interface contract.
It is a direct implementation of the runtime enforcement
algorithm described in Section 4, and can accept as its input
specification any LTL-FO+ formula.

A monitor is instantiated by passing as an argument
a character string containing a text representation of the
LTL-FO+ formula to monitor. This formula can be fetched
for example, from a local contract file or a command line
parameter. BeepBeep’s implementation contains classes and
data structures to convert and manipulate these formulæ in-
ternally. Once instantiated, the monitor’s interface provides
a method calledprocessMessage(), which takes as an
argument a String representation of an XML message and
updates its internal state according to the specification. A
second message, calledgetOutcome(), returns the result
of the outcome functionf on the current internal state.

A standard Ajax application communicates with a web
service by sending and receiving SOAP messages through
the standard XMLHttpRequest object provided by the local
browser. BeepBeep can be used on the client side, inside
these Ajax web applications. A JavaScript wrapper file
overloads XMLHttpRequest with a class that behaves in the
same way, with the exception that incoming and outgoing
messages, before being actually sent (or returned), are
deviated to the applet and possibly blocked if violations
are found.

Including BeepBeep into an existing Ajax application is
simple. It suffices to host two files (the.jar applet and the
.js include) in the same directory as the Ajax application,
and to load BeepBeep by adding a single line at the
beginning of the original client’s code. No other changes to
the code are required: from this point, BeepBeep intercepts
the messages and transparently monitors the conversation.

When BeepBeep detects that a message violates a con-
tract property, its default behaviour is to block the message
and to pop a window alerting the user, showing the plain-
text description associated with that property. Alternatively,
BeepBeep can be asked to call a function, called ahook,
provided by the application developer. The developer can
insert arbitrary code in that function, setup a breakpoint,
and extract any debugging information deemed necessary.
Therefore, BeepBeep can be used to form the basis of a
powerful debugging tool for message contract violations.

2. BeepBeep and its source code are available for download under a
free software license at http://beepbeep.sourceforge.net/.

Besides its ease of use, the main advantage of BeepBeep
is that the specification of the contract is completely de-
coupled from the code required for its actual monitoring.
The contract is located on the server side in a file separate
from the monitor itself. This is in contrast with [27], [30],
which require the compilation of a contract into executable
Java code —an operation which must be repeated whenever
the contract is changed. This requirement is ill-suited to
the highly volatile nature of web service interactions. In
BeepBeep, changing the contract can be done dynamically
without changing anything to the clients: the algorithm is
applied at runtime, and in the same way, to any LTL-FO+

formula passed to the monitor.
The BeepBeep applet can also be wrapped for use as

a server-side runtime enforcement tool, or as a protocol
controller. Its use as a log analyzer, on pre-recorded traces
of messages, is also straightforward.

BeepBeep monitors conversations specified at the XML
message level; it is independent from any client implemen-
tation and does not refer to any internal variable of the
client’s source code. It is therefore non-invasive and can en-
force specifications transparently with minor changes to the
code, apart from including BeepBeep. Other approaches,
such as [27], require heavier code instrumentation in order
to correctly intercept non-compliant behaviour.

BeepBeep also has a low footprint: the total volume
that needs to be downloaded by an Ajax application using
BeepBeep (JavaScript + applet) is less than 50 kB, and this
must be done only once when the application starts. By
today’s standards, this is negligible. Although most related
work on runtime enforcement do not provide easy access
to implementations for comparison, one might consider
this: loading the Google Maps page from an empty cache
requires downloading a volume of about 400 kB of data,
and typing “Montreal” in its location bar immediately
triggers the download of another 400 kB. We therefore
argue that, for standard Ajax applications, the addition
of BeepBeep as a runtime monitor represents a marginal
increase in the volume of downloaded data.

BeepBeep was designed for client-side monitoring,
where a trace is a sequence of messages starting when
a user connects to the site until the user checkouts or
closes the browser. However, it can also work on the
server side. Since the server is the endpoint of multiple
parallel sessions with different clients, the monitor must
distinguish between these sessions to properly enforce the
message contracts. However, this filtering must be done
by the server code anyway, either by passing a session ID
as an XML element in the messages, or as a cookie in
the HTTP request that carries this message. In the first
case, it suffices to prefix each runtime property with a
universal quantifier over session IDs that BeepBeep can
observe like any other XML element. In the second case, it
suffices for the server to associate one instance of BeepBeep
for each thread created when a new session opens; each
instance is hence only dispatched the messages specific to
that session, before passing them on to the thread proper.
In either case, the problem of checking interleaved client

11

Operators Quantifiers Length

Runtime Property 1 1 2 17
Runtime Property 2 2 3 18
Runtime Property 3 2 4 22
Runtime Property 4 2 6 28

TABLE 5
Number of temporal operators, data quantifiers, and

total number of symbols in each of Runtime
Properties 1-4.

sessions reverts to having a series of watchers, each of
which monitoring and evaluating one single trace. Neither
requires any modification to the monitor itself.

5.2 Tests on Synthetic Traces

Using the Amazon ECS as an example, we generated
random traces of request-response messages. Each trace
contains a random number of cart creations, item searches,
and cart add, edit, remove, and clear operations. These
operations manipulate items from a pool of 1,000 possible
IDs and a maximum of 10 simultaneous instances of shop-
ping carts. We believe that these values greatly exceed the
parameters of a typical shopping session driven by a single
user. All these traces correspond to semanticallyvalid
interactions, i.e. the contents of each created shopping cart
is tracked throughout the whole sequence, and only valid
operations are allowed to be selected on each shopping
cart at any time (for example, anedit operation is never
attempted on an empty cart, etc.).

100 traces of lengths ranging from 10 to 10,000 mes-
sages were randomly produced. Each of these traces was
then assigned to an instance of the BeepBeep runtime
monitor, which evaluated Runtime Properties 1-4 on them.
The experiments were ran on an Intel 2.67 GHz CPU
under Windows XP, with an out-of-the box Java runtime
environment.

5.2.1 Validation time
For each run, we first measured the average processing time
per message, and plotted the results in Figure 1. Graphs (a)
to (d) represent a progressive increase in the complexity of
the property, both in the number of temporal operators and
data quantifiers, as is summarized in Table 5: subfigure (a),
corresponding to Runtime Property 1, is a formula with 1
temporal operator and 2 data quantifiers; subfigure (d) is
a more complex formula, with 2 temporal operators and 6
data quantifiers.

This experiment had three purposes: first, to determine
the typical order of magnitude required for processing a
message; second, to determine if more complex formulæ
result in longer processing times; third, to assess whether
the monitor’s performance degrades as a trace unfolds.
Indeed, all the runtime properties described in Section 2
require the monitor to capture and preserve data values
from past messages for comparison with future messages.
An accumulation of historical data to seek through at every
message could progressively slow down the monitor.

By observing the plots in Figure 1, one can see that
validation time is similar for all four properties; at the
scale of only a couple temporal operators and quantifiers,
formula complexity hence has a negligible impact. The
higher processing time per message in small traces can
be explained by a fixed overhead of about 10 ms incurred
when initializing the monitor at startup. This overhead is
amortized in traces with more messages. Globally, one
can safely conclude that the time required to process
a message remains well under 1 millisecond, once the
monitor is started. All but a dozen traces required more
than 2 milliseconds per message to be monitored, for any
of the four properties. Moreover, the plots clearly indicate
that the presence of long traces does not adversely impact
on validation time.

5.2.2 Monitor size
The previous findings show that the monitor’s average
processing time per message is reasonable, and is not
affected by the presence of long traces. This is the case
even if the properties to monitor require that data values
from the past be saved for later comparison. However, it
may well be possible that the accumulation of historical
data, even if it does not adversely impact on processing
time, still reaches unreasonable bounds in terms of memory
required. A second experiment recorded the maximal size
that the monitor’s state reached while evaluating each trace.
Its purpose was to determine whether that size grew with
trace length, and to what extent this growth can be bounded.

We recall from Section 4.2 that the state of the monitor
consists of a set of nodes, each of which contains a finite list
of LTL-FO+ subformulæ. The total number of subformulæ
in all nodes of a state is hence a measure of its size, which
in turn is directly proportional to the amount of memory
used by BeepBeep to store it. The results are plotted in
Figure 2.

The stepwise behaviour of Figures (a) and (b) can be
explained by the properties they relate to. Runtime Property
1 stipulates that ItemSearch is the only allowed operation
before CartCreate. The monitor can hence be in only two
states. If CartCreate has not yet appeared, the monitor’s
state contains a single node of the formϕ
 ∅, whereϕ is
Runtime Property 1, a formula of size 17. Once CartCreate
has appeared once, the monitor does not require any further
work and simply propagates the empty node∅
 ∅, of size
0. Hence, the monitor’s maximum state size reached in any
trace is either 0 (if CartCreate is the first message of the
trace), or 17 (otherwise). This is irrespective of the length
of the trace, and is consistent with the plot in Figure 2(a).

Intuitively, the monitor’s state for Runtime Property 2
grows each time a cartc is cleared, and includes a new
instance of the LTL-FO+ subformula stipulating that no
CartClear must appear withc until a CartAdd operation
involves c. This subformula is removed from the state as
soon as CartAdd is called for cartc. Hence the monitor’s
state size evolves in discrete steps, with its maximum
being a direct function of the number of carts that are
simultaneously empty in a trace. Since the traces contained

12

1

0

1 10 100 1,000 10,000

2

3

4

(a) Runtime Property 1

1

0

1 10 100 1,000 10,000

2

3

4

(b) Runtime Property 2

1

0

1 10 100 1,000 10,000

2

3

4

(c) Runtime Property 3

1

0

1 10 100 1,000 10,000

2

3

4

(d) Runtime Property 4

Fig. 1. Validation time per message (in milliseconds)
according to trace length, for Runtime Properties 1-4.

4

0

1 10 100 1,000 10,000

8

12

16

(a) Runtime Property 1

40

0

1 10 100 1,000 10,000

80

120

160

(b) Runtime Property 2

200

0

1 10 100 1,000 10,000

400

600

800

(c) Runtime Property 3

200

0

1 10 100 1,000 10,000

400

600

800

(d) Runtime Property 4

Fig. 2. Maximum memory consumption, in number
of subformulæ, according to trace length, for Runtime
Properties 1-4.

at most 10 carts, there are 11 possible values for the number
of empty carts, and the plot contains 11 steps.

A similar reasoning could be applied to explain the
patterns found in Figures (c) and (d). The bottom line of this
analysis is that trace length is seldom the contributing factor
that predicts memory consumption. For Runtime Property
1, the maximum size was determined by the presence of
CartCreate at the first position in the trace; for Runtime
Property 2, memory consumption is proportional to the
number of empty shopping carts at any one time. In many
cases, however, longer traces increase the probability that
this contributing factor appears more often, and hence

results in larger state sizes.
Nevertheless, the number of subformulæ that need to be

stored by the watcher, and hence the memory footprint
of the algorithm, remains within reasonable bounds and
grows very slowly (i.e. logarithmically) with respect to trace
length. Although the machine used for the experiments
provided 8 GB of RAM, only a tiny fraction of it is actually
required for the monitoring: for all but one trace, the peak
number of ground terms in the monitor’s state remained
under 1,000.

5.3 Tests with Actual Web Services

The previous experiments allowed us to measure a num-
ber of factors impacting the monitor’s performance in
a controlled way. However, the absolute overhead of 1
ms per message should also be related to the processing
time per message of an actual web service. To this end,
BeepBeep has been tested on real Ajax applications in
various scenarios.

We compared a plain Ajax client using a real-world
web service, the Amazon E-Commerce web service, against
the same client communicating through BeepBeep and
monitoring 11 different contract properties. Since we did
not have access to Amazon’s file server, the contract file was
located on the same server as BeepBeep for the needs of
the experiment. Each version of the client sent to Amazon
the same set of randomly generated message sequences;
the difference in the elapsed time was measured. Since
the experiment involved actual communications with the
service, it was repeated on 20 different traces to average
out punctual differences caused by the variable latency of
the network.

Our findings indicate that on a low-end computer (Asus
EeePC with a 600 MHz processor running Mozilla Firefox
2), monitoring LTL-FO+ contract properties produces an
average overhead of around 3%. As a rule, the state of the
network accounts for wider variations on processing time
than the additional computations required by the monitor.
These results suggest that even on small devices such as
smartphones and PDAs, the addition of a runtime monitor
on the client side should not have noticeable effects on
performance for typical web applications.

6 DISCUSSION AND RELATED WORK

A number of approaches to the runtime monitoring of
systems in general have been suggested over the years.
However, the unique characteristics of web service message
contracts makes each of them inappropriate in at least one
respect, thereby warranting the development of LTL-FO+.
These characteristics are enumerated below.

6.1 Access to Data Parameters

Web service message contracts involve properties referenc-
ing data elements inside exchanged messages. Therefore, a
first category of inappropriate monitoring solutions includes
propositionalruntime monitoring tools, where the sequence

13

of messages is analyzed, but the content of messages is
abstracted away.

Enforcement monitors [31], a refinement of edit automata
[32] and security automata [33], are special types of
finite-state automata used to intercept, and possibly retain
messages destined to a peer in a special waiting queue
until one is guaranteed that sending these messages will
not lead to a violation of the specification. In contrast,
our monitoring approach discards messages that violate
the specification. Since finite-state machines are used to
represent the contracts, the messages are considered as
atomic events with no data; this would not be suitable for
the runtime properties we described in this paper.

Some of the runtime properties we presented include
time constraints. Timed automata [34] can be used to rep-
resent such timing dependencies between events; they oth-
erwise behave like classical automata and cannot quantify
over data elements other than time; they hence cannot be
used in the present context. Extended timed automata, used
in model checkers like Uppaal [35], have data variables in
addition to clocks; however, it is unclear how, for example,
the variable (and potentially unbounded) list of item IDs
in a shopping cart could be encoded with data variables
in order to express Runtime Properties 3 and 4; a similar
remark applies to the Input-Output State Transition Systems
(IOSTS) used in [36] to specify monitoring properties.
In addition, the overwhelming majority of properties of
commercial web services elicit constraints on data elements
such as shopping carts or item IDs, and seldom refer to
time.

Similarly, propositional runtime monitoring was used by
[12], where patterns of messages exchanged by a web
service are specified using UML 2.0 Sequence Diagrams,
and then transformed into classical finite-state automata
whose state is updated for each message sent or received.
[27] uses UML Message Sequence Charts with the same
intent; however, the authors suggest the application of
aspect-oriented programming to call monitoring methods
with the use Javapointcuts.

There also exist approaches that use logic, rather than
finite-state machines, for specifying temporal constraints.
An early work on this respect [37], which uses a rewriting
approach similar to the one presented here to verify traces
of events against LTL properties, using the Maude string
rewriting engine. Since the logic used is classical LTL, the
properties do not allow data parameterization. Similarly,
different patterns of classical LTL properties were studied
by [17], which introduces the concept ofobstacleto detect
possible violations of a specification. 2D-LTL [38] allows
one to express correlations between parallel sessions oc-
curring on a common timeline. However, apart from an
implicit session identifier, no data is taken into account in
the properties.

Finally, in [13] an elegant framework for the automatic
synthesis of monitors is presented. The language suggested
by the authors is called Run-Time Monitor specification
Language (RTML), which is an extension of LTL that
allows the expression of Boolean (true/false) and numerical

properties which can count, for example, the number of
times a given message type is received. The content of
messages can be statically referred to in the properties, but
no quantification is allowed on data fields.

6.2 Complex Message Structure

If all possible parameter values are known in advance
({b1, . . . , bn}), it is possible to create one propositional
symbol for each value, and use propositional temporal logic
to express a constraint. It suffices to repeat a formulaϕ(x)
for each possible value ofx, e.g. ϕ(b1) ∧ · · · ∧ ϕ(bn).
However, in the present context, the possible values are
not known in advance: for example, Runtime Property 3,
expressing a constraint on item IDs, would require to be
repeated once for each possible ID in Amazon’s catalogue,
which is unrealistic. Therefore, the use of a quantified
expression,∀x : ϕ(x), not only shortens the property, but
also covers all possible values ofx without knowing them
in advance.

There exist a couple of approaches to runtime monitoring
which allow some form of quantification on data fields. For
example, usage control enforcement [39] uses plain first-
order logic to access to data parameters inside events of
the X11 windowing system. However, the language only
expresses relations between one state and the next; complex
temporal modalities, such as LTL’sF or U, cannot be
represented in the framework. [23] describes an algorithm
for rule-based runtime monitoring, where the rules are
temporal fixpoint functions that can include data arguments.
[40] makes a similar use of data parameterization for a
quantified variant of LTL.

However, in the current scenario, most messages not only
contain an action name and a set of data parameters, but
these parameters themselves are subject to a potentially
complex XML structure. In the Amazon scenario, one
cannot simply refer to “the” item ID in a shopping cart,
as there can be multiple instances of theItemId element
in a message. A property can require that all, or only one
of these item IDs fulfils a constraint, hence a form of
quantification over message contents, includingexistential
quantification, is required. This is probably the single most
distinguishing point with respect to other verification ap-
plications. The aforementioned solutions work in a context
where there is at most one instance of a parameter in a
message, thus removing the need for quantification. This
also rules out logics likeL∗

MDG [41] or Eagle [42], for the
same reason. In contrast, BeepBeep can handle arbitrary
nested structures; no upper bound on the arity of the
messages needs to be fixed in advance.

6.3 Unrestricted use of quantifiers and temporal
operators

A third characteristic of web service message contracts is
that temporal operators and quantification must be mixed
without limitation, as is the case in LTL-FO+. In contrast,
monodic temporal logic [43] requires that each subformula
beginning with a temporal operator must have at most one

14

free variable. Apart from Runtime Property 2, none of the
examples in our paper follow that restriction. Similarly, in
an other extension of LTL called LTL-FO [44], quantifiers
cannot be applied to formulæ containing temporal opera-
tors, except by taking the universal closure of the entire
formula (which is not the case in our examples).

More closely related, [6] suggests a framework in which
correlations between data in multiple messages are ex-
pressed and can be checked at runtime. However, to the best
of our knowledge, the correlations imply a single request-
response and do not involve messages arbitrarily far apart
in time.

An alternative to state machines and temporal logics is
the use of event calculus (EC), as is done in [7]. The event
calculus is a rich extension over first-order logic which
allows the expression of constraints over time intervals,
in addition to arbitrary predicates over data fields. The
semantics of LTL-FO+ could clearly be encoded by a set of
EC predicates. However, the richness of the language raises
concerns about its applicability in real-world scenarios,as
the experiments in [11] suggest. In this respect, we have
shown that a simpler logic such as LTL-FO+, although less
expressive, can be more easily used in concrete contexts.

The recent advances in artifact-centric modelling of
business processes led to the development of a logic called
ABSL [45]. This logic is an extension of CTL that includes
a form of first-order quantification. However, it is suited
to express properties ofintra-artifact behaviours, notinter-
message constraints; moreover, the approach is not aimed
toward runtime monitoring, but rather on static analysis.

Finally, a different approach has been proposed with
specifications using XQuery on traces (SXQT) [46], in
which a trace of XML messages is analyzed by means
of temporal formulæ converted into XQuery expressions.
However, one has to wait for a trace to be complete for the
corresponding XML structure to be generated; therefore,
this method needs adaptations to be used in a context where
the monitoring should occur in parallel with the execution
of the workflow. Such an adaptation is suggested in [47],
where the use ofstreamingXQuery processors can read a
trace progressively and output intermediate results, thereby
working as a runtime monitor.

7 CONCLUSION

In this paper, we have presented an algorithm for the
runtime monitoring of data-aware workflow constraints.
Sample properties taken from runtime monitoring scenarios
in existing literature were expressed using LTL-FO+, an
extension of Linear Temporal Logic that includes first-
order quantification over message contents. As our study of
commercial web services, such as Amazon ECS and Google
Checkout, showed, the online documentation specifies a fair
number of “data-aware” properties, where the sequence of
messages sent to the service and the actual data values
inside the messages define valid interactions.

An on-the-fly runtime monitoring algorithm was pre-
sented to enforce such constraints on message sequences.

In addition to a proof of its soundness, this algorithm was
implemented into a small Java applet, called BeepBeep, that
can monitor and enforce any temporal property specified
in LTL-FO+. In particular, this applet can be used on the
client side inside an Ajax web application and check all
incoming and outgoing messages transparently for viola-
tions of the contract. Empirical studies on both Google
and Amazon web services, for traces of 10,000 messages
and data domains of 1,000 elements, show that the runtime
enforcement of LTL-FO+ can be practically and efficiently
done with minimal modifications and negligible computing
overhead, either on the client or server side.

The positive results obtained in this research project
open the way to multiple extensions and improvements.
Mappings between LTL-FO+ and patterns in graphical
languages such as UML could be devised, in order to ease
the specification of runtime constraints on web services.
The ultimate question remains as to who should provide
these contracts and where they should be obtained. To
further the reach of the tool to practitioners, the automated
extraction of constraints from a service’s source code or
sample execution traces could entice service providers to
systematically document them in some machine-readable
form.

On a more technical side, the on-the-fly translation of
LTL into an automaton presented here is just one of the
many exiting ways of converting temporal logic into a
finite-state equivalent; there exist many others [48], [49]
that could also be extended with support for first-order
quantification, and be experimented in their own right.

All in all, our study showed that the runtime enforcement
of complex temporal specifications involving messages with
data can be effectively done in real-world scenarios at a
very low cost. By providing a transparent and very simple
way of enforcing rich interface contracts into virtually any
web service or Ajax client, BeepBeep contributes to in-
crease the reach of logic and formal verification approaches
in the development of everyday web applications.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the financial support of
the Natural Sciences and Engineering Research Council of
Canada and the Fonds québécois de recherche sur la nature
et les technologies.

REFERENCES

[1] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana,
“Web services description language (WSDL) 1.1, W3C note,” 2001.
[Online]. Available: http://www.w3.org/TR/wsdl

[2] E. Schonfeld, “Amazon earnings call details: Web services use up
more bandwidth than Amazon.com; the Kindle is a hit,” 2008.
[Online]. Available: http://tcrn.ch/caKitG

[3] “Amazon e-commerce service,” 2005. [Online].
Available: http://webservices.amazon.com/AWSECommerceService/
AWSECommerceService.wsdl

[4] “Amazon fulfillment web service,” 2005. [Online]. Available:
http://docs.amazonwebservices.com/AWSFWS/1.0/DeveloperGuide/

[5] “Google checkout APIs,” 2009. [Online]. Available: http://code.
google.com/apis/checkout/

15

[6] C. Ghezzi and S. Guinea,Run-Time Monitoring in Service-Oriented
Architectures. Springer, 2007, pp. 237–264.

[7] K. Mahbub and G. Spanoudakis,Monitoring WS-Agreements: An
Event Calculus-Based Approach. Springer, 2007, pp. 265–306.

[8] S. Hallé, R. Villemaire, and O. Cherkaoui, “Specifyingand validating
data-aware temporal web service properties,”IEEE Trans. Software
Eng., vol. 35, no. 5, pp. 669–683, 2009.

[9] S. Hallé, G. Hughes, T. Bultan, and M. Alkhalaf, “Generating
interface grammars from WSDL for automated verification of web
services,” inICSOC-ServiceWave, ser. Lecture Notes in Computer
Science, L. Baresi, C.-H. Chi, and J. Suzuki, Eds., vol. 5900, 2009,
pp. 516–530.

[10] G. Alonso, F. Casati, H. Kuno, and V. Machiraju,Web Services,
Concepts, Architectures and Applications. Springer, 2004.

[11] K. Mahbub and G. Spanoudakis, “Run-time monitoring of require-
ments for systems composed of web-services: Initial implementation
and evaluation experience,” inICWS. IEEE Computer Society, 2005,
pp. 257–265.

[12] Y. Gan, M. Chechik, S. Nejati, J. Bennett, B. O’Farrell,and
J. Waterhouse, “Runtime monitoring of web service conversations,”
in CASCON ’07: Proceedings of the 2007 conference of the center
for advanced studies on Collaborative research. New York, NY,
USA: ACM, 2007, pp. 42–57.

[13] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti, “Run-time
monitoring of instances and classes of web service compositions,”
in ICWS. IEEE Computer Society, 2006, pp. 63–71.

[14] W. N. Robinson, “Monitoring web service requirements,” in RE.
IEEE Computer Society, 2003, pp. 65–74.

[15] S. Nakajima, “Lightweight formal analysis of web service flows,”
Progress in Informatics, no. 2, pp. 57–76, 2005.

[16] X. Fu, T. Bultan, and J. Su, “Analysis of interacting BPEL web
services,” inWWW, S. I. Feldman, M. Uretsky, M. Najork, and C. E.
Wills, Eds. ACM, 2004, pp. 621–630.

[17] W. Robinson, “A requirements monitoring framework forenterprise
systems,”Requir. Eng., vol. 11, no. 1, pp. 17–41, 2006.

[18] M. Caporuscio, P. Inverardi, and P. Pelliccione, “Compositional
verification of middleware-based software architecture descriptions,”
in ICSE. IEEE Computer Society, 2004, pp. 221–230.

[19] S. Parastatidis, J. Webber, S. Woodman, D. Kuo, and P. Greenfield,
“SOAP service description language (SSDL),” University ofNew-
castle, Newcastle upon Tyne, Tech. Rep. CS-TR-899, 2005.

[20] G. Decker, J. M. Zaha, and M. Dumas, “Execution semantics for
service choreographies,” inWS-FM, ser. Lecture Notes in Computer
Science, M. Bravetti, M. Núñez, and G. Zavattaro, Eds., vol. 4184.
Springer, 2006, pp. 163–177.

[21] E. M. Clarke, O. Grumberg, and D. A. Peled,Model Checking. MIT
Press, 2000.

[22] G. Governatori, Z. Milosevic, and S. W. Sadiq, “Compliance check-
ing between business processes and business contracts,” inEDOC.
IEEE Computer Society, 2006, pp. 221–232.

[23] H. Barringer, A. Goldberg, K. Havelund, and K. Sen, “Rule-based
runtime verification,” inVMCAI, ser. Lecture Notes in Computer
Science, B. Steffen and G. Levi, Eds., vol. 2937. Springer, 2004,
pp. 44–57.

[24] M. Y. Vardi, “An automata-theoretic approach to lineartemporal
logic,” in Banff Higher Order Workshop, ser. Lecture Notes in
Computer Science, F. Moller and G. M. Birtwistle, Eds., vol.1043.
Springer, 1995, pp. 238–266.

[25] A. Bauer, M. Leucker, and C. Schallhart, “Monitoring ofreal-time
properties,” inFSTTCS, ser. Lecture Notes in Computer Science,
S. Arun-Kumar and N. Garg, Eds., vol. 4337. Springer, 2006, pp.
260–272.

[26] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper, “Simple on-the-
fly automatic verification of linear temporal logic,” inPSTV, ser.
IFIP Conference Proceedings, P. Dembinski and M. Sredniawa, Eds.,
vol. 38. Chapman & Hall, 1995, pp. 3–18.

[27] I. H. Krüger, M. Meisinger, and M. Menarini, “Runtime verification
of interactions: From MSCs to aspects,” inRV, ser. Lecture Notes
in Computer Science, O. Sokolsky and S. Tasiran, Eds., vol. 4839.
Springer, 2007, pp. 63–74.

[28] J. H. Gallier,Logic for Computer Science: Foundation of Automatic
Theorem Proving. Longman Higher Education, 1986. [Online].
Available: http://www.cis.upenn.edu/∼jean/gbooks/logic.html

[29] A. Bauer, M. Leucker, and C. Schallhart, “The good, the bad, and the
ugly, but how ugly is ugly?” inRV, ser. Lecture Notes in Computer
Science, O. Sokolsky and S. Tasiran, Eds., vol. 4839. Springer,
2007, pp. 126–138.

[30] G. Rosu, F. Chen, and T. Ball, “Synthesizing monitors for safety
properties: This time with calls and returns,” inRV, ser. Lecture
Notes in Computer Science, M. Leucker, Ed., vol. 5289. Springer,
2008, pp. 51–68.

[31] Y. Falcone, J.-C. Fernandez, and L. Mounier, “Synthesizing enforce-
ment monitors wrt. the safety-progress classification of properties,”
in ICISS, ser. Lecture Notes in Computer Science, R. Sekar and
A. K. Pujari, Eds., vol. 5352, 2008, pp. 41–55.

[32] J. Ligatti, L. Bauer, and D. Walker, “Edit automata: enforcement
mechanisms for run-time security policies,”Int. J. Inf. Sec., vol. 4,
no. 1-2, pp. 2–16, 2005.

[33] F. B. Schneider, “Enforceable security policies,”ACM Trans. Inf.
Syst. Secur., vol. 3, no. 1, pp. 30–50, 2000.

[34] R. Alur and D. L. Dill, “A theory of timed automata,”Theoretical
Computer Science, no. 126, pp. 183–235, 1994.

[35] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi,
“UPPAAL - a tool suite for automatic verification of real-time
systems,” inHybrid Systems, ser. Lecture Notes in Computer Sci-
ence, R. Alur, T. A. Henzinger, and E. D. Sontag, Eds., vol. 1066.
Springer, 1995, pp. 232–243.

[36] C. Constant, T. Jéron, H. Marchand, and V. Rusu, “Integrating formal
verification and conformance testing for reactive systems,” IEEE
Trans. Software Eng., vol. 33, no. 8, pp. 558–574, August 2007.

[37] K. Havelund and G. Rosu, “Testing linear temporal logicformulæ
on finite execution traces,” Tech. Rep., May 2001.

[38] F. Massacci and K. Naliuka, “Multi-session security monitoring for
mobile code,” Tech. Rep. DIT-06-067, November 2006.

[39] A. Pretschner, M. Büchler, M. Harvan, C. Schaefer, andT. Walter,
“Usage control enforcement with data flow tracking for X11,”in
Proc. 5th Intl. Workshop on Security and Trust Management (STM).
Elsevier, 2009, pp. 124–137.

[40] V. Stolz, “Temporal assertions with parametrised propositions,” in
RV, ser. Lecture Notes in Computer Science, O. Sokolsky and
S. Tasiran, Eds., vol. 4839. Springer, 2007, pp. 176–187.

[41] F. Wang, S. Tahar, and O. A. Mohamed, “First-order LTL model
checking using mdgs,” inATVA, ser. Lecture Notes in Computer
Science, F. Wang, Ed., vol. 3299. Springer, 2004, pp. 441–455.

[42] H. Barringer, D. Rydeheard, and K. Havelund, “Rule systems for
run-time monitoring: From Eagle to RuleR,”Journal of Logic and
Computation, 2008.

[43] I. M. Hodkinson, “Complexity of monodic guarded fragments over
linear and real time,”Ann. Pure Appl. Logic, vol. 138, no. 1-3, pp.
94–125, 2006.

[44] A. Deutsch, L. Sui, V. Vianu, and D. Zhou, “Verification of com-
municating data-driven web services,” inPODS, S. Vansummeren,
Ed. ACM, 2006, pp. 90–99.

[45] C. E. Gerede and J. Su, “Specification and verification ofartifact
behaviors in business process models,” inICSOC, ser. Lecture Notes
in Computer Science, B. J. Krämer, K.-J. Lin, and P. Narasimhan,
Eds., vol. 4749. Springer, 2007, pp. 181–192.

[46] M. Venzke, “Specifications using XQuery expressions ontraces,”
Electr. Notes Theor. Comput. Sci., vol. 105, pp. 109–118, 2004.

[47] S. Hallé and R. Villemaire, “Runtime monitoring of webservice
choreographies using streaming XML,” inSAC. ACM, 2009, pp.
1851–1858.

[48] C. Fritz, “Concepts of automata construction from LTL,” in
LPAR, ser. Lecture Notes in Computer Science, G. Sutcliffe and
A. Voronkov, Eds., vol. 3835. Springer, 2005, pp. 728–742.

[49] P. Gastin and D. Oddoux, “Fast LTL to Büchi automata transla-
tion,” in CAV, ser. Lecture Notes in Computer Science, G. Berry,
H. Comon, and A. Finkel, Eds., vol. 2102. Springer, 2001, pp.
53–65.

[50] O. Sokolsky and S. Tasiran, Eds.,Runtime Verification, 7th Inter-
national Workshop, RV 2007, Vancover, Canada, March 13, 2007,
Revised Selected Papers, ser. Lecture Notes in Computer Science,
vol. 4839. Springer, 2007.

16

Sylvain Hall é received the BS degree in
mathematics from Université Laval in 2002
and the MSc in mathematics and PhD in
computer science from Université du Québec
à Montréal in 2004 and 2008, respectively.
He was recently appointed as an assistant
professor in the Department of Computer
Science and Mathematics at Université du
Québec à Chicoutimi, after completing a
postdoctoral fellowship at at University of
California, Santa Barbara. He received fel-

lowships from the Natural Sciences and Engineering Research
Council of Canada (NSERC) in 2005 and Quebec’s Research Fund
on Nature and Technologies (FQRNT) in 2008. His major research
interests include Web applications and formal verification. He is a
member of the ACM, the Association for Symbolic Logic, the IEEE,
and the IEEE Computer Society. He was co-chair of DDBP 2008,
TIME 2008 and the DDBP series of workshops from 2008 to 2010.

Roger Villemaire received the PhD degree
from the University of Tübingen in 1988. He
was a postdoctoral fellow at McGill University
and later at Université du Québec à Montréal
(UQAM). He is a professor in the Depart-
ment of Computer Science at UQAM, which
he joined in 1993. His research interests
include applications of logic in computer sci-
ence, in particular formalisms, methods and
algorithms which can help to realize reliable
computing systems. He was co-chair of TIME

2008 and served on its program committee in 2009. He is a member
of the ACM, the Association for Symbolic Logic and the IEEE
Computer Society.

