
Scalable Formula Decomposition for Propositional
Satisfiability

Anthony Monnet
monnet.anthony_jean-
luc@courrier.uqam.ca

Roger Villemaire
villemaire.roger@uqam.ca

Université du Québec à Montréal
C.P. 8888, Succ. Centre-Ville

Montréal (QC) H3C 3P8, Canada

ABSTRACT
Propositional satisfiability solving, or SAT, is an important
reasoning task arising in numerous applications, such as
circuit design, formal verification, planning, scheduling or
probabilistic reasoning. The depth-first search DPLL pro-
cedure is in practice the most efficient complete algorithm
to date. Previous studies have shown the theoretical and ex-
perimental advantages of decomposing propositional formu-
las to guide the ordering of variable instantiation in DPLL.
However, in practice, the computation of a tree decomposi-
tion may require a considerable amount of time and space
on large formulas; existing decomposition tools are unable
to handle most currently challenging SAT instances because
of their size. In this paper, we introduce a simple, fast and
scalable method to quickly produce tree decompositions of
large SAT problems. We show experimentally the efficiency
of orderings derived from these decompositions on the solv-
ing of challenging benchmarks.

Categories and Subject Descriptors
F.4.1. [Mathematical Logic and Formal Languages]:
Mathematical Logic—Logic and Constraint Programming ;
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Backtracking ; G.2.2 [Discrete Math-
ematics]: Graph Theory; F.2.m [Analysis of Algorithms
and Problem Complexity]: Miscellaneous

General Terms
Algorithms, Performance, Experimentation, Theory

Keywords
SAT, propositional satisfiability, tree decomposition, scala-
bility, DPLL

© ACM, (2010). This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version was published in Proceedings of the Third C* Conference
on Computer Science and Software Engineering (2010).
http://doi.acm.org/10.1145/1822327.1822333

1. INTRODUCTION
The SAT problem consists in deciding if a given propo-

sitional formula is satisfiable, i.e. if there exists a truth
assignment that makes the formula true. Furthermore, a
satisfying assignment, or model, has to be returned if the
formula is satisfiable. This problem has the particularity to
be underlying in many reasoning systems. Indeed, the prob-
lems to be solved by these systems can often be expressed as
a propositional formula, such that this formula is satisfiable
iff the considered problem has a solution. Moreover, in the
satisfiable case, a model of the formula can be translated as
a solution of the original problem.

As the SAT problem is NP-complete [10], all known com-
plete algorithms that solve it have a complexity exponen-
tial in the size of considered instances, including the widely
used depth-first search algorithm DPLL [12]. Despite this
obstacle, many efforts have been put during last decades to
improve the effective efficiency of SAT solvers, mainly by im-
proving the DPLL algorithm. Some of these improvements,
such as conflict-directed backtracking and learning [30] or
watched literals [33] decreased the time needed to solve most
instances by several orders of magnitude wrt. a plain DPLL
search. As a result, a wide choice of efficient, free and easy
to use SAT solvers is available, and their performances are
regularly compared during the SAT Competitions and SAT
Races events [39].

Thanks to these off-the-shelf SAT solvers, solving a prob-
lem by encoding it as a SAT problem is often a convenient
method. SAT has thus been used to express and solve prob-
lems from various areas, such as electronic design and veri-
fication [19, 43, 35], formal verification, including bounded
model checking [7] and microprocessor verification [45], plan-
ning [26], scheduling [31], diagnosis [21], answer set pro-
gramming [28], bioinformatics [29] and cryptanalysis [32,
17]. The performance of current SAT solvers allows most of
these SAT-based systems to compete with or to outperform
problem-specific strategies. Furthermore, any additional im-
provement in SAT solving will result in advances in all con-
cerned domains. SAT is also used as a component for rea-
soning on more complex logics such as Quantified Boolean
Formulas [6], SAT Modulo Theories [5], event calculus [34]
and probabilistic theories [38]; as a consequence, progresses
on SAT solving also reflect on the effective solving of the
many problems expressible in these logics.

Real-world SAT instances derived from these application
fields are typically very large; they commonly reach hun-

http://doi.acm.org/10.1145/1822327.1822333

dreds of thousands of variables and millions of clauses. De-
spite the tremendous progresses of SAT solvers, many of
these large instances still remain challenging. A way to
tackle this issue is to take advantage of the instance struc-
ture: in real-world instances, due to the semantic of the
problems, variables generally directly interact with a limited
number of other variables. They also tend to form clusters of
highly interconnected variables, following the different parts
of the problem description. As the structure of a propo-
sitional formula can be represented as a graph, structural
graph theory tools can be applied to speed up SAT solving.

A particularly adapted concept is tree decomposition [37],
which represents a graph by a collection of highly-connected
subgraphs embedded in an arborescent metastructure. A
tree decomposition is characterized by its width, the maxi-
mal size of its embedded subgraphs. For many graph prob-
lems that are NP-complete in general, one can design algo-
rithms that, given a tree decomposition of the graph, solve
the problem with a complexity that is exponential in the de-
composition width, which may be significantly smaller than
the size of the graph [3].

The main strategy for applying tree decompositions to
SAT solving consists in representing the instance to solve
as a graph, computing a tree decomposition of this graph,
and using it to build a partial ordering of variables. This
ordering is then used during a DPLL search. Besides the
expected theoretical complexity result, several experimen-
tal studies [23, 27, 15] showed that variable orderings de-
rived from tree decompositions can dramatically reduce the
time needed to solve the satisfiability of a formula, com-
pared with usual ordering heuristics implemented in state-
of-the-art solvers. Unfortunately, the decomposition step of
these implementations is not scalable enough to handle large
real-world instances. Most of the time, the decomposition
time alone is much longer than directly solving the instance
through DPLL. Furthermore, the memory requirement often
also gets prohibitive.

We therefore propose a simple and scalable method to
produce tree decompositions through recursive separations,
that we implemented to validate its efficiency in reducing
SAT solving times. We focus on minimizing the time and
space requirements of the decomposition, so we can decom-
pose large instances without any significant time overhead.
Our contribution is twofold: a heuristic allowing the prac-
tical decomposition of large propositional formulas, and an
experimental evaluation showing that simple and rapidly-
built decompositions can nevertheless significantly increase
the efficiency of DPLL on these large instances.

In this paper, we will first set notions and notations on
satisfiability solving and tree decompositions, before review-
ing previous works using tree decompositions for the solving
of SAT problems. We will then discuss the specificities of
our SAT decomposition method, and report its experimental
evaluation.

2. PROPOSITIONAL SATISFIABILITY
AND TREE DECOMPOSITIONS

A propositional formula f on a set of variables V is re-
cursively defined as a single variable v ∈ V, the negation ¬g
of a formula g, or the connection of two formulas g and h
by a binary operator amongst conjunction (∧), disjunction
(∨), implication (→) and equivalence (↔). A formula is in

conjunctive normal form, or CNF, iff it is expressed as a con-
junction of disjunctions of literals, a literal being a variable
or its negation. A disjunction of literals is called a clause. A
CNF formula can be represented as a couple of sets (V, C),
respectively the sets of variables and clauses it contains.

An assignment σ is a possibly partial function from vari-
ables to the set of boolean constants {true, false}. A vari-
able v ∈ V is instantiated by σ if σ is defined on v. An
assignment σ can be extended to formulas according to the
usual semantic of operators. A total assignment σ is a model
of f iff σ(f) = true. f is said satisfiable iff it has a model.

Given a propositional formula, the SAT problem consists
in deciding if it is satisfiable, and returning a model if there
exists one. Softwares designed to decide the satisfiability
of propositional formulas are named satisfiability solvers. A
solver is complete if it is always able to decide satisfiabil-
ity on any formula, provided it is given the necessary time
and memory resources. Most complete satisfiability solvers
are based on the depth-first search DPLL algorithm [12].
DPLL basically tries to build a model of the formula by suc-
cessively instantiating the problem variables. If the current
partial instantiation violates a given clause (i.e. all variables
of the clause are instantiated to the opposite polarity they
appear with in this clause), the algorithms backtracks its
search by undoing some instantiations and trying different
instantiation polarities.

In practice, most satisfiability solvers only handle CNF
formulas. Note that this requirement doesn’t restrict their
applicability, since any propositional formula has a logically
equivalent CNF formula. Moreover, it is possible to trans-
form any propositional formula f into an equisatisfiable CNF
formula f ′ in linear time such that any model of f ′ restricted
to the variables of f is also a model of f [44].

This normal form allows representing the structure of a
formula as a graph, by characterizing the relationship be-
tween variables. Variables of a same clause are indeed tightly
related, since all clauses of a formula must have at least one
true literal for the formula to be satisfied. The most straight-
forward representation is a hypergraph where each variable
is represented by a vertex and each clause by a hyperedge
englobing all variables it contains. If we build the dual of
this hypergraph, we obtain a representation of each clause
by a vertex and each variable by a hyperedge on the range
of clauses containing the variable. We will respectively call
these representations the primal and dual hypergraphs of a
CNF formula.

Tree decompositions are an algorithmic tool used to give
an arborescent description of any graph or hypergraph by
embedding it in a tree metastructure. Although they are
originally defined on graphs [37], we will extend their defi-
nition to hypergraphs.

Given a hypergraphH(V,H), a tree decomposition T (N,E)
of H associates to each of its nodes n ∈ N a set v(n) ⊆ V
of hypergraph vertices, and a set h(n) ⊆ H of hyperedges.
The following constraints must hold:

• Every vertex and every hyperedge from H has to be
included in at least one node from T .

• If for some node n ∈ N a hyperedge h ∈ H is included
in h(n), then h ⊆ v(n).

• If two distinct tree nodes n and n′ contain a common
vertex v ∈ V , then every tree node on the single path
between n and n′ must also contain v.

An important property of a tree decomposition is its width
w(T), defined by w(T) = maxn∈N |v(n)| − 1, i.e. the maxi-
mum number of hypergraph vertices associated to any tree
node, minus one. The width of a hypergraph w(H) can in
turn be defined by the minimal treewidth amongst all its
possible decompositions. The width of a hypergraph is cor-
related with its cyclicity: any tree has a width of 1, and on
the opposite, any clique of n nodes has a width of n − 1.
The treewidth can be seen as a measure of the effort needed
to describe the hypergraph in an arborescent way, i.e. the
amount of vertices that have to be grouped together in the
same tree node.

For any pair of neighbour tree nodes n and n′, the set of
their common vertices v(n) ∩ v(n′) = s(n, n′) is called the
separator between both nodes. Note that the term sepa-
rator also denotes a set of vertices S ⊆ V in a connected
hypergraph H(V,H) such that removing these vertices from
the hypergraph unconnects it. The terminology used is sim-
ilar because every separator in a decomposition tree of a
hypergraph H is also a separator in H itself.

Separation trees [11]1 are an alternative way of decompos-
ing the structure of a hypergraph. They describe a recursive
partitioning of hyperedges: the root contains all hyperedges
of the hypergraph, each leaf contains exactly one hyperedge,
and the hyperedge set of an internal node is partitioned
amongst its children. Each internal node thereby defines
a separator, as the set of variables its children have in com-
mon. Separation trees can be considered as a rooted and
oriented version of tree decompositions; width-preserving
transformations from one form to the other formalize this
correspondence [11].

3. APPLYING TREE DECOMPOSITIONS
TO SAT SOLVING

Tree decompositions are often used in order to decrease
the complexity of (hyper)graph problems that are NP-com-
plete in general, but polynomial if restricted to acyclic graphs.
In this case, a subproblem is defined on each node n, gener-
ally the restriction of the original problem to the subgraph
Hn(v(n), h(n)). After all subproblems are solved, their so-
lutions can be used to efficiently solve the global acyclic
problem represented by the tree decomposition [3]. The ex-
ponential complexity is then limited by the size of the largest
subproblem, which is the width of the decomposition. Tree
decompositions can therefore be useful to efficiently solve
instances with a limited treewidth, provided a low width
decomposition tree is computed.

This kind of approach has been formalized in the case of
SAT [1, 22], and is similar to tree clustering on constraint
satisfaction problems [13]. A tree decomposition of the for-
mula’s primal hypergraph is computed. For each node of
the decomposition, a subformula is defined as the conjunc-
tion of all clauses included in this node. Due to the proper-
ties of tree decompositions, the original formula is satisfiable
iff there exists a set of solutions to the subproblems which
are compatible, i.e. which set the same assignments to their
common variables. In order to verify if such a set of solu-
tions exists, a straightforward method is to search for all
solutions of all subproblems, then to compute the natural

1This concept is introduced as dtree in [11]; we will however
name it separation tree to avoid any confusion with tree
decompositions.

join on these sets of solutions.
This method, that we will refer to as explicit decompo-

sition, has indeed a time complexity that is exponential in
the decomposition width. However, so is the space com-
plexity, due to the enumeration and the memorization of
all subproblems solutions. This is a serious drawback com-
pared to usual depth-first search that only requires a linear
amount of space, which strongly reflects on experimental
performances [24, 41].

Thus an alternative way to use tree decompositions has
been proposed [23, 9, 15, 27]. Instead of explicitly defin-
ing and solving subproblems, decompositions are only used
to compute a variable ordering in the context of a DPLL
search, that typically has a polynomial space complexity.
Indeed, the order in which variables are instantiated has a
major impact on the efficiency of DPLL, to find a satisfying
assignment or prove unsatisfiability as fast as possible.

This strategy, that we will name implicit decomposition,
uses tree decompositions to induce a partial order on vari-
ables. Decomposition nodes are statically or dynamically
ordered, so that once a node is chosen, all of its variables
must be instantiated before considering a different node, but
the order of variables inside a node is left unspecified and
can be dynamically decided by the usual solver heuristic.
Moreover, the choice of the next node is usually restricted
to neighbours of already instantiated nodes.

The main rationale behind implicit decompositions is that
tree decompositions help capturing and exploiting structural
informations from the instance. Indeed, it is guaranteed that
two variables never occurring in the same decomposition
node are not directly connected by a clause. Restricting the
choice of variables inside a node therefore tends to instan-
tiate successively variables that strongly interact with each
other, which raises the chances to quickly produce propaga-
tions that help pruning the search space. Moreover, when
the choice of the next decomposition node is restricted to
the neighbourhood of previously treated nodes, all learned
clauses are contained within a single node [9]. The size of
learned clauses is thus limited to the decomposition width,
which has a positive impact on solving performances [42].

Some works rely on separation trees and recursively in-
stantiate the successive separators defined by their nodes,
through a preorder traversal of the tree. This strategy adds
the advantage of simulating a divide-and-conquer behaviour
[23]: once a separator (and its ancestors in the tree) is
instantiated, the remaining formula is disconnected along
its subtrees, which thus define two mutually independent
subproblems. Provided that the solver implements conflict-
directed backtracking, if any of these subproblems is proved
unsatisfiable under the current separator instantiation, the
search will indeed directly backtrack to this separator, since
the source of the conflict can’t come from the other sub-
problem. This behaviour thus implicitly handles both sub-
problems separately. The complexity of DPLL being expo-
nential in the size of treated problems, it is advantageous
to solve disconnected subproblems independently, as it was
shown experimentally [8]. Moreover, if the recursive division
is balanced, the time complexity of implicit decomposition
DPLL drops to O(m exp(s logm)), where m is the number
of clauses and s the width of the separation tree [23].

The implicit decomposition scheme is therefore theoret-
ically an interesting refinement of DPLL, since it reduces
the time complexity of the solving without increasing the

Algorithm 1 Formula-Split(V,H, vk)

V k
m ← {vk}

for all h ∈ H do
if ∃ v1, v2 ∈ h | v1 < vk < v2 then
V k
m ← V k

m ∪ h
end if

end for
V k
l ← {v ∈ V | v < vk} \ V k

m

V k
r ← {v ∈ V | v > vk} \ V k

m

return (V k
l , V

k
m, V

k
r)

space complexity. Its relevance has also been confirmed ex-
perimentally: some implementations [23, 15, 27] managed
to accelerate the solving of several benchmarks by introduc-
ing decomposition-driven orderings in state-of-the-art DPLL
solvers.

However, the main drawback of decomposition methods is
the computational cost of constructing a formula decomposi-
tion. As the width of the decomposition limits the time com-
plexity of the subsequent DPLL search, this width should be
minimized. Unfortunately, finding a minimal width decom-
position of a graph is NP-complete [2], thus intractable. In
practice, decompositions have to be built by heuristic meth-
ods, which allow building decompositions with relatively low
time and space requirements. These heuristics don’t provide
any guarantee on the width of obtained decompositions, but
use approximate strategies which are expected to produce
relatively low width decompositions without requiring ex-
cessive time and space amounts.

For instance, some implicit decomposition implementa-
tions [23, 27] produce separation trees by recursively sepa-
rating the dual hypergraph of the formula with the hyper-
graph partitioner hMETIS [25], which is itself a heuristic
tool. The heuristic computation of hypertree decomposi-
tions, a generalization of tree decompositions [20], was also
studied [14]. However, these experimental studies didn’t
consider instances of over 5,000 variables or 12,000 clauses.
In contrast, the average size of real-world benchmarks from
the 2009 SAT Competition is about 160,000 variables and
875,000 clauses. As demonstrated in Section 5, neither of
these implementations can handle instances of this size.

4. FAST AND SCALABLE FORMULA
DECOMPOSITION

As stated in the previous section, the scalability of the de-
composition procedure is clearly the main obstacle to the use
of implicit decompositions on large real-world satisfiability
problems. We therefore propose a time- and space-efficient
decomposition algorithm designed to handle large instances
in negligible time. The proposed algorithm more exactly
computes separation trees by recursively separating the for-
mula. The main difference with previous separation tree im-
plementations is the use of an extremely lightweight separa-
tion heuristic, in contrast with more complex and resource-
consuming heuristics such as hMETIS.

This separation heuristic, Formula-Split, is described in
Algorithm . It represents the formula to separate by the
sets V and H of vertices and hyperedges of its primal hy-
pergraph, and supposes that the set of variables/vertices is
totally ordered: V = (v1, v2, . . . , v|V |) with v1 < v2 < . . . <
v|V |. Given a split variable vk ∈ V , Formula-Split partitions

Algorithm 2 Separate-Node(n, T (N,E))

if is separable(n) then
vk ← (choose split variable(v(n), h(n))
(V k

l , V
k
m, V

k
r)←Formula-Split(v(n), h(n), vk)

if V k
l 6= ∅ and V k

r 6= ∅ then
// V k

m is a valid separator
// lc and rc are the new left and right children of the
node n
// lc, n and rc correspond respectively to V k

l , V k
m and

V k
r

v(n)← V k
m

N ← N ∪ {lc, rc}
E ← E ∪ {{n, lc}, {n, rc}}
v(lc)← V k

l

h(lc)← {h ∈ h(n) | ∃v ∈ V k
l , v ∈ h}

v(rc)← V k
r

h(rc)← {h ∈ h(n) | ∃v ∈ V k
r , v ∈ h}

// recursive separation of lc and rc
Separate-Node(lc, T (N,E))
Separate-Node(rc, T (N,E))

end if
end if

V in V k
l , V k

m and V k
r (left, middle and right sets) as follows.

Let V k
m be the union of all hyperedges (clauses) that cross

over vk (having at least one variable strictly smaller and
one variable strictly bigger) and of vk itself. Let V k

l and V k
r

be the sets of remaining variables respectively smaller and
bigger than vk. Then V k

m separates V in two disconnected
sets V k

l and V k
r , provided V k

l and V k
r are non-empty. In-

deed, having two connected variables vl ∈ V k
l and vr ∈ V k

r

would imply the existence of an hyperedge h ∈ H such that
{vl, vr} ⊆ h with vl < vk < vr. This would cause by con-
struction {vl, vr} ⊆ h ⊆ V k

m, in contradiction with the fact
that (V k

m,V
k
l ,V

k
r) is a partition of V .

The computational cost of Formula-Split is minimal. In-
deed, it only needs to find the smallest and biggest variable
for every hyperedge, and to maintain the set of variables as-
signed to V k

m. The complexity of the procedure is therefore
linear wrt. the size of the formula (O(|V|+ |C|)).

Algorithms 2 and 3 describe how Formula-Split can be
recursively applied on formula subsets to produce a binary
separation tree. The tree is initially reduced to a single
node, containing all variables and clauses of the whole for-
mula. The variables are partitioned by Formula-Split, and
the node is split according to the obtained partition, pro-
vided it is really a separation of the current formula. This
is the case when the side sets (the left and right set) are
non-empty. The obtained side sets are in turn recursively
separated, as long as they are considered separable by the
predicate is separable.

We can observe that, for every call to Formula-Split, the
following properties hold:

• |V k
l |+ |V k

r | ≤ |V |

• |V k
l | ≤ |V | − 1 and |V k

r | ≤ |V | − 1

From these properties, it follows that the execution of Sepa-
ration-Tree(V,H) will make at most |V | calls to Formula-
Split. Therefore, the complexity of Separation-Tree is qua-
dratic (O(|V|²+ |V||C|)).

The algorithm as expressed is rather generic, since it de-
pends of the following parameters:

Algorithm 3 Separation-Tree(V,H)

N ← root
E ← ∅
v(root)← V
h(root)← H
Separate-Node(root, T (N,E))
return T (N,E)

• the chosen ordering of variables in V;

• the choice of the split variable vk in the Formula-Split
procedure;

• the is separable predicate.

In the following experimental study, we chose these param-
eters as follows:

• As variables are numbered in a CNF benchmark de-
scription, this numbering is directly taken as the vari-
able ordering in the Formula-Split procedure. The ob-
vious advantage is that we avoid the computational
cost of building a different ordering, which may result
in a significant gain of time and space on large in-
stances. Moreover, real-world instance encodings are
generally organized according to the logical descrip-
tion of the problem, which means that two variables
with close numberings are more likely connected. Us-
ing this ordering thus allows exploiting this structural
knowledge from the encoding.

• For any call of Formula-Split on a set of ordered vari-
ables V = (v1, v2, . . . , v|V|), the split variable vk is
set to k = |V|/2. This heuristic doesn’t only avoid
considering multiple split variable candidates, but also
tends to balance the produced side sets, since in this
case each of them can include up to |V|/2 variables.
Moreover, this upper bound on the size of side sets
makes the complexity of Separation-Tree decrease to
O((|V|+ |C|) log |V|).

• Finally, the predicate is separable controls the depth of
the produced separation tree. Preliminary results indi-
cated that building decompositions of unlimited depth
didn’t benefit the search. Indeed, recursive separation
progressively produces smaller variable sets. Due to
the preorder traversal, a too deep recursion will result
in an over-detailed ordering of a few variables near
the end of search branches, which won’t have any ef-
fect on the overall performances. At the opposite, it
adds the overhead of handling a uselessly large tree.
The heuristic limit we used is to separate nodes only
if their variable set is larger than the first produced
separator. It has the advantage to limit the separation
tree depth without increasing its width.

5. EMPIRICAL EVALUATION

5.1 Experimental Settings
The goal of this section is to assert that the scalability

of Separation-Tree allows decomposing large state-of-the-art
SAT instances and, moreover, that using it in an implicit

decomposition scheme helps improving the solver’s perfor-
mance. To that purpose, an implicit decomposition order-
ing based on Separation-Tree has been implemented in the
state-of-the-art solver miniSAT 2.0 [16], which is regularly
amongst the winners of SAT Competitions and Races2.

In this implementation, the decomposition is explicitly
represented as a binary tree. During the CNF parsing, a
single node is built containing all variables. Leaves are then
recursively split until the desired limit. The formula is de-
composed after the preprocessing phase, which consists in
miniSAT in a first round of unit propagations. This way we
decompose a slightly simplified formula. Unlike the original
miniSAT which uses a global priority queue to successively
pick the decision variables, each node of the separation tree
has its own priority queue containing its associated variables.
This structure allows to restrict easily the variable decision
to a given node of the separation tree.

The variable ordering strategy is similar to previous im-
plicit decomposition implementations [23, 27], following a
preorder traversal of the separation tree. When a variable
choice occurs during the DPLL search, the next variable is
picked in the current decision node from its priority queue,
provided it isn’t empty. Once all variables of a node are in-
stantiated, the solver recursively instantiates all variables of
its left subtree, then of its right subtree, before backtracking
to continue the tree traversal.

As this static subtree choice may seem arbitrary, we tested
several dynamic heuristics to choose subtrees according to
the activity of their variables, a measure used by miniSAT
to dynamically order variable decisions through the VSIDS
heuristic [16, 33]; we however didn’t obtain any significant
improvement in performances, which rather slightly deteri-
orated due to the cost of these heuristics.

All following experimental results have been obtained on a
3.16 GHz Intel Core 2 Duo CPU with 3 GB of RAM, running
a Ubuntu 9.4 OS. The benchmark series used in our tests
were selected amongst application benchmarks from various
SAT competitions [39]. They were respectively generated by
the following applications:

• Rewriting termination problems generated by the ter-
mination prover AProVE [18];

• Network configuration problems generated by the mo-
del finder Alloy [36] ;

• Bounded model checking instances of liveness prop-
erties encoded as safety properties, generated by Ca-
dence SMV [40];

• Verification of dereferenced pointers in the source code
of the spam filter Dspam, generated by the software
verification tool Calypso [4].

In all series, we discarded instances which could be directly
solved by miniSAT in less than 2 seconds, since there is
little interest in trying to reduce their solving time. The size
of remaining instances ranges from 8,000 to over 2 million
variables and from 29,000 to about 9 million clauses.

2This implementation is available at http://www.
info2.uqam.ca/~villemaire_r/Recherche/Minisat/
100220minisat_decomp.tar.gz

http://www.info2.uqam.ca/~villemaire_r/Recherche/Minisat/100220minisat_decomp.tar.gz
http://www.info2.uqam.ca/~villemaire_r/Recherche/Minisat/100220minisat_decomp.tar.gz
http://www.info2.uqam.ca/~villemaire_r/Recherche/Minisat/100220minisat_decomp.tar.gz

application instance variables clauses sep. time sep. width

Termination Proving

AProVE09-06 77,262 263,137 0.04 8,216
AProVE09-07 8,567 28,936 0.00 1,157
AProVE09-15 94,663 305,105 0.04 10,541
AProVE09-17 33,894 108,759 0.01 3,968
AProVE09-20 33,054 108,377 0.01 4,296
AProVE09-21 29,964 91,044 0.01 6,249
AProVE09-24 61,164 209,228 0.03 4,354

Software Verification

dspam dump vc1080 118,298 375,379 0.09 6,150
dspam dump vc1081 118,426 375,699 0.09 4,446
dspam dump vc1093 106,720 337,439 0.05 5,352
dspam dump vc1104 280,972 926,808 0.25 4,947
dspam dump vc949 112,728 360,099 0.11 4,990
dspam dump vc950 112,856 360,419 0.12 4,969
dspam dump vc962 101,150 322,159 0.07 5,888
dspam dump vc972 274,451 908,255 0.24 4,144

Bounded Model Checking

abp1-1-k31 14,809 48,483 0.01 1,590
abp4-1-k31 14,809 48,483 0.01 1,590

bc56-sensors-1-k391 561,371 1,778,987 0.16 123,461
bc56-sensors-2-k592 850,398 2,694,319 out of space
bc57-sensors-1-k303 435,701 1,379,987 0.13 100,486

dme-03-1-k247 261,352 773,077 0.12 29,530
guidance-1-k56 98,746 307,346 0.06 6,454

motors-stuck-1-k407 654,766 2,068,742 0.18 136,569
motors-stuck-2-k314 505,536 1,596,837 0.14 104,245
motors-stuck-2-k315 507,145 1,601,920 0.14 104,921
valves-gates-1-k617 985,042 3,113,540 out of space

Network Configuration

clauses-4 267,767 1,002,957 0.06 65,911
clauses-6 683,996 2,623,082 0.14 176,973
clauses-8 1,461,772 5,687,554 out of space
clauses-10 2,270,930 8,901,946 out of space

Table 1: Experimental results of decomposition on selected SAT instances. Instances are grouped by the
application they have been generated from. For each instance, the number of variables and clauses are listed.
This table lists the time needed to generation a decomposition of the instance with the Separation-Tree
procedure and the width of the obtained decomposition.

5.2 Decomposition scalability
Table 1 shows statistics of the decompositions performed

by Separation-Tree on the selected benchmarks. For each
instance are displayed the time needed to build the separa-
tion tree and its separation width, which is a lower bound
on the treewidth of the corresponding decomposition tree.

Despite the considerable size of most instances, Separation-
Tree was able to decompose all of them except the four
largest. From these results, we can estimate that Separation-
Tree can handle instances up to about 700,000 variables and
2.5 millions of clauses, which is over the average size of SAT
2009 application benchmarks. Moreover, the decomposition
time always remains negligible, since it never exceeds a quar-
ter of second. In most cases, the separation width obtained
represents between 5% and 20% of the total number of vari-
ables, which is quite significant considering the simplicity of
the heuristics used.

To compare the scalability of Separation-Tree with refer-
ence to other decomposition tools, we tested two publicly
available implementations on the same set of benchmarks:
the separation tree generator integrated in the implicit de-
composition solver Dtree-ZChaff [23], based on a recursive
use of hMETIS, and the software htdecomp [14] which im-
plements various heuristics for building hypertree decom-
positions. htdecomp was used with the Bucket Elimination
heuristic, which according to previous experimental evalua-
tions was often the fastest implemented heuristic, hence the
less resource-consuming [14].

Within our experimental configuration, htdecomp was only
able to successfully decompose the three smallest selected
benchmarks (AProVE09-07, abp1-1-k31 and abp4-1-k31,
which all have less than 15,000 variables and 50,000 clauses).
DTree-ZChaff also managed to decompose the same instan-
ces plus two others (AProVE09-17 and AProVE09-21, hav-
ing less than 35,000 variables and 110,000 clauses). In all
other cases, the implementations couldn’t compute any de-
composition due to a lack of memory space.

These experimental results clearly show that Separation-
Tree is significantly more scalable than both other imple-
mentations, since it can handle instances over an order of
magnitude larger. Furthermore, besides their limited scal-
ability, DTree-ZChaff and htdecomp are also disadvantaged
by their computation time. Indeed, the time needed by ht-
decomp to decompose the satisfiability instances represents
at least 65% of the time needed to solve directly the instance
with miniSAT. Moreover, in the case of DTree-ZChaff, the
decomposition time is at least 150% of the direct solving
time. htdecomp and DTree-ZChaff are therefore of little use
in an implicit decomposition scheme, even on instances of
moderate size, in contrast with the negligible decomposition
time of Separation-Tree.

5.3 Implicit Decomposition Performances
After having confirmed the scalability of our decomposi-

tion heuristic, we will estimate the usefulness of the gener-
ated decompositions in an implicit decomposition scheme.
Table 2 compares the solving time obtained on the bench-
marks by both the original miniSAT implementation and
our implicit decomposition modification, within a time limit
of 4 hours.

Most termination proving instances are solved within a
few seconds by both implementations, and are therefore not
very relevant to compare their performances. However, the

instance AProVE09-20 is considerably harder, and requires
about 32 minutes to be solved by miniSAT. With the help
of decomposition, however, the solving is almost twice faster
(about 17 minutes).

The four network configuration instances are quite chal-
lenging due to their size (the largest one having about 2
million variables and 9 million clauses). If the first instance
requires about half a minute in both cases, miniSAT can’t
solve the second problem within the 4 hours limit. Implicit
decomposition solving only needs about 16 minutes to com-
plete. The two last instances are unfortunately too large for
our current implementation.

Bounded model checking problems are also solved faster
in most cases: amongst the 8 instances solved by miniSAT,
6 are sped up by decomposition, up to a factor 3.5. We also
manage to solve one instance on which miniSAT ran out of
time.

Finally, the software verification benchmarks show the
most contrasted behaviour. Half of the instances are sped
up by implicit decompositions, sometimes dramatically: 2
are solved within 2 seconds but can’t be solved by miniSAT
within 4 hours. At the opposite, however, two relatively
simple instances for miniSAT (20 seconds and 2 minutes re-
spectively) run out of time with decompositions. These very
contrasted results can certainly be explained by the partic-
ularly detailed decompositions obtained on this benchmark
series (the variables are partitioned in more than 100 sets
in average, against 14 sets in average on other benchmarks).
The resulting orderings thus may have a stronger influence
on the search.

These results indicate that implicit decompositions based
on Separation-Tree can have a significant positive impact on
the solving of benchmarks from various applicative fields.

6. CONCLUSION
In this paper, we described and implemented a scalable de-

composition procedure designed to improve the DPLL solv-
ing of large SAT benchmarks. We showed that this proce-
dure enhances significantly the scalability of tree decomposi-
tions compared with previous decomposition heuristics, and
that using it in an implicit decomposition scheme can speed
up the satisfiability solving of benchmarks from various ap-
plicative areas.

The extremely low time cost of our decomposition pro-
cedure leaves us room to consider the use of some slightly
more complex heuristics, for instance on the choice of the
initial variable ordering or of the split variable during a sep-
aration. This could allow trading off a little longer decom-
position process against a lower decomposition width, which
in turn could benefit the subsequent DPLL search, provided
the scalability of the procedure isn’t affected.

7. ACKNOWLEDGEMENT
We gratefully acknowledge the financial support of the

Natural Sciences and Engineering Research Council of
Canada on this research.

/bibliographystyleabbrv

8. REFERENCES
[1] E. Amir and S. McIlraith. Solving satisfiability using

decomposition and the most constrained subproblem
(preliminary report). In H. Krautz and B. Selman,

application instance variables clauses status org. time dcmp. time

Termination Proving

AProVE09-06 77,262 263,137 SAT 9.98 6.47
AProVE09-07 8,567 28,936 SAT 3.80 1.16
AProVE09-15 94,663 305,105 SAT 3.06 4.15
AProVE09-17 33,894 108,759 SAT 12.77 27.87
AProVE09-20 33,054 108,377 SAT 1,929.83 1,036.86
AProVE09-21 29,964 91,044 SAT 2.17 0.59
AProVE09-24 61,164 209,228 SAT 3.67 1.88

Software Verification

dspam dump vc1080 118,298 375,379 UNSAT 8.80 3.73
dspam dump vc1081 118,426 375,699 UNSAT time out 0.42
dspam dump vc1093 106,720 337,439 UNSAT 127.21 1.51
dspam dump vc1104 280,972 926,808 UNSAT time out time out
dspam dump vc949 112,728 360,099 UNSAT time out time out
dspam dump vc950 112,856 360,419 UNSAT time out 1.24
dspam dump vc962 101,150 322,159 UNSAT 115.22 time out
dspam dump vc972 274,451 908,255 UNSAT 19.62 time out

Bounded Model Checking

abp1-1-k31 14,809 48,483 UNSAT 31.21 14.85
abp4-1-k31 14,809 48,483 UNSAT 31.33 14.82

bc56-sensors-1-k391 561,371 1,778,987 UNSAT 2,251.54 1,597.52
bc56-sensors-2-k592 850,398 2,694,319 UNSAT time out out of space
bc57-sensors-1-k303 435,701 1,379,987 UNSAT time out 11,421.50

dme-03-1-k247 261,352 773,077 UNSAT out of space time out
guidance-1-k56 98,746 307,346 UNSAT 309.12 time out

motors-stuck-1-k407 654,766 2,068,742 UNSAT 4,642.59 5,265.41
motors-stuck-2-k314 505,536 1,596,837 UNSAT 680.19 243.28
motors-stuck-2-k315 507,145 1,601,920 SAT 695.60 194.94
valves-gates-1-k617 985,042 3,113,540 UNSAT time out out of space

Network Configuration

clauses-4 267,767 1,002,957 SAT 32.97 30.69
clauses-6 683,996 2,623,082 SAT time out 965.00
clauses-8 1,461,772 5,687,554 SAT time out out of space
clauses-10 2,270,930 8,901,946 UNSAT 61.71 out of space

Table 2: Experimental results of satisfiability deciding on selected SAT instances. Instances are grouped by
the application they have been generated from. For each instance, the number of variables and clauses and the
satisfiability status are listed. This table compares the running times of the original miniSAT implementation
(org. time) and of the separation tree modification (dcmp. time). In both cases, random decisions have been
turned off, in order to have a more objective comparison. In some cases, solvers were unable to decide
satisfiability within the given time (time out) or space (out of space) limits.

editors, LICS 2001 – Workshop on Theory and
Applications of Satisfiability Testing (SAT 2001),
volume 9 of Electronic Notes in Discrete Mathematics,
pages 329–343. Elsevier, 2001.

[2] S. Arnborg, D. G. Corneil, and A. Proskurowski.
Complexity of finding embeddings in a k-tree. SIAM
Journal on Algebraic and Discrete Methods,
8(2):277–284, Apr. 1987.

[3] S. Arnborg and A. Proskurowski. Linear time
algorithms for NP-hard problems restricted to partial
k-trees. Discrete Applied Mathematics, 23(1):11–24,
Apr. 1989.

[4] D. Babić and A. J. Hu. Structural abstraction of
software verification conditions. In W. Damm and
H. Hermanns, editors, Computer Aided Verification,
19th International Conference, number 4590 in
Lecture Notes in Computer Science, pages 366–378.
Springer, 2007.

[5] C. W. Barrett, R. Sebastiani, S. A. Seshia, and
C. Tinelli. Satisfiability modulo theories. In A. Biere,
M. Heule, H. van Maaren, and T. Walsh, editors,
Handbook of Satisfiability, volume 185 of Frontiers in
Artificial Intelligence and Applications, chapter 26,
pages 825–885. IOS Press, 2009.

[6] A. Biere. Resolve and expand. In H. H. Hoos and
D. G. Mitchell, editors, Theory and Applications of
Satisfiability Testing, 7th International Conference,
SAT 2004, volume 3542 of Lecture Notes in Computer
Science, pages 59–70. Springer, 2005.

[7] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu.
Symbolic model checking without BDDs. In
R. Cleaveland, editor, Tools and Algorithms for
Construction and Analysis of Systems, 5th

International Conference (TACAS ’99), volume 1579
of Lecture Notes in Computer Science, pages 193–207.
Springer, 1999.

[8] A. Biere and C. Sinz. Decomposing SAT problems into
connected components. Journal On Satisfiability,
Boolean Modeling and Computation, 2:201–208, 2006.

[9] P. Bjesse, J. H. Kukula, R. F. Damiano, T. Stanion,
and Y. Zhu. Guiding SAT diagnosis with tree
decompositions. In E. Giunchiglia and A. Tacchella,
editors, Theory and Applications of Satisfiability
Testing – 6th International Conference, SAT 2003,
volume 2919 of Lecture Notes in Computer Science,
pages 315–329. Springer, 2004.

[10] S. A. Cook. The complexity of theorem-proving
procedures. In Proceedings of the 3rd Annual ACM
Symposium on Theory of Computing, pages 151–158.
ACM, 1971.

[11] A. Darwiche. Recursive conditioning. Artificial
Intelligence, 126(1–2):5–41, Feb. 2001.

[12] M. Davis, G. Logemann, and D. W. Loveland. A
machine program for theorem-proving.
Communications of the ACM, 5(7):394–397, July 1962.

[13] R. Dechter and J. Pearl. Tree clustering for constraint
networks. Artificial Intelligence, 38(3):353–366, Apr.
1989.

[14] A. Dermaku, T. Ganzow, G. Gottlob, B. J. McMahan,
N. Musliu, and M. Samer. Heuristic methods for
hypertree decomposition. In A. F. Gelbukh and E. F.
Morales, editors, MICAI 2008: Advances in Artificial

Intelligence, volume 5317 of Lecture Notes in
Computer Science, pages 1–11. Springer, 2008.

[15] V. Durairaj and P. Kalla. Exploiting hypergraph
partitioning for efficient boolean satisfiability. In Ninth
IEEE International High-Level Design Validation and
Test Workshop, 2004, pages 141–146. IEEE Computer
Society, 2004.

[16] N. Eén and N. Sörensson. An extensible sat-solver. In
E. Giunchiglia and A. Tacchella, editors, Theory and
Applications of Satisfiability Testing – 6th

International Conference, SAT 2003, volume 2919 of
Lecture Notes in Computer Science, pages 502–518.
Springer, 2004.

[17] T. Eibach, E. Pilz, and G. Völkel. Attacking bivium
using SAT solvers. In H. K. Büning and X. Zhao,
editors, Theory and Applications of Satisfiability
Testing – SAT 2008, 11th International Conference,
volume 4996 of Lecture Notes in Computer Science,
pages 63–76. Springer, 2008.

[18] J. Giesl, P. Schneider-Kamp, and R. Thiemann.
AProVE 1.2 : Automatic termination proofs in the
dependency pair framework. In U. Furbach and
N. Shankar, editors, Automated Reasoning, Third
International Joint Conference, volume 4130 of
Lecture Notes in Artificial Intelligence, pages 281–286.
Springer, 2006.

[19] E. I. Goldberg, M. R. Prasad, and R. K. Brayton.
Using SAT for combinational equivalence checking. In
Proceedings of the Conference on Design, Automation
and Test in Europe (DATE 2001), pages 114–121.
IEEE Computer Society, 2001.

[20] G. Gottlob, N. Leone, and F. Scarcello. A comparison
of structural CSP decomposition methods. Artificial
Intelligence, 124(2):243–282, 2000.

[21] A. Grastien, Anbulagan, J. Rintanen, and
E. Kelareva. Diagnosis of discrete-event systems using
satisfiability algorithms. In Proceedings of the
Twenty-Second AAAI Conference on Artificial
Intelligence, pages 305–310. AAAI Press, 2007.

[22] M. Heule and O. Kullmann. Decomposing clause-sets:
Integrating DLL algorithms, tree decompositions and
hypergraph cuts for variable- and clause-based graph
representations of CNF’s. Technical Report CSR
2-2006, Swansea University Prifysgol Abertawe, 2006.

[23] J. Huang and A. Darwiche. A structure-based variable
ordering heuristic for SAT. In G. Gottlob and
T. Walsh, editors, IJCAI-03, Proceedings of the
Eighteenth International Joint Conference on
Artificial Intelligence, pages 1167–1172. Morgan
Kaufmann, 2003.

[24] P. Jégou and C. Terrioux. Hybrid backtracking
bounded by tree-decomposition of constraint
networks. Artificial Intelligence, 146(1):43–75, 2003.

[25] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar.
Multilevel hypergraph partitioning: Applications in
VLSI domain. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 7(1):69–79, Mar. 1999.

[26] H. A. Kautz and B. Selman. Planning as satisfiability.
In B. Neumann, editor, 10th European Conference on
Artificial Intelligence, pages 359–363. Wiley, 1992.

[27] W. Li and P. van Beek. Guiding real-world SAT
solving with dynamic hypergraph separator

decomposition. In 16th IEEE International Conference
on Tools with Artificial Intelligence (ICTAI 2004),
pages 542–548. IEEE Computer Society, 2004.

[28] Z. Lin, Y. Zhang, and H. Hernandez. Fast SAT-based
answet set solver. In Proceedings of The Twenty-First
National Conference on Artificial Intelligence and the
Eighteenth Innovative Applications of Artificial
Intelligence Conference, pages 92–97. AAAI Press,
2006.

[29] I. Lynce and J. P. Marques-Silva. Efficient haplotype
inference with boolean satisfiability. International
Journal on Artificial Intelligence Tools, 17(2):355–387,
Apr. 2008.

[30] J. P. Marques-Silva and K. A. Sakallah. GRASP: A
search algorithm for propositional satisfiability. IEEE
Transactions on Computers, 48(5):506–521, May 1999.

[31] S. O. Memik and F. Fallah. Accelerated SAT-based
scheduling of control/data flow graphs. In 20th

International Conference on Computer Design, VLSI
in Computers and Processors, pages 395–400. IEEE
Computer Society, 2002.

[32] I. Mironov and L. Zhang. Applications of SAT solvers
to cryptanalysis of hash functions. In A. Biere and
C. P. Gomes, editors, Theory and Applications of
Satisfiability Testing, 9th International Conference,
volume 4121 of Lecture Notes in Computer Science,
pages 102–115. Springer, 2006.

[33] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang,
and S. Malik. Chaff: engineering an efficient SAT
solver. In Proceedings of the 38th Design Automation
Conference (DAC 2001), pages 530–535. ACM Press,
2001.

[34] E. T. Mueller. Event calculus reasoning through
satisfiability. Journal of Logic and Computation,
14(5):703–730, Oct. 2004.

[35] G.-J. Nam, K. A. Sakallah, and R. A. Rutenbar.
Satisfiability-based detailed FPGA routing. In 12th

International Conference on VLSI Design (VLSI
Design 1999), pages 574–577. IEEE Computer Society,
1999.

[36] S. Narain. Network configuration management via
model finding. In Proceedings of the 19th Conference
on Systems Administration (LISA 2005), pages

155–168. USENIX, 2005.

[37] N. Robertson and P. D. Seymour. Graph minors. II.
Algorithmic aspects of tree-width. Journal of
Algorithms, 7(3):309–322, Sept. 1986.

[38] E. Saad. Probabilistic reasoning by SAT solvers. In
C. Sossai and G. Chemello, editors, Symbolic and
Quantitative Approaches to Reasoning with
Uncertainty, 10th European Conference, volume 5590
of Lecture Notes in Computer Science, pages 663–675.
Springer, 2009.

[39] The international SAT Competitions web page.
http://www.satcompetition.org.

[40] V. Schuppan and A. Biere. Efficient reduction of finite
state model checking to reachability analysis.
International Journal on Software Tools for
Technology Transfer, 5(2–3):185–204, Mar. 2004.

[41] D. Singer and A. Monnet. JaCk-SAT: A new parallel
scheme to solve the satisfiability problem (SAT) based
on join-and-check. In R. Wyrzykowski, J. Dongarra,
K. Karczewski, and J. Wasniewski, editors, Parallel
Processing and Applied Mathematics, 7th

International Conference (PPAM 2007), volume 4967
of Lecture Notes in Computer Science, pages 249–258.
Springer, 2008.

[42] N. Sörensson and A. Biere. Minimizing learned clauses.
In O. Kullmann, editor, Theory and Applications of
Satisfiability Testing, 12th International Conference,
volume 5584 of Lecture Notes in Computer Science,
pages 237–243. Springer, 2009.

[43] P. R. Stephan, R. K. Brayton, and A. L.
Sangiovanni-Vincentelli. Combinational test
generation using satisfiability. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, 15(9):1167–1176, Sept. 1996.

[44] G. S. Tseitin. On the complexity of proofs in
propositional logics. In J. H. Siekmann and
G. Wrightson, editors, Automation of reasoning,
Classical papers on computational logic, volume 2.
Springer, 1983.

[45] M. N. Velev and R. E. Bryant. Effective use of boolean
satisfiability procedures in the formal verification of
superscalar and VLIW microprocessors. Journal of
Symbolic Computation, 35(2):73–106, Feb. 2003.

http://www.satcompetition.org

	Introduction
	Propositional Satisfiability and Tree Decompositions
	Applying Tree Decompositions to SAT Solving
	Fast and Scalable Formula Decomposition
	Empirical Evaluation
	Experimental Settings
	Decomposition scalability
	Implicit Decomposition Performances

	Conclusion
	Acknowledgement
	References

