Runtime Enforcement of Web Service
Message Contracts with Data

Sylvain Halléf, Member, IEEE, Roger Villemaire?, Affiliate Member, IEEE

Abstract —An increasing number of popular SOAP web services exhibit a stateful behaviour, where a successful interaction is
determined as much by the correct format of messages as by the sequence in which they are exchanged with a client. The
set of such constraints forms a “message contract” that needs to be enforced on both sides of the transaction; it often includes
constraints referring to actual data elements inside messages. We present an algorithm for the runtime monitoring of such
message contracts with data parameterization. Their properties are expressed in LTL-FO*, an extension of Linear Temporal
Logic that allows first-order quantification over the data inside a trace of XML messages. An implementation of this algorithm
can transparently enforce an LTL-FO™ specification using a small and invisible Java applet. Violations of the specification
are reported on-the-fly and prevent erroneous or out-of-sequence XML messages from being exchanged. Experiments on
commercial web services from Amazon.com and Google indicate that LTL-FO™ is an appropriate language for expressing
their message contracts, and that its processing overhead on sample traces is acceptable both for client-side and server-side
enforcement architectures.

Index Terms —Web services, runtime monitoring, temporal logic

O

1 INTRODUCTION enforcement of such data-aware web servimssage con-

From a messaging point of view, web service interactiortlrsaCtS To express them using a uniform formal notation,
ging p ' in Section 3 we introduce LTL-FO, an extension of the

can be considered as processes where the input and ou\%)g] _known Linear Temporal Logic (LTL) providing first-

of operations is composed of self-contained units (“mes- I A
. h A order quantification over the data inside a trace of XML

sages”) formed of various data elements. The precise forma : .

. : . ; . ; messages. We show how LTL-FOis suitable for ex-

in which such operations can be invoked is detailed in

an interface specification; for SOAP-based interactidmes tpressing the message contracts for Amazon's and Google’s

. o ' _examples.
Web Service Description Language (WSDL) [1] provides In Section 4, we develop a runtime monitoring algorithm

a way of defining the structure and acceptaple val_u?osr LTL-FO™. This algorithm distinguishes itself from
for XML requests and responses exchanged with a given

service. A third-party, such as a web application develop existing approaches in two respects: 1) the algorithm allow

) ; ; . e e monitored properties to quantify over data fields inside
is required to comply with this specification to ensure a DN . y

. . . ; messages; 2) it works “on-the-fly”, without the need to pre-
successful interaction with the service. In such a frame-

; compute an automaton, to store previous messages or to
work, each request-response pattern is suppstseless . . . ;
. . keep in memory anything except its current symbolic state.
and independent of any history.

. . T the feasibility of LTL-FOrunti itori
Yet, we shall see in Section 2 that two popular Weﬁl?oassess © feasiuiiity o runtime montoring

_ the A c Servi dthe G practical contexts, we performed a set of experiments
services, the Amazon e-Lommerce Service and the LOOJIE o, me of the properties mentioned in Section 2. We

Checkout service, rather exhibit stateful behaviour, Whe&e\fgloped an open source, freely available Java applet

a successful interaction requires messages to be exchan@(ﬁ d BeepBeep, that can be used for runtime enforcement
according o additional,sequentia_l constraints. Further- oth on JavaScri}Jt clients and Java-based servers. In Sec-
more, many *data-aware propgrtles are such that the t S 5, the results of these experiments are presented and
sequence of messages and their content are mterdepe_n Sussed. They indicate that runtime monitoring of LTL-
Dge . to .the mtended- .stat.eless nature of web SEIVICEY+ can be performed in real-world scenarios and does not
existing interface specn‘|cat.|on Ianguages_ $UCh as WSDL ﬂﬂpose a large processing overhead, even for transactions o
not allow such dependgnues to b(_a specified. Most Of theip,ooo messages and data domains of up to 1,000 elements.
can be found by perusing the plain-text documentation o The contributions of this paper are manifold. First, the

a service. Consequently, v_veb service Va"d?t_"’” appr(mc%%per provides an original study of web service interface
focusing on WSD.L compliance _Iack thg ability to_enforc pecifications: it extracts and formalizes a number of con-
complgx sequential patterns of |ntera9t|on at runtime. ._straints where sequential and data constraints are inter-
In this paper, we present an algorithm for the runtiméixed. It provides a simple and efficient algorithm for the
tUniversite du Québec & Chicoutimi, Canada; e-mail: &@acm.org _runtime enforcement of these constraints and d_er_nonstrates
tUniversite du Québec a Montréal, Canada; e-mail: viteire.roger@- 1ts soundness. To the best of our knowledge, this is also the
ugam.ca. first systematic empirical study of a runtime enforcement

approach on commercial web services, with large messagddowever, while it is reasonable to believe that any quality
sequences and realistic data domains. application will actually check this obvious property by
itself, the ECS documentation lists other constraints Wwhic

2 CONSTRAINTS ON WEB SERVICE MES- are much less “natural’; an example is the following:

SAGE SEQUENCES Runtime Property 3. A client cannot add the same item
The analysis of web service messaging interfaces ctwice to the shopping cart.

follow a “behaviourist” conception similar to the way it This constraint, which is indeed part of the docu-
is actually invoked by a third party: one knows of a Wel?nentation has n’othing to do with the “natural” prop-

service only what he can observe by interacting with it. Th'grties of ’a shopping cart, but rather deals with the
incl_udes any message sent to the service, and any resP O icular implementation o’f the ECS. The service ex-
emitted by that service. The internal state of a service, t cts any modifications to items already present in the
contents of any database it can query are therefore irmgiev.

N tudv. In thi i lid int " ith art to be made through an Edit message; adding one
0 our study. In this perspective,valid Interaction With & - 6 jtam therefore becomesditing the quantity of

service is simply a sequence of messages (received ?tqgt item (in this case, incrementing it by one). Adding

sent) which does not contain errors, and whose responges existing item through the Add operation is greeted

correspond to the behaviour from that service. by the AWS.ECommerceService.ltemAlreadylnCart error

In the following, we present two real-world web serwcesmessage_

taken from major players in the field. We show that for The previous constraints deal with requirements on the

both of them, valid, error-free interactions consist nolyon . . . o
service consumer side which, if violated, provoke error

of individual valid messages, but that values in various .
. messages by the ECS. Conversely, some constraints can
messages of aequenceare actually interdependent.

also be elicited from the service’s responses to a client's

) requests. For example:
2.1 The Amazon E-Commerce Service

Recent statistics indicate that more than 330,000 devmopgum'me Praperty 4. A shopping cart created with an item

are registered in Amazon’s programs and that its daifyhoUId contain that item until it is deleted.
web service transactions consume more bandwidth tharConstraints on message sequences and parameters are not
the Amazon.com web site itself [2]. Among the broadpecific to shopping cart-like transactions. Requirements
palette of offerings, a straightforward one is the Amazon kf a similar nature can be found in other Amazon web
Commerce Service (ECS) [3], which makes Amazon.comggrvices, such as the Amazon Fulfilment Web Service [4].
inventory available through a web service interface. In
addition to simple search and browsing functionalities, t
ECS also provides shopping cart manipulation operati(:hs2 Google Checkout
that allow a client to create an order. The sequential nature of these constraints is not the result
The semantics of the ECS operations follows the na@f an exceptional design decision specific to Amazon. To
ural understanding of how a shopping cart should h#ove our point, we provide an additional study from a
handled: operations such as ltemSearch, CartCreate, G&econd major web service provider, Google. A commercial
tAdd, CartRemove, CartModify and CartClear are selfweb service suite provided by the Google company, called
explanatory. As expected, error messages will be sdhe Google Checkout API, allows to transfer money to and
if nonsensical sequences of commands are attemptedfram credit card and bank accounts between its registered
simple example is the following: members or other financial institutions [5]. In addition to
direct usage by individuals, an organization wishing to
use these functionalities from its own web site can do so
through Google’s web service API.
As the ECS documentation specifies, trying to per- This service involves a number of interactions between
form any operation on a cart requires a cart ID, which client and the server. In particular, the server peridljica
is only returned as the response to a CartCreate meends notifications about the status of a pending order.
sage. Therefore, until that time, the only remaining vali@he following constraint, taken from the Express Checkout
operation is ItemSearch; performing any other operatiglocumentation, indicates that the consumer of the service
will result in a AWS.ECommerceService.InvalidCartld ofs not allowed to continue a transaction until a special
AWS.MissingParameters error messages. Similarly, caetification has been received:
manipulation follows a couple of natural rules:

Runtime Property 1. Until a cart is created, the only
operation allowed is ltemSearch.

Runtime Property 5. Before shipping the items in an
Runtime Property 2. A client cannot remove somethingorder, the client should wait until it has also received the
from a cart that has just been emptied. risk information notification for that order as well as the
u(f{der state change notification informing the client thag th

: As the ECS doc_umentanon specifies, doing so will reSWtder's financial state has been updated@HARGEABLE.
in the AWS.InvalidParameterValue error message being

sent to the application. Moreover, some constraints in Google’s documentation

also relate to the timing between different messages senfThe monitoring task can also be sent to an external,
and received: trusted third-party called g@rotocol controller [10]. In-
. e , ternal checks can be bypassed if both sides trust that
Runtime Property 6. In a notification-history-request mes-_. . .

; , - gas controller will block any non-compliant sequences of
sage, the start-time element’s value must not be within . .) . .

. . . : messages. Finally, a runtime monitor can be used in offline
minutes of the time that the API request is submitted, Orode on a pre-recorded frace of messages to periagm
more than 450 days earlier than the time that the A) b 9 P

. . analysis
request is submitted. . .
Several arguments in favour of runtime enforcement

The key point in these examples is that assuming “reapproaches have been put forward [6]. First, the satisfacti
sonable” interaction with a service is not enough to preveof requirements sometimes depends on assumptions on
error-free communications. Implementation details, 8jgec the partners that cannot be verified prior to the actual
to a particular instance of a service, create additionat camplementation of the system. In the particular case of
straints on the possible operations that cannot be guessetlice-oriented architectures, partners can be disedver
unless explicitly specified in some way. Moreover, thesgynamically and can even change drastically during execu-
two examples are not exceptional. Other web service caien, invalidating the assumptions on which a process was
texts where the sequence of messages must be taken inigally deemed correct.
account have been describe_d [6]—[9]_._ _ Moreover, in some occasions, a staticpriori model

In eaqh of these_ scenarios, additional constraints cahecking of the intended process is simply impossible
CpmpleXIfy the monitoring process: asynchronous commur intractable because of the size of data domains [11].
nications, lost, delayed or out-of-order messages caartlistFor example, on the theoretical level, web services com-
an otherwise valid interaction, without it being any of thenunicate through channels of potentially infinite length,
services’ “fault”. In this paper, a focus has been placed qnereby rendering the general model checking problem
prOVIdIng_ means ofdetectmgthat an assumption on theundecidable unless resorting to some form of simplification
communication has been violated for one of the collaborar abstraction of the original model. A runtime monitor has
ing services; to repair an invalid transaction or to deteemi the advantage of working with the actual implementation
the actual cause of the violation, our runtime enforcemest a process.
mechanism can be used to call arbitrary functions definedrinally, even cases where model checking is possible can

by a developer. present a challenge. The partners involved in a business
) process can be implemented in heterogeneous languages
2.3 A Case for Runtime Enforcement and formalisms that make it hard to have a uniform,

As these examples show, the combination of sequential agidbal picture of the whole conversation suitable for a
data constraints forms message contracthat interface static verification. [12] describes a system combining BPEL
description languages such as WSDL are not designedpimcesses with Java-based partners and concludes that stat
express. Nevertheless, both the service provider and amalysis approaches do not handle such features well. There
eventual third-party client must abide with these constgai also exist situations at runtime which, although they do
to ensure a successful interaction: failure to do so resuftst constitute strict violations of a specification, must be
in non-sensical interactions, and in most cases, to eramdressed as soon as they are discovered: [13] gives the
messages. example of an online shop being refused a money transfer
One possible way to ensure compliance to these cdwy its partner bank, or of a client repeatedly asking for
straints is to formalize them, and monitor them at runtim@roducts that are no longer in stock.
Such a mechanism can be implemented and used in varioutndependent of these technical aspects, the runtime mon-
ways. itoring of a process is also sound business-wise. [14]
In client-side enforcement a client interacting with remarks that monitoring can increase trust in an electronic
some web service is given the formal contract definition andarketplace by providing the consumer of a service the
applies it to the sequence of messages it sends and receisiility to check by itself the transaction that takes place.
The runtime enforcement mechanism acts as a “safety net”
that prevents the relay of non compliant messages to the
web service in case the client’s application logic is fault FORMALIZING MESSAGE CONTRACTS
The same monitor can be used to ascertain that the w&équential properties of interactions are generally esqae
service itself fulfils its part of the contract, and returrdsay with a variant of a state machine or temporal logic. How-
the contract says it should. ever, as will be detailed in Section 6, none of the repre-
In server-side enforcementan external runtime moni- sentations we surveyed were appropriate in our context.
toring module intercepts the messages at the interface Many missed the quantification over the data fields of the
the web service’s side and performs the same checks asrfssages required in our examples. Those that did imposed
client-side monitoring. Depending on the specification trestrictions on quantification that made them unsuitakie fo
enforce, a monitor can even be used to detect malicioasveb service scenario.
patterns of non compliant behaviour such as cross-siteThe logic we present in this section is LTL-FQa
scripting or replay attacks. first-order extension of a well-known logic called Linear

Temporal Logic (LTL); LTL has already been suggested

- N T mEc=c2 < c1isequal tocs
for the static verification of web service interface contsac Mg o W
[15]-[17]. Although we concentrate on LTL, our approach MEeVY & m e orm
is general: many other languages can be mapped into MEFp < = o for somei> 1
equivalent LTL expressions, or extensions thereof; this MEXe o mlege -
includes, among others, Message Sequence Charts [18], MUy o mi = for somej andm = o
SSDL's Message Exchange Patterns (MEP) and Rules pro- fori < j
tocol frameworks [19], and theet's Dancechoreography Ml 3w ¢ T = olb/w) for someb € Domm, ()

description language [20].

3.1 Messages and Traces TABLE 1

LTL has been introduced to express properties about se- Semantics for LTL-FO+
guences of states in systems called Kripke structures [21].

In the present case, the states to be considered are messaggs it , and v are LTL-FO" formulae, then-p, ¢ A 1),

inside a conversation. Formally, let us denotelMdythe set eV, o — 1, Gy, Fo, X, Uy, oV are
of XML messages. A sequence of messagesms..., LTL-FO* formulee:

wherem; € M for everyi > 1, is called a message trace. 3) If ¢ is a LTL-FO* formula, z; is a free variable in
We write m; to denote thei-th message of the trace, ¢, p € Il is a parameter name, theB,z; : ¢ and
andm’ to denote the trace obtained fram by starting at V,; : ¢ are LTL-FOF formulee.

the i-th message. . . .
A domain function is used to fetch and compare values The semantics of each of these symbols is then defined

inside a message; it receives an argumernepresenting as follows:

a path from the root to some element of the messag@efinition 2 (Semantics) We say a message trace
This path is defined using standard, XPath 1.0 notatioghtisfiesthe LTL-FO formula ¢, and writem |= ¢ if and

Formally, if we let D be a domain of values, anll be opy if it respects the rules in Table 1. As usual, we define
the set of XPath expressmng, the domain functldon the semantics of the other connectors with the following
is an]\;e[\pphgatlon]\t/{wx HH—> ? which, gl\g)n a messafgeidentitiesxp/\;b = —(~pV), o = h = —pVih, Gy =

m & M and a pathr € II, returns a subse omm(w) Of L (F-p), oV = ~(~pU—h), Vyz : o = ~(Tp : —p).

D, representing the set of values appearing in message)))

at the end of the path. For example, if we lefl be the ~ Boolean connectives carry their usual meaning. The
set of XPath formuleer € II be the particular formula temporal operatoG means “globally”: the formulaG ¢
“/message/stock/name”, andi € M be the following Means that formula is true in every message of the trace.

message: The operatorF means “eventually”; the formuld ¢ is
true if ¢ holds for some future message of the trace. The
<message operatorX means “next”; it is true whenever holds in the
<actiorn>placeBuyOrdet/actior> next message of the trace. Finally, tbeoperator means
<stock> “until”; the formulap U ¢ is true if ¢ holds for all messages
<name>stock-l</name> until some message satisfig¢s
<amount>123</amount>
</ sttockk>> 3.3 LTL-FO™ for Message Contracts
<stoc . _ . . - :
<name>-stock-2</name> Equipped with this semantics, we can revisit the previ-

ous examples and show how runtime properties can be

<amount-456</amount-
</stock> expressed as LTL-FOformulee.
<I/message The simplest of them is Runtime Property 2, which

stipulates that a CartRemove message cannot be sent for
a cart that has just been cleared (and still does not contain

then Dom,, (r) = {stock-1 stock-2. any item). Its formalization in LTL-F® is straightforward:

3.2 Syntax and Semantics of LTL-FO +

G (V (W ic c
LTL-FO™’s syntax is based on classical propositional logic, (Vcarciear/Carus : ((,CartFiemovelcamm L7 c2)
. . W (3cartadd/cartins © ¢1 = ¢3)))
using the connectives (“not”), v (“or”), A (“and”), — _ _
(“implies”), to which four temporal operators have been The W operator is called “weak until”; the formula
added. An LTL-FO" formula is a well-formed combination ¢ W ¢ is similar toy U+, except that) is not required to

of these operators and connectives, according to the us@ggntually hold as long ag remains trué. The formula
construction rules: says that globally, every time a cart 1D is seen in

o] a CartClear message, then this cart ID is not seen in
Definition 1 (Syntax) 1) If = and y are variables or

constants, themw = y is a LTL-FO" formula; 1. Formally: o W o) = (o U %) V (G o).

a CartRemove message until it appears in a CartAddL operators in between to specify the proper temporal

message. This indeed ensures that one cannot attemptelations. Writing down the expressions for the examples in

remove something from a cart that has just been clearethis paper were a matter of a few minutes: they contain at
The previous formula only invokes cart IDs at multiplanost five or six path expressions, and two to three temporal

moments in the trace. Runtime Property 3 requires tperators.

combine cart and item IDs, as follows:

3.4 Extension to Metric Temporal Logic

G (Vcartcreate/items/item/ASIN. : Metric temporal logic (MTL) is an extension of regular
X (VcartCreateResponse/Cartib : temporal logic to time intervals. Time intervals are used
G (Vcanaddicartior2 - ((,Cl = c2) - for expressing time delays in business contracts, as the
(Vcartadditems/itemiasiNg : i1 7 i2))))) properties in [22] demonstrate. The Google Express Check-

This formula says that globally, for every itein found out service shows examples of such constraints; Runtime
in a CartCreate request and every cartdDfound in its Property 6 refers to time, and time differences between
subsequent response, the following holds: from now ofessages.
every CartAdd message involving a cart ¢pis such that, ~ The present framework handles it by adding a timestamp
if ¢5 is the same as;, then none of the item IDs in that7 to each message. The actual timestamp need not even
CartAdd message is equal tp. Hence, any item used tobe exchanged through messages, but quantification on
create a cart cannot be later added to that same cart, whsgnply amounts to fetching the current timestamp from the

is equivalent to Runtime Property 3. system’s clock. In the same way as [23], metric temporal
For the sake of completion, we provide the LTL-FO logic then becomes a particular case of data parameteriza-
translation of Runtime Property 4, which is: tion. For example, Runtime Property 6 becomes:
G (Vcartadd/items/item/asiNt : (YcartAdd/cartioe G (Vaction@ Z.Ystart.-timet.Z
oler, i) Wap(er,i1)))) a = “notification-history-request

t—71| >30A [t — 7| <450 x 1,440
The formulaep(ci,i1) and ¥(c1,41) take ¢; and i, as (t =7l [t =l .)

parameters and are defined as: It specifies that thestart-tinme element of any
notification-history-request message must be at last 30
minutes, and at most 450 days away framthe current

C1 Zl =V, (e =c5 —
w(c1,1) CartGetResponse/Cartfts (value of the system clock.

JCartGetResponse/ltems/ltem/ASIN: i1 = i5)

Wclvil)ZV;aaftsem;"e’Caf/tl'm i 4 RUNTIME ENFORCEMENT OF MESSAGE
= 1 t t : =
(c1 =¢4 artRemove/ltems/ltem/ASI, : i1 = i4) CONTRACTS

Informally, ¢(c1,41) expresses the fact that the currenfyqory on runtime monitoring begins with a classical result
message is a CartGetResponse with a cart ID equaIOtH Linear Temporal Logic:

¢1 and which contains an item ID equal t9; v (c1,i1)
expresses the same fact, but about a CartRemove messafjgorem 1 (From e.g. [24]) For every LTL formulayp,
Runtime Property 4 then says that for every itenfound there exists a Bchi automaton) such that for every
in a CartAdd for cart ID¢;, then i; appears in every infinite trace o, we have thato = ¢ if and only if
CartGetResponse for that cart until it is removed from the € L(M).

cart._ At this poir_1t, the read(_er shoulld be convinced that the|, oiher words, this result indicates that given an LTL
runtime properties shown in Section 2 can be expressgiyia o,

into equivalent LTL-FO formulee. We omit the translation exactly the infinite traces satisfying. Performing LTL

of the remaining runtime properties. runtime monitoring becomes straightforward: it suffices to
The amount of effort required to formulate LTL-FO 1 uq this automatod/, determinize it if required, and then

message contracts is not as daunting as it appears. Firsigfio» 4 path in M as a particular trace is read. The trace

all, extracting the plain-text constraints from the ENglis,is|ates if, at some point, no valid transition exists from

documentation of a service should not count as part §fe cyrrent state oM, given the next event to read. This
the task, since these constraints must always be taken ity approach followed in e.g. [25].

account by the developer when writing an application, even

if they are not to be formally monitored. The intent to o)

monitor merely provides an incentive to collect them iff-1 Monitoring with Data

a systematic way. A problem arises with this approach when quantification
Once each constraint is identified, it generally providesh data elements is introduced, as is the case with LTL-

all the necessary information to formalize it into LTL-FO™. If the domains are infinite or not known in advance,

FO*. This amounts to writing the path expressions thahe Biichi automaton becomes impossible to build. Even if

fetch relevant attributes for each message, and insertithg domains are finite, they can be large enough to prevent

there exists a Biichi automaton that accepts

8(g,m)

automaton construction as well (think of the case where a 7 =0
property is expressed on an item ID, which can be anything ForeachN =T'IF A € ¢
in Amazon’s catalogue). N'=Al0 ,
A key observation comes from the fact that in runtime g & = 4 U UPDATE(m, NT)
monitoring, the Bichi automaton can be construabed Returng’
the-fly Only the start state of the automaton is initially End function
“built”. Then, as the trace is progressively read, only the TABLE 2
parts of the automaton relevant to that particular trackhe function § changes the state of the watcher based
can be expanded. This result is interesting for classical on a message observed in the trace.

LTL in itself: a propositional version of this algorithm is

used internally by the SPIN model checker to transform

an LTL formula into a Buchi automaton [26]. However, it

becomes crucial in LTL-FO runtime monitoring. Instead that point. This definition makes no assumption about any

of generating all states for all possible values of a givgfrocess instrumentation or annotation. The watcher can be

parameter, an on-the-fly algorithm will only create theestatimplemented as a local process intercepting messages sent

corresponding to values that have actually bebserved and received, called by aspect-oriented “pointcuts” [27],

Since all messages are finite (yet unbounded), for any finjtaplemented as an external observer acting as a verifying

prefix of any trace, the set of observed values will be finitgayer between acting parties [13].

and so will be the number of states of the partial Bichi A|th0ugh LTL-FO" is similar in many respects to an-

automaton. other logic called CTL-FO, the model checking algorithm
This in turn is only possible because of the particulafeveloped in [8] cannot be adapted for runtime monitoring.

definition of message quantification in LTL-FQwhere a |ts effectiveness relies on the fact that data quantificatio

quantifier applies to values fetched in tberrentmessage. can be modelled as a particular form of branching path

Hence the LTL-FO formulaV.z : Fo(x) indicates that quantification. Since LTL-FO provides no such path quan-

the values at the end of path in the first message of tifiers, a whole new algorithm must be provided to tackle

the trace (i.e.Dom.,, (r)) all eventually reappear to fulfil ryntime monitoring.

¢. Using a classical first-order quantifier, the previous The algorithm is inspired from [26] and adapted to
formula would rather mean that all valuesn some domain the first-order quantification mechanism of LTL-FOIt
Dom. () (independent of any message) eventually satisfy hased on the principle that the standard LTL temporal
¢(x). This is impossible to verify if the domain is notgperators can be represented through a fixpoint notation
known in advance, or if it is infinite. connecting the current and the next state of the trace. For
example, the identitfF o = ¢ V X (F) indicates that

4.2 On-the-Fly Monitoring Algorithm for LTL-FO ~ + checkingF¢ on a message amounts to checkingpifis

We now describe an algorithm that allows for the runtimterue in the current message, and if not, wait for the next

o State and checlE ¢ again. Based on that observation, a
monitoring of LTL-FO" formulze. We construct watcher . ¥ ag
. : simple update algorithm can be developed to keep track
for a formulay which, when fed with the messages from .
. of what must be true now, and what must be true in the
a trace one by one, updates its state and warns of eventual _.
L remainder of a trace.
violations of ¢.

To this end, we define aodeas a pairN =T I+ A,
Definition 3 (Watcher) A watcherfor a formulap is a wherel is a set of LTL-FO formulae that must be true

tuple W,, = (@, qo, 9, O, f) where: in the current state, and is a set of LTL-FO formulae
e @ is a set ofstates that must be true in the next state. We assume without
e qo € Q is the initial state; loss of generality that negations can be pushed down to the

« §:Q x M — Q is the transition orupdatefunction; ground terms by use of the identities in Definition 2 and
« O is a set ofoutcomesi.e. the possible conclusionsthe formuleec; # ca = —(c1 = c2) andX ¢ = ~(X —p).

that a watcher can draw on a given trace;
o f:@Q — O is an outcome function. 4.2.1 Transition Function

Formally, a watcher is a special case of finite-stafEhe state ¢ € @ of the watcher consists of a (finite)
automaton where the set of accepting states is replacsd of nodes. Intuitively, each node in the watcher’s state
by a function f returning an “outcome” for each staterepresents one possible way in which the observed trace
The watcher starts in its initial statg); then, for each can fulfil the propertyp. Therefore, the initial state, of
messagen that is monitored, the update functiofg, m) W, is composed of the single node- {¢} —that is, no
is called to take the watcher into its updated state message has yet been observed, and the LTi-fadmula
At any time during the monitoring process, the outcome must hold on the next (i.e. the first) message of the trace.
function f can be applied on the watcher’s state to decidéhen, each time a new messageis observed, the state
whether the monitored property is violated, fulfilled, or ifof the watcher is updated via a tlefunction shown in
nothing can yet be concluded from the execution up ftable 2.

The update functiod simply takes each nod® € ¢, message has been checked, and nothing more needs to be
moves the contents of the right-hand side of the node to therified when the next message is observed.
left-hand side (leaving the right-hand side empty), andithe Finally, when neither result can be concluded from the
calls an auxiliary function BDATE on that resulting node. current state of the watcher, the outcome function returns
UPDATE takes a node and decomposes the formulae fromite “inconclusive” result.
left-hand side according to the rules shown in Table 3. On
some occasions, the decomposition of a formula produces .
more than one node; the decomposition is then recursivélyy Correctness and Complexity
repeated on each resulting node until no further rule appligro prove the soundness and completeness of the runtime
The set of these terminal, “spawned” nodes is then returngfbnitoring algorithm, we must first assert the correctness

to 4 and included in the new state for the watcher. of the structural decomposition defined in Table 3.
This form of decomposition is like a variant of sequent)

calculus [28] applied to temporal formulae. Intuitivelyeth Theorem 2. For a set ofk monitor nodes{ Ny, ..., Ny}

function UpDATE decomposes and evaluates all the LTLOf the formN; =T I- A; (0 <7 < k), define

FO™ formulae that must be true in the current state, eventu- k

ally evaluating quantified variables and replacing ediealit — g({N,,...,N,}) = \/ ((/\ pi) A X (/\ Ai)) 1)

with their Boolean value. At the same timepDATE trans- im1

fers to the right-hand side of the node all the properties tha

will have to hold in the next iteration of the update functionVhereV ¢ = false and/ § = true (therefore, (1)) = false
pd ¥ ({Ny,..., N}) = true as soon asV; = () I- () for

The number of nodes spawned by the application of a singt
rule is bounded by the number of elements returned by tR@MeN:). Let N = T'I- A be a node andV; =T IF A;
function Dom, i.e. k. The resulting tree is therefore of arity(0 < ¢ < k) be thek nodes resulting from the application

at mostk. As usual, for dinite tracem = m,m, ... m,, °f one of the rules in Table 3. L&t = m,mi, ma, ...
we defined(q, m) = 8(3(...8(5(q, 1), T12) . ..), 7). b_e an arbitrary trace of messages. Then= ¥({N}) <
It shall be noted that the monitoring algorithm does ndt' = PN Ni).

require anya priori knowledge of the message’s structure prgof: The proof is done by showing how the equiva-
or its elements’ types. Message contents are only relevaglice is preserved by the application of each transformatio
when evaluating a first-order quantifier, and this only apgyle. We omit the trivial cases of operators vV and A, as
plies on-the-fly to the current message, by fetching anye|l as temporal operatoi$, G, F, U and W, where the
values occurring at the end of a path. If the path does Nelspective parts of the proof in [26] can be adapted. We

exist in the message, the quantifier simply evaluates on | need to prove ground equality and quantification, as
empty set of values. follows.

1) N =¢; = ¢, I'IF A. Two cases must be considered.
First, if m |= ¢1 = ¢o, then applying the decompo-
sition rule results in a single noddy; = T' IF A.
Hence:

4.2.2 Acceptance Conditions

It remains to determine how the watcher can conclude that a
trace fulfils or violates a property. To this end, a set of¢hre
outcomes is usedt indicates that the property is fulfilled,
L indicates that the property is violated, and *?” indicates 7 = U({N}) & mEca = ATAXA
an inconclusive result: the property cannot be guaranteed _

. ;) = ¢ and | NV, QAN
to be neither true, nor false. The outcome function assigns & mEa=co ™=

to each possible watcher state one of these outcomes. & mETAXA

Definition 4 (Outcome function) Let ¢ be a watcher state, & mEY{EN)

and O = {T, 1,7} be the set of outcomes. The outcome Second, ifm K- ¢ = co, then applying the decom-
function f is defined as follows: position rule does not produce any node and returns
an empty set. The case for # co is symmetrical.

T ifQIF
- ?f OIF0eq 2) N =Vpz : ¢, I' IF A. Applying the decomposition
fla)=q L ifqg= @ for the universal quantification yields a single node of
? otherwise the form Ny = plx/b1], ..., [z/by],T IF A, where
The violation condition is straightforward: if a call t© {b1,--,bn} = Domy, (p). Then:

roduces no nodes, then there is no possible way for the __
P P Y m E U({N})

trace to continue while still fulfiling the property, and a & MV e ADAXA

violation can be announced. & mEelz/bi] A Ap[z/by]
Conversely, the acceptance condition expresses the fact AT AXA
that for a trace to respect the property, it suffices that one s mEY{ND)

of the possible nodes indicates that the property is sure to
be true. This is the case when bdtrand A are empty:in~ 3) N = d,x : ¢, I' IF A. Applying the decom-
such a situation, everything that must be true for the ctirren position for the existential quantification spawns

’(21:CQ,T\FA‘ ’01¢CQ,FIFA‘ ’(:1:02,1"IFA‘ ’01¢CQ,F\FA‘ ’;p/\z/),F\FA‘]f,avw,FWA‘

p,F\FA‘]zm,rwA\

TIFA X X TIFA [eTIFA]

if c1 =co if c1 # c2

Fo,TIFA] Go,TIFA ‘] X TIFA ‘

eV, TIFA

;;,FI%A‘]FlkFgA\ ’Q,I‘H-G’p,A‘ ’FIH;,A‘]w.rwA\ ’FIM’,QUL/).A‘

Jpr:p,TIFA Voo, I'IFA

[4.T1F oV, A]

olz/bi],T IF A] ola/bu), T IF A ‘ Mum olx/b), I‘\FA‘

for by, ...b, € Doms(p)

TABLE 3
Decomposition rules for a watcher’s state node.

nodes of the form¥V; = ¢[z/b;],' IF A, where Then, by Theorem 2, this is equivalent #@;, ms, ... =
{b1,...,bn} = Dom,(p). Then: U(S(T IF G, ms)). O
o . A It remains to show that the outcome function correctly
mEY{NY) & FHzipATAX assigns a truth value to the state of a watcher.
& m bi]V--- Vv bn,
™ (gpﬁx/)1(]A ela/bn]) Theorem 4. Let ¢ be an LTL-FO formula, m =
ALA mi,me,...,mg be a finite trace of messages, and=
& mE (plz/bl] ATAXA) V... {N;,...,N,} be the set of nodes in a watcher such that
V (plz/by,]/\FAXA) q =060 IF o,m). If f(q) = L (resp. f(g) = T) then
T) P A
AN)V VTN, f%rma?L|r(:7f)|nlte continuatiomm’ of m, m, m’ = ¢ (resp.
({N1,..., N }) ’ '

Proof: By Definition 4, f(¢) = L implies thatq = (.

L By repeated application of Theorem 3, we have:
One can observe that for a message and a node

I IF @, the result of WDATE(m, N) is a set of nodes mm e & mm E=Y0IFe)

{Ni,...,N,}, such that for every nodeV;, we have e W E ()

N; =0 I A;. Indeed, the repeated application of the rules —

in Table 3 progressively decomposes the formuld imtil

only atoms of the forme; = ¢z or ¢; # co remain. Each But ¥(()) = false by Theorem 2, and hence,m’ [o.

atom is then evaluated, which results either in its deletiorhe proof for the casg(q) = T is similar.]

from the setl’, or in the deletion of the node altogether. This result entails that, when the outcome function re-

The function WPDATE simply repeats this process for everyurns ? after reading some finite prefix of a trace, this prefix

node in a statg. This observation allows us to say: can be extended by at least one more message without

Theorem 3. Let 7@ = my,my,ms,... be a trace of prpvoking a direct violation of the sp_ecificz_;\tion. Note that

messages, and = {Ni,...,N,} be the set of nodes inth|s does_not mean that the trace itself is guaranteed to

a watcher such that every; is of the formN; = 0 I- A,. be _C(?mpl|ant; fo.r gxgmple, the properk/ L cannot be

Let ¢ = d(q, m2). We have thain,, ma, ms, ... = (q) satisfied by any infinite trace, yet on.e.nee.ds to _reach_ the

if and only if ma, ms, ... = U(q'). seconq message _of that trace to epr|C|tI_y violate it. Imalln_
with this observation, the outcome function returns ? until

Proof: By definition: the second state is read.

Although complexity cannot be demonstrated due to
lack of space, an intuitive argument places it on par with
& mg,mg,... T classical LTL. In the worst case, a Buchi automaton is
< mg,ms,... EU(IFP) exponential in the size of the LTL formula it is based on.

& mEY
& mEY

my,ma,ms,... = V(q) < mi,ma,ms,... =XT

Since LTL-FO" subsumes LTL, the same result applies.]wVZA‘/’,F\F\]G'pﬂ,FH] X, I'IF ‘ ’ Fo,T Ik ‘
This exponential upper bound, however, is mitigated by the
fact that the algorithm works on-the-fly, and only generates
at any step a small subset of the complete automaton. s Il X X

4.4 Further Refinements

pUu‘:,FIF‘ ’ 3,7:0,T I ‘ ’ Voz:po I ‘
A number of natural refinements can be applied to this basic ‘
algorithm.

X X rl-
4.4.1 Anticipative Semantics
TABLE 4

The previous observation shows that the _out(;ome funCtiO'R/lodified decomposition rules for an watcher’s state
looks one message ahead when computing its truth value.
Therefore, it does not identify a violation that will marsfe
itself later on, but is unavoidable nonetheless. One might
therefore be interested in an outcome function with a

greater lookahead, that would retutnas soon as no valid g tormula of the fornG must be true for all messages of

cont_inuation of a tra_lc_e is possible, even_t_hou_gh the curr_etm3 trace: since no more message is expected, the property
preﬂx does not epr|C|tI>_/ _/|0I§1te the spe<_:|f|cat|on yet —sthi;q vacuously true and can therefore be considered “not
is what [29] calls aranticipative semantics _ yet violated” by the trace. On the opposite, the temporal
While in the previous example, recognizing this fact igyeratoiF o requires that therexistsa future message such
easy, one can devise other cases for which this |dent|fm:attfp]at(p is true: since the trace is completed, no such future
is less trivial. For example, the formu@—¢ AF ¢ cannot message will appear and the property is “not yet fulfilled”.
be true on any infinite trace, since it asserts both thats,ther discussion on the interpretation of LTL formulee
¢ is never true, and thap eventually will become true. o, finite traces can be found in [29]; the discussion could
Moreover,p can itself be an arbitrarily complex temporal,q adapted to LTL-FO as well.
expression, and its two occurrences can even be written ifrparefore. one can run RbATE once more on the state
equivalent, but completely different ways that makes hagg} ihe watcher, but using a modified set of decomposition
to realizeG andF actually have the same argument. rules for UPDATE. shown in Table 4.

,ln fact, an outcome functioif’ could be devised so that g e for the temporal operat6ry can be interpreted
f'(¢) = L when¥(q) is a contradiction, i.e. Whe®(q) 4q follows: the property, must be true for all future
is unsatisfiable. However, deciding satisfiability of “plai 1 os5a5es of the trace; since no such message exists, the
LTL is PSPACE-complete, so that satisfiability of LTL-y-ohery is vacuously true and can therefore be eliminated
FO' is PSPACE-hard. Moreover, such a computationallfzom the node. On the opposite, the temporal opergtpr
intensive decision algorithm must be repeated at eveRyyires that therexistsa future message such thatis
new message, in order to check that no contradiction dge: since the trace is completed, no such future message
generated by the last application oPDATE.. _ will appear and the property is false, hence suppressing the

_In contrast, the functiory defined in this paper is a hoge. The modified rules for the other temporal operators
simpler form of outcome function that recognizég()), ,.q quantifiers can be deduced in the same way.
but not other, more complex forms of contradictions such aSRemark that these modified decomposition rules ensure
the ones previously discussed. However, it runs in constank every branch will either terminate with an “X” or with
time; in addition, from our experimental study of real-vebrl o «accept” node) I (. Therefore, either the acceptance
services in Section 5, we discovered that such anticipatiye he violation condition will apply to this last state and a
semantics was not required. partial conclusion can be drawn.
" This conclusion differs from the regular acceptance and
4.4.2 Additional Truth Values violation condition in that the result is temporary: an
Since most observed traces will be finite, it is possible thgkceptance on the last message actually indicates that the
the watcher comes to a state where neither the acceptamBperty has noyet been violated, but could have been if
nor the rejection condition applies, although no furthg(rther messages were sent. In the same way, a violation
message is coming. An example of this is the formBla on the last message actually indicates that the property has
for any formulap. This formula can never become true omotyetbeen fulfilled, but could be if further messages were
a finite prefix of any trace, as the next message can alwayt. An outcome functiofi’ can be defined, which returns

violate ¢. At this point, sincey is neither confirmed nor these two additional outcomes at the end of a trace.
violated, the result is inconclusive. This readily entdiat

the watcher must return at ledkteevalues: “true”, “false”,
and “?". 5 EXPERIMENTAL RESULTS

A more subtle conclusion can be obtained by looking @lthough the soundness and usefulness of this algorithm
the actual formula that needs to be checked. For exampiaye been proved in theory, its practical value still needs

node when the last message is reached.

10

to be assessed on real-world scenarios. To this end, waesides its ease of use, the main advantage of BeepBeep
conducted a set of initial experiments that involved this that the specification of the contract is completely de-
runtime monitoring of LTL-FO formulae on automatically- coupled from the code required for its actual monitoring.
generated traces. The goal of these experiments was to sfidwe contract is located on the server side in a file separate
that the monitoring of LTL-FO formulae can be effectively from the monitor itself. This is in contrast with [27], [30],
done in concrete contexts and imposes a reasonable owdnich require the compilation of a contract into executable
head on the execution of a workflow. Java code —an operation which must be repeated whenever
the contract is changed. This requirement is ill-suited to
the highly volatile nature of web service interactions. In
BeepBeep, changing the contract can be done dynamically

) 3 RiThi let | e f lithout changing anything to the clients: the algorithm is
rurt1n|r|1|g aks a av? aip d 1S arIJp_e |sthresp0n5| e for plied at runtime, and in the same way, to any LTL#O
actually keeping track and analyzing the incoming and .\~ passed to the monitor.

outgoing messages with respect to an interface contractr, BeepBeep applet can also be wrapped for use as

It is a direct ‘mp'e”?e”ta“‘?” of the runtime enforc_em_e server-side runtime enforcement tool, or as a protocol
algor_:ct_hn}descrlbelz_(_jrtnFSCDchnon 4|' and can accept as its NRightroller. Its use as a log analyzer, on pre-recorded drace
speciiication any) ormuia. of messages, is also straightforward.

A monitor 'S mstantlaf[e.d by passing as an grgument BeepBeep monitors conversations specified at the XML
a character string containing a text representation of 3}?

. : essage level; it is independent from any client implemen-
-FO+ . . .
LTL-FO™ formula to monitor. This fo_rmula can be fetChe ation and does not refer to any internal variable of the
for example, from a local contract file or a command lin

ter. BeepBeen's imol ati a lassh Blient's source code. It is therefore non-invasive and ¢an e
parameter. beepbeep's impiementation contains Classes gl specifications transparently with minor changes ¢o th
data structures to convert and manipulate these formulae&ra—de apart from including BeepBeep. Other approaches
ternally. Once instantiated, the monitor’s interface jdes ' : '

thod call v hich tak such as [27], require heavier code instrumentation in order
a method calleghr ocessMessage() , which takes as an to correctly intercept non-compliant behaviour.

argument a String representation of an XML message andBeepBeep also has a low footprint: the total volume

updateas its internal lslta;? gj:fordmg to thte Spetﬁ'f'cat'olr:'tﬁat needs to be downloaded by an Ajax application using
second message, ca’g come(), returns the resu BeepBeep (JavaScript + applet) is less than 50 kB, and this

of the outcome _func'uoo‘_ on. the current .lnternal §tate. ust be done only once when the application starts. By
A standard Ajax application communicates with a weB]

. . . 's standards, this i ligible. Although t edat
service by sending and receiving SOAP messages thro ghay s stancards, tis 1 negigibie Ougn mos

_) k on runtime enforcement do not provide easy access
the standard XMLHttpRequest object prowd_ed by_the l_OC implementations for comparison, one might consider
browser. BeepBeep can be used on the client side, ins

{fifs: loading the Google M f ty cach
these Ajax web applications. A JavaScript wrapper filp oading the \a00g'e Maps page from an empty cache

; . requires downloading a volume of about 400 kB of data,
overloads XMLHttpRequest with a class that behaves in t C(Ij typing “Montregl” in its location bar immediately
same way, with the exception that incoming and outgoir{g gers the download of another 400 kB. We therefore
messages, before being actually sent (or returned), a

i " RN ue that, for standard Ajax applications, the addition
deviated to the applet and possibly blocked if V|0Iat|0n8]c BeepBeep as a runtime monitor represents a marginal
are found.

Including BeenB int isting Ai licati .increase in the volume of downloaded data.
ncluding beepbeep Into an exising Ajax application 1s BeepBeep was designed for client-side monitoring,

simple. It suffices to host two files (the ar applet and the where a trace is a sequence of messages starting when

-] s include) in the same directory as the Ajax applicatiorh user connects to the site until the user checkouts or

and_ to_ load Beep_B_eep k_)y z,;\ddmg a single line at tr}:efoses the browser. However, it can also work on the
beginning of the original client’s code. No other changes 9

th d ired: 1 thi int. BeeoB int terver side. Since the server is the endpoint of multiple
€ code are required. from this point, Beepbeep In erce%ﬁrallel sessions with different clients, the monitor must

the messages and transparently monitors the conversati @tinguish between these sessions to properly enforce the

When BeepBeep detects tha_‘t a message violates a Cl%r%'ssage contracts. However, this filtering must be done
tract property, its default behaviour is to block the messa

; i _ _%y the server code anyway, either by passing a session ID
and to pop a window alerting the user, showing the plaua-s an XML element in the messages, or as a cookie in

text description associated with that property. Altenel, the HTTP request that carries this message. In the first
BeepBeep can be asked to call a function, calldwbek case, it suffices to prefix each runtime property with a

prowded l_:)y the appI|_cat|on develpper. The developer CAiversal guantifier over session IDs that BeepBeep can
insert arbitrary code in _that_ funct|0r_1, setup a bre"J‘kpo'rgbserve like any other XML element. In the second case, it
??]d e?tractBany gebugglng tl)nformzétl?n fdeemtﬁd rtw)ec_ess dffices for the server to associate one instance of BeepBeep
erefoTed, beep_ eetp clafn € used 1o ortm te' Iails Oto? each thread created when a new session opens; each
powerful debugging tool for message contract violalions;,iance is hence only dispatched the messages specific to
2. BeepBeep and its source code are available for downlodéruam that.sessmn, before passing them On. to _the thread prpper.
free software license at http://beepbeep.sourceforge.ne In either case, the problem of checking interleaved client

5.1 The BeepBeep Runtime Monitor
We developed BeepBeep, a lightweight runtime monit

11

| || Operators| Quantifiers [Length |
Runtime Property 1 1 2 17

By observing the plots in Figure 1, one can see that

Runtime Property 2 5 3 8 validation time is similar for all four properties; at the
Runtime Property 3 2 7 22 scale of only a couple temporal operators and quantifiers,
Runtime Property 4 2 6 28 formula complexity hence has a negligible impact. The
TABLE 5 higher processing time per message in small traces can
Number of temporal operators, data quantifiers, and be explained by a fixed overhead of about 10 ms incurred
total number of symbols in each of Runtime when initializing the monitor at startup. This overhead is
Properties 1-4. amortized in traces with more messages. Globally, one

can safely conclude that the time required to process
a message remains well under 1 millisecond, once the
monitor is started. All but a dozen traces required more
sessions reverts to having a series of watchers, eachtigdn 2 milliseconds per message to be monitored, for any
which monitoring and evaluating one single trace. Neithef the four properties. Moreover, the plots clearly indécat
requires any modification to the monitor itself. that the presence of long traces does not adversely impact
on validation time.
5.2 Tests on Synthetic Traces

Using the Amazon ECS as an example, we generated-2 Monitor size
random traces of request-response messages. Each tfdie previous findings show that the monitor’s average
contains a random number of cart creations, item searchegcessing time per message is reasonable, and is not
and cart add, edit, remove, and clear operations. Thedéected by the presence of long traces. This is the case
operations manipulate items from a pool of 1,000 possibyen if the properties to monitor require that data values
IDs and a maximum of 10 simultaneous instances of shdjpom the past be saved for later comparison. However, it
ping carts. We believe that these values greatly exceed thay well be possible that the accumulation of historical
parameters of a typical shopping session driven by a singlata, even if it does not adversely impact on processing
user. All these traces correspond to semanticatjid time, still reaches unreasonable bounds in terms of memory
interactions, i.e. the contents of each created shoppirtg dgquired. A second experiment recorded the maximal size
is tracked throughout the whole sequence, and only vafigat the monitor’s state reached while evaluating eactetrac
operations are allowed to be selected on each shopplifgypurpose was to determine whether that size grew with
cart at any time (for example, agdit operation is never trace length, and to what extent this growth can be bounded.
attempted on an empty cart, etc.). We recall from Section 4.2 that the state of the monitor
100 traces of lengths ranging from 10 to 10,000 mesonsists of a set of nodes, each of which contains a finite list
sages were randomly produced. Each of these traces WasTL-FO™ subformulee. The total number of subformulee
then assigned to an instance of the BeepBeep runtitiedll nodes of a state is hence a measure of its size, which
monitor, which evaluated Runtime Properties 1-4 on therif. turn is directly proportional to the amount of memory
The experiments were ran on an Intel 2.67 GHz CPused by BeepBeep to store it. The results are plotted in
under Windows XP, with an out-of-the box Java runtimgigure 2.

environment. The stepwise behaviour of Figures (a) and (b) can be
S explained by the properties they relate to. Runtime Prgpert
5.2.1 Validation time 1 stipulates that ItemSearch is the only allowed operation

For each run, we first measured the average processing tineore CartCreate. The monitor can hence be in only two
per message, and plotted the results in Figure 1. Graphsgggtes. If CartCreate has not yet appeared, the monitor’'s
to (d) represent a progressive increase in the complexity sthte contains a single node of the fognt- (), wherey is
the property, both in the number of temporal operators aflintime Property 1, a formula of size 17. Once CartCreate
data quantifiers, as is summarized in Table 5: subfigure (has appeared once, the monitor does not require any further
corresponding to Runtime Property 1, is a formula with &ork and simply propagates the empty ndde 0, of size
temporal operator and 2 data quantifiers; subfigure (d) Gs Hence, the monitor's maximum state size reached in any
a more complex formula, with 2 temporal operators andtéace is either O (if CartCreate is the first message of the
data quantifiers. trace), or 17 (otherwise). This is irrespective of the léngt
This experiment had three purposes: first, to determiongthe trace, and is consistent with the plot in Figure 2(a).
the typical order of magnitude required for processing a Intuitively, the monitor’s state for Runtime Property 2
message; second, to determine if more complex formutgows each time a caut is cleared, and includes a new
result in longer processing times; third, to assess whethestance of the LTL-FO subformula stipulating that no
the monitor’s performance degrades as a trace unfol@artClear must appear with until a CartAdd operation
Indeed, all the runtime properties described in Sectionivolves c. This subformula is removed from the state as
require the monitor to capture and preserve data valugson as CartAdd is called for catt Hence the monitor's
from past messages for comparison with future messagstte size evolves in discrete steps, with its maximum
An accumulation of historical data to seek through at evebeing a direct function of the number of carts that are
message could progressively slow down the monitor. simultaneously empty in a trace. Since the traces contained

E g;%
1+ -

g

M

+**1¢1¢
- Wﬁiw#¢w

1 10 100 1,000

(a) Runtime Property 1

10,000

10 100 1,000 10,000

(b) Runtime Property 2

1 10 100 1,000

(c) Runtime Property 3

10,000

1

10 100 1,000 10,000

(d) Runtime Property 4

Fig. 1. Validation time per message (in milliseconds)
according to trace length, for Runtime Properties 1-4.

o e A
16+

160 +

120 +

80+

40+

0

+

o
T
R

+
Fa—
TR
FRT——
FEE—

1 10 100 1,000

(a) Runtime Property 1

800+
600 +

400 7t o+ T
+ * +
.
Lt + + + Ea
200 T e o+ T
LT
ot g T A s
EE R A

0

10,000

++ s
s T
+

+

1

800 +

600 +

400 +

200 +

0

1,000 10,000

(b) Runtime Property 2

10 100

1 10 100 1,000

(c) Runtime Property 3

10,000

1

10 100 1,000 10,000

(d) Runtime Property 4

Fig. 2. Maximum memory consumption, in number
of subformulae, according to trace length, for Runtime

Properties 1-4.

at most 10 carts, there are 11 possible values for the num

of empty carts, and the plot contains 11 steps.

12

results in larger state sizes.

Nevertheless, the number of subformulee that need to be
stored by the watcher, and hence the memory footprint
of the algorithm, remains within reasonable bounds and
grows very slowly (i.e. logarithmically) with respect tate
length. Although the machine used for the experiments
provided 8 GB of RAM, only a tiny fraction of it is actually
required for the monitoring: for all but one trace, the peak
number of ground terms in the monitor's state remained
under 1,000.

5.3 Tests with Actual Web Services

The previous experiments allowed us to measure a num-
ber of factors impacting the monitor's performance in
a controlled way. However, the absolute overhead of 1
ms per message should also be related to the processing
time per message of an actual web service. To this end,
BeepBeep has been tested on real Ajax applications in
various scenarios.

We compared a plain Ajax client using a real-world
web service, the Amazon E-Commerce web service, against
the same client communicating through BeepBeep and
monitoring 11 different contract properties. Since we did
not have access to Amazon'’s file server, the contract file was
located on the same server as BeepBeep for the needs of
the experiment. Each version of the client sent to Amazon
the same set of randomly generated message sequences;
the difference in the elapsed time was measured. Since
the experiment involved actual communications with the
service, it was repeated on 20 different traces to average
out punctual differences caused by the variable latency of
the network.

Our findings indicate that on a low-end computer (Asus
EeePC with a 600 MHz processor running Mozilla Firefox
2), monitoring LTL-FO" contract properties produces an
average overhead of around 3%. As a rule, the state of the
network accounts for wider variations on processing time
than the additional computations required by the monitor.
These results suggest that even on small devices such as
smartphones and PDAs, the addition of a runtime monitor
on the client side should not have noticeable effects on
performance for typical web applications.

6 DISCUSSION AND RELATED WORK

é\ernumber of approaches to the runtime monitoring of
systems in general have been suggested over the years.
However, the unique characteristics of web service message

A similar reasoning could be applied to explain the,n acts makes each of them inappropriate in at least one
patterns found in Figures (c) and (d). The bottom line of th'r%spect, thereby warranting the development of LTLYFO

analysis is that trace length is seldom the contributingpfac

These characteristics are enumerated below.

that predicts memory consumption. For Runtime Property

1, the maximum size was determined by the presence of

CartCreate at the first position in the trace; for Runtim@l Access to Data Parameters

Property 2, memory consumption is proportional to thé/eb service message contracts involve properties referenc
number of empty shopping carts at any one time. In maiyg data elements inside exchanged messages. Therefore, a
cases, however, longer traces increase the probability tfiest category of inappropriate monitoring solutions irdes

this contributing factor appears more often, and hengeopositionalruntime monitoring tools, where the sequence

13

of messages is analyzed, but the content of messagegrigperties which can count, for example, the number of

abstracted away. times a given message type is received. The content of
Enforcement monitors [31], a refinement of edit automataessages can be statically referred to in the propertiés, bu

[32] and security automata [33], are special types @i quantification is allowed on data fields.

finite-state automata used to intercept, and possiblyrretai

messages destined to a peer in a special waiting quelig Complex Message Structure

until one is guaranteed that sending these messages yill . .
o P all possible parameter values are known in advance
not lead to a violation of the specification. In contras

o . T (4b1,...,bn}), it is possible to create one propositional
our monitoring approach discards messages that viol -)

s : - X symbol for each value, and use propositional temporal logic
the specification. Since finite-state machines are used;to

represent the contracts, the messages are considere#0 gxpress a constraint. It suffices to repeat a formle)

as
atomic events with no data; this would not be suitable f

(?_cr:r each possible value aof, e.g. p(b1) A -+ A ©(by).
the runtime properties we described in this paper. owever, in the present context, the possible values are
Some of the runtime properties we presented include

not known in advance: for example, Runtime Property 3,
time constraints. Timed automata [34] can be used to rep. c>ong a constraint on item ID?’ would re:quwe to be
o . i eated once for each possible ID in Amazon’s catalogue,
resent such timing dependencies between events; they oth-" - o
.) : hich is unrealistic. Therefore, the use of a quantified
erwise behave like classical automata and cannot quanti

over data elements other than time; they hence cannot é)ressmn,w : go(:v)_, not only shor_tens the prpperty, but
alsp covers all possible values ofwithout knowing them

used in the present context. Extended timed automata, us
. . . in advance.
in model checkers like Uppaal [35], have data variables in ; . o
.) . There exist a couple of approaches to runtime monitoring
addition to clocks; however, it is unclear how, for example,, . e .
. . . ; Which allow some form of quantification on data fields. For
the variable (and potentially unbounded) list of item IDs L
) . . . example, usage control enforcement [39] uses plain first-
in a shopping cart could be encoded with data variableés : T
: —.order logic to access to data parameters inside events of
in order to express Runtime Properties 3 and 4; a similgr

remark applies to the Input-Output State Transition System e X11 wmdoyvmg system. However, the 'a”gua‘%e only
: . oo . __expresses relations between one state and the next; complex
(IOSTS) used in [36] to specify monitoring properties; ")
e ! - : emporal modalities, such as LTLE or U, cannot be
In addition, the overwhelming majority of properties o : . i
. . " . represented in the framework. [23] describes an algorithm
commercial web services elicit constraints on data elese

) : or rule-based runtime monitoring, where the rules are
such as shopping carts or item IDs, and seldom refer to o : .
time. temporal fixpoint functions that can include data arguments

- . . . 40] makes a similar use of data parameterization for a
Similarly, propositional runtime monitoring was used b

[12], where patterns of messages exchanged by a wi lﬁint'f'ed variant of LTL.

. o . ; owever, in the current scenario, most messages not only
service are specified using UML 2.0 Sequence Diagrams, . .

. ; e gntain an action name and a set of data parameters, but

and then transformed into classical finite-state automaa

) Jnese parameters themselves are subject to a potentially
whose state is updated for each message sent or received. .
complex XML structure. In the Amazon scenario, one

[27] uses UML Message Sequence Charts with the same

intent; however, the authors suggest the application %zfmnot simply refer t_o the item 1D in a shopping cart,
. . o S there can be multiple instances of theenm d element
aspect-oriented programming to call monitoring methods .
: . iN a message. A property can require that all, or only one
with the use Javgointcuts

There also exist approaches that use logic, rather th(z)afnthese item IDs fulfils a constraint, hence a form of

finite-state machines, for specifying temporal constmintquant'flcatlon over message contents, includixgstential

; _guantification, is required. This is probably the single tmos
An early work on this respect [37], which uses a reV\Ir'tmﬁistinguishing point with respect to other verification ap-

approach similar to the one presented here to verify traces _.: ; .)
) . : . plications. The aforementioned solutions work in a context
of events against LTL properties, using the Maude strirft

") . . : . here there is at most one instance of a parameter in a
rewriting engine. Since the logic used is classical LTL, the ; e .
message, thus removing the need for quantification. This

properties do not allow data parameterization. Similarly, T
different patterns of classical LTL properties were stddie‘yilso rules outlogics like}pg [41] or Eagle [42], for the

by [17], which introduces the concept obstacleto detect same reason. In .contrast, BeepBeep can hand!e arbitrary
. L e nested structures; no upper bound on the arity of the
possible violations of a specification. 2D-LTL [38] allows : .
; . messages needs to be fixed in advance.

one to express correlations between parallel sessions oc-
curring on a common timeline. However, apart from an) -
implicit session identifier, no data is taken into account -3 Unrestricted use of quantifiers and temporal
the properties. operators

Finally, in [13] an elegant framework for the automati@ third characteristic of web service message contracts is
synthesis of monitors is presented. The language suggesdteat temporal operators and quantification must be mixed
by the authors is called Run-Time Monitor specificatiowithout limitation, as is the case in LTL-FO In contrast,
Language (RTML), which is an extension of LTL thatmonodic temporal logic [43] requires that each subformula

allows the expression of Boolean (true/false) and numkridaeginning with a temporal operator must have at most one

14

free variable. Apart from Runtime Property 2, none of thin addition to a proof of its soundness, this algorithm was
examples in our paper follow that restriction. Similarly, i implemented into a small Java applet, called BeepBeep, that
an other extension of LTL called LTL-FO [44], quantifierscan monitor and enforce any temporal property specified
cannot be applied to formulae containing temporal operim LTL-FO™. In particular, this applet can be used on the
tors, except by taking the universal closure of the entidient side inside an Ajax web application and check all
formula (which is not the case in our examples). incoming and outgoing messages transparently for viola-

More closely related, [6] suggests a framework in whictions of the contract. Empirical studies on both Google
correlations between data in multiple messages are exid Amazon web services, for traces of 10,000 messages
pressed and can be checked at runtime. However, to the sl data domains of 1,000 elements, show that the runtime
of our knowledge, the correlations imply a single requesenforcement of LTL-FOQ can be practically and efficiently
response and do not involve messages arbitrarily far apdeane with minimal modifications and negligible computing
in time. overhead, either on the client or server side.

An alternative to state machines and temporal logics isThe positive results obtained in this research project
the use of event calculus (EC), as is done in [7]. The eveppen the way to multiple extensions and improvements.
calculus is a rich extension over first-order logic whiciMiappings between LTL-FO and patterns in graphical
allows the expression of constraints over time intervalgnguages such as UML could be devised, in order to ease
in addition to arbitrary predicates over data fields. Thihe specification of runtime constraints on web services.
semantics of LTL-FO could clearly be encoded by a set ofThe ultimate question remains as to who should provide
EC predicates. However, the richness of the language raifiesse contracts and where they should be obtained. To
concerns about its applicability in real-world scenaras, further the reach of the tool to practitioners, the autowhate
the experiments in [11] suggest. In this respect, we haegtraction of constraints from a service’s source code or
shown that a simpler logic such as LTL-FQalthough less sample execution traces could entice service providers to
expressive, can be more easily used in concrete contextsystematically document them in some machine-readable

The recent advances in artifact-centric modelling dbrm.
business processes led to the development of a logic calle®n a more technical side, the on-the-fly translation of
ABSL [45]. This logic is an extension of CTL that included.TL into an automaton presented here is just one of the
a form of first-order quantification. However, it is suitednany exiting ways of converting temporal logic into a
to express properties a@ftra-artifact behaviours, ndnter- finite-state equivalent; there exist many others [48], [49]
message constraints; moreover, the approach is not aintieat could also be extended with support for first-order
toward runtime monitoring, but rather on static analysis. quantification, and be experimented in their own right.

Finally, a different approach has been proposed with Allin all, our study showed that the runtime enforcement
specifications using XQuery on traces (SXQT) [46], imf complex temporal specifications involving messages with
which a trace of XML messages is analyzed by meansta can be effectively done in real-world scenarios at a
of temporal formulee converted into XQuery expressionsery low cost. By providing a transparent and very simple
However, one has to wait for a trace to be complete for theay of enforcing rich interface contracts into virtuallyyan
corresponding XML structure to be generated; thereforegb service or Ajax client, BeepBeep contributes to in-
this method needs adaptations to be used in a context wherease the reach of logic and formal verification approaches
the monitoring should occur in parallel with the execution the development of everyday web applications.
of the workflow. Such an adaptation is suggested in [47],
where the use oftreamingXQuery processors can read 6}0\
trace progressively and output intermediate resultsether
working as a runtime monitor. The authors gratefully acknowledge the financial support of
the Natural Sciences and Engineering Research Council of
Canada and the Fonds québécois de recherche sur la nature
7 CONCLUSION et les technologies.

In this paper, we have presented an algorithm for the
runtime monitoring of data-aware workflow constraint
Sample properties taken from runtime monitoring scenarisgi:EFERENCES
in existing literature were expressed using LTL-FCan [1] E. Christensen, F. Curbera, G. Meredith, and S. Weeravear
extension of Linear Temporal Logic that includes first- "Web services description language (WSDL) 1.1, W3C note022

e . [Online]. Available: http://www.w3.org/TR/wsdl
order quantification over message contents. As our study§f g schonfeld, “Amazon earnings call details: Web sasizse up
commercial web services, such as Amazon ECS and Google more bandwidth than Amazon.com; the Kindle is a hit,” 2008.
Checkout, showed, the online documentation specifies a fair [Online]. Available: http://tcrn.ch/caKitG | .

« ” . %J ‘Amazon e-commerce service, 2005. [Online].
number of “data-aware” properties, where the sequence of Available: http://webservices.amazon.com/AWSEComm8esvice/
messages sent to the service and the actual data values AWSECommerceService.wsdl

inside the messages define valid interactions. [4] “Amazon fulfillment web service,” 2005. [Online]. Avable:
http://docs.amazonwebservices.com/AWSFWS/1.0/Deesduide/

An on-the-fly runtime monltqung algorithm was pre-[5] “Google checkout APIs,” 2009. [Online]. Available: ptt/code.
sented to enforce such constraints on message sequencesgoogle.com/apis/checkout/

CKNOWLEDGEMENTS

(6]
[7]
(8]

9]

[10]

(11]

[12]

[13]

[14]
[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

C. Ghezzi and S. Guine&un-Time Monitoring in Service-Oriented [30]
Architectures Springer, 2007, pp. 237-264.

K. Mahbub and G. Spanoudaki$/onitoring WS-Agreements: An
Event Calculus-Based ApproachSpringer, 2007, pp. 265-306.
S. Hallg, R. Villemaire, and O. Cherkaoui, “Specifyingd validating
data-aware temporal web service properti¢éEEE Trans. Software
Eng, vol. 35, no. 5, pp. 669-683, 2009.

S. Halle, G. Hughes, T. Bultan, and M. Alkhalaf, “Gentang
interface grammars from WSDL for automated verification @bw [32]
services,” inICSOC-ServiceWayeser. Lecture Notes in Computer
Science, L. Baresi, C.-H. Chi, and J. Suzuki, Eds., vol. 52009,
pp. 516-530.

G. Alonso, F. Casati, H. Kuno, and V. Machirajweb Services,
Concepts, Architectures and ApplicationsSpringer, 2004.

K. Mahbub and G. Spanoudakis, “Run-time monitoring efuire-
ments for systems composed of web-services: Initial implaation
and evaluation experience,” IBWS |EEE Computer Society, 2005,
pp. 257-265.

Y. Gan, M. Chechik, S. Nejati, J. Bennett, B. O’'Farrelind
J. Waterhouse, “Runtime monitoring of web service contems,”

in CASCON '07: Proceedings of the 2007 conference of the centf36]
for advanced studies on Collaborative researciNew York, NY,
USA: ACM, 2007, pp. 42-57.

F. Barbon, P. Traverso, M. Pistore, and M. Trainotti,utRtime
monitoring of instances and classes of web service comiposijt
in ICWS |IEEE Computer Society, 2006, pp. 63—-71.

W. N. Robinson, “Monitoring web service requiremehtsy RE
IEEE Computer Society, 2003, pp. 65-74.

S. Nakajima, “Lightweight formal analysis of web semwiflows,”
Progress in Informaticsno. 2, pp. 57-76, 2005.

X. Fu, T. Bultan, and J. Su, “Analysis of interacting BPEeb
services,” iNWWW S. |. Feldman, M. Uretsky, M. Najork, and C. E. [40]
Wills, Eds. ACM, 2004, pp. 621-630.

W. Robinson, “A requirements monitoring framework femterprise
systems,"Requir. Eng. vol. 11, no. 1, pp. 17-41, 2006.

M. Caporuscio, P. Inverardi, and P. Pelliccione, “Casigional
verification of middleware-based software architecturscdptions,”
in ICSE |EEE Computer Society, 2004, pp. 221-230.

S. Parastatidis, J. Webber, S. Woodman, D. Kuo, and &ei@ield,
“SOAP service description language (SSDL),” University Néw-
castle, Newcastle upon Tyne, Tech. Rep. CS-TR-899, 2005.

G. Decker, J. M. Zaha, and M. Dumas, “Execution semantar
service choreographies,” WS-FM ser. Lecture Notes in Computer
Science, M. Bravetti, M. Nlfiez, and G. Zavattaro, Edsl, 4284.
Springer, 2006, pp. 163-177.

E. M. Clarke, O. Grumberg, and D. A. Pelddpdel Checking MIT
Press, 2000.

G. Governatori, Z. Milosevic, and S. W. Sadiqg, “Complke check-
ing between business processes and business contracEDGC.
IEEE Computer Society, 2006, pp. 221-232.

H. Barringer, A. Goldberg, K. Havelund, and K. Sen, “Bidased
runtime verification,” inVMCAI, ser. Lecture Notes in Computer
Science, B. Steffen and G. Levi, Eds., vol. 2937. Springé42
pp. 44-57.

M. Y. Vardi, “An automata-theoretic approach to line@mporal
logic,” in Banff Higher Order Workshgpser. Lecture Notes in [48]
Computer Science, F. Moller and G. M. Birtwistle, Eds., vi043.
Springer, 1995, pp. 238-266.

A. Bauer, M. Leucker, and C. Schallhart, “Monitoring @fal-time [49]
properties,” inFSTTCS ser. Lecture Notes in Computer Science,

S. Arun-Kumar and N. Garg, Eds., vol. 4337. Springer, 20@5, p
260-272.

R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper, “Simple-ibre-
fly automatic verification of linear temporal logic,” iIRSTV ser.
IFIP Conference Proceedings, P. Dembinski and M. Srednigds.,
vol. 38. Chapman & Hall, 1995, pp. 3-18.

I. H. Kriiger, M. Meisinger, and M. Menarini, “Runtimeetification
of interactions: From MSCs to aspects,” RV, ser. Lecture Notes
in Computer Science, O. Sokolsky and S. Tasiran, Eds., &394
Springer, 2007, pp. 63-74.

J. H. Galllier,Logic for Computer Science: Foundation of Automatic
Theorem Proving Longman Higher Education, 1986. [Online].
Available: http://www.cis.upenn.edujean/gbooks/logic.html

A. Bauer, M. Leucker, and C. Schallhart, “The good, thd band the
ugly, but how ugly is ugly?” iRV, ser. Lecture Notes in Computer
Science, O. Sokolsky and S. Tasiran, Eds., vol. 4839. Sering
2007, pp. 126-138.

[31]

(33]
[34]

[35]

[37]
(38]

[39]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[50]

15

G. Rosu, F. Chen, and T. Ball, “Synthesizing monitors $afety
properties: This time with calls and returns,” RV, ser. Lecture
Notes in Computer Science, M. Leucker, Ed., vol. 5289. Syarin
2008, pp. 51-68.

Y. Falcone, J.-C. Fernandez, and L. Mounier, “Synthiagi enforce-
ment monitors wrt. the safety-progress classification opprties,”

in ICISS ser. Lecture Notes in Computer Science, R. Sekar and
A. K. Pujari, Eds., vol. 5352, 2008, pp. 41-55.

J. Ligatti, L. Bauer, and D. Walker, “Edit automata: erdement
mechanisms for run-time security policiesiit. J. Inf. Seg. vol. 4,
no. 1-2, pp. 2-16, 2005.

F. B. Schneider, “Enforceable security policieCM Trans. Inf.
Syst. Securvol. 3, no. 1, pp. 30-50, 2000.

R. Alur and D. L. Dill, “A theory of timed automata,Theoretical
Computer Sciengeno. 126, pp. 183-235, 1994.

J. Bengtsson, K. G. Larsen, F. Larsson, P. Petterssuh,V& Yi,
“UPPAAL - a tool suite for automatic verification of real-ten
systems,” inHybrid Systemsser. Lecture Notes in Computer Sci-
ence, R. Alur, T. A. Henzinger, and E. D. Sontag, Eds., vob&lL0
Springer, 1995, pp. 232-243.

C. Constant, T. Jéron, H. Marchand, and V. Rusu, “Irgggg formal
verification and conformance testing for reactive systenSEE
Trans. Software Engvol. 33, no. 8, pp. 558-574, August 2007.
K. Havelund and G. Rosu, “Testing linear temporal lofpemulzae
on finite execution traces,” Tech. Rep., May 2001.

F. Massacci and K. Naliuka, “Multi-session security mitoring for
mobile code,” Tech. Rep. DIT-06-067, November 2006.

A. Pretschner, M. Buchler, M. Harvan, C. Schaefer, andValter,
“Usage control enforcement with data flow tracking for X1iy"
Proc. 5th Intl. Workshop on Security and Trust ManagemehiV(S
Elsevier, 2009, pp. 124-137.

V. Stolz, “Temporal assertions with parametrised pons,” in
RV, ser. Lecture Notes in Computer Science, O. Sokolsky and
S. Tasiran, Eds., vol. 4839. Springer, 2007, pp. 176-187.

F. Wang, S. Tahar, and O. A. Mohamed, “First-order LTL deb
checking using mdgs,” iIPATVA ser. Lecture Notes in Computer
Science, F. Wang, Ed., vol. 3299. Springer, 2004, pp. 44845
H. Barringer, D. Rydeheard, and K. Havelund, “Rule eys$ for
run-time monitoring: From Eagle to RuleRJournal of Logic and
Computation 2008.

I. M. Hodkinson, “Complexity of monodic guarded fragnie over
linear and real time,Ann. Pure Appl. Logicvol. 138, no. 1-3, pp.
94-125, 2006.

A. Deutsch, L. Sui, V. Vianu, and D. Zhou, “Verificatiorf com-
municating data-driven web services,” RODS S. Vansummeren,
Ed. ACM, 2006, pp. 90-99.

C. E. Gerede and J. Su, “Specification and verificatioramifact
behaviors in business process models |G80G ser. Lecture Notes
in Computer Science, B. J. Kramer, K.-J. Lin, and P. Narhsim
Eds., vol. 4749. Springer, 2007, pp. 181-192.

M. Venzke, “Specifications using XQuery expressions trates,”
Electr. Notes Theor. Comput. Scvol. 105, pp. 109-118, 2004.

S. Hallé and R. Villemaire, “Runtime monitoring of wetervice
choreographies using streaming XML,” BAC ACM, 2009, pp.
1851-1858.

C. Fritz, “Concepts of automata construction from LTLn
LPAR ser. Lecture Notes in Computer Science, G. Sutcliffe and
A. Voronkov, Eds., vol. 3835. Springer, 2005, pp. 728-742.

P. Gastin and D. Oddoux, “Fast LTL to Buchi automatansta-
tion,” in CAV, ser. Lecture Notes in Computer Science, G. Berry,
H. Comon, and A. Finkel, Eds., vol. 2102. Springer, 2001, pp.
53-65.

0. Sokolsky and S. Tasiran, Ed&®untime Verification, 7th Inter-
national Workshop, RV 2007, Vancover, Canada, March 137200
Revised Selected Paperser. Lecture Notes in Computer Science,
vol. 4839. Springer, 2007.

Sylvain Hall é received the BS degree in
mathematics from Université Laval in 2002
and the MSc in mathematics and PhD in
computer science from Université du Québec
a Montréal in 2004 and 2008, respectively.
He was recently appointed as an assistant
professor in the Department of Computer
Science and Mathematics at Université du
Québec a Chicoutimi, after completing a
postdoctoral fellowship at at University of
California, Santa Barbara. He received fel-
lowships from the Natural Sciences and Engineering Research
Council of Canada (NSERC) in 2005 and Quebec's Research Fund
on Nature and Technologies (FQRNT) in 2008. His major research
interests include Web applications and formal verification. He is a
member of the ACM, the Association for Symbolic Logic, the IEEE,
and the IEEE Computer Society. He was co-chair of DDBP 2008,
TIME 2008 and the DDBP series of workshops from 2008 to 2010.

16

Roger Villemaire received the PhD degree
from the University of Tubingen in 1988. He
was a postdoctoral fellow at McGill University
and later at Université du Québec a Montréal
(UQAM). He is a professor in the Depart-
ment of Computer Science at UQAM, which
he joined in 1993. His research interests
include applications of logic in computer sci-
ence, in particular formalisms, methods and
algorithms which can help to realize reliable
computing systems. He was co-chair of TIME

2008 and served on its program committee in 2009. He is a member
of the ACM, the Association for Symbolic Logic and the IEEE
Computer Society.

