Sequential Dependencies in Configuration
Operations

Sylvain Hallé, Rudy Deca, Omar Cherkaoui, Roger Villemaire

Université du Québec a Montréal

C.P. 8888, Succ. Centre-ville
Montréal (Québec) CANADA H3C 3P8
halle@info.ugam.ca

Daniel Puche

Cisco Systems inc.
dpuche@cisco.com

RESUMELe déploiement d'un service réseau est sujet a plusieurs dépendances sémantiques
et séquentielles. Cependant, un des principaux probléemes des approches de gestion des
configurations est I'absence d'un modéle transactionnel qui permettrait aux informations
de configuration de conserver leur intégrité durant le processus de configuration. Dans cet
article, nous introduisons la notion de dépendance séquentielle et proposons un modéle
mathématique basé sur les techniques du model checking permettant de structurer les
opérations de configuration. Ce modéle méne au concept « d’état-borne » (milestone state)
Nous suggérons par la suite une maniére de bonifier le protocole Netconf avec une
composante transactionnelle basée sur ces concepts.

ABSTRACT The deployment of a network service is subject to a number of semantical and
sequential dependencies. However, one of the main issues with the existing coiofigurat
management approaches is the absence of a transactional model, which should allow the
network configuration data to retain their integrity during the configuration processhils

paper, we introduce the notion of sequential dependency, propose a mathematical
framework based on model checking that allows the structuring of configuration operations
leading to the concept of milestone state, and suggest how the Netconf protocol can be
enhanced with a transactional component.

MOTS-CLES gestion des configurations, Netconf, dépendances sémantiques, dépendances
séquentielles, model checking, LTL

KEYWORDS configuration management, Netconf, semantical dependencies, sequential
dependencies, model checking, LTL

2 GRES, 09 - 12 Mai 2006, Bordeaux.

1. Introduction

The deployment and configuration of network services is a comgtekerror-
prone task that is subject to constraints at different leveds.ifistance semantical
dependencies between parameters dispersed among multiple coidigurat
operations appear in even the simplest management tasks @iafie 2004a).
Although these dependencies are not currently captured by managprototols
such as Netconf (Enns, 2005), it has been shown how tree logics dpnirhe
automating their formalising and checking on a given configoratsnapshot
(Hallé et al, 2004b).

However, even if semantical dependencies can be automaticaifred, an
important part of the complexity of deploying a service still rensailn general, the
configuration operations must be performed in a specific orderithdétermined
by the connected nature of the network, or even by some requitenoérthe
devices' operating system. Therefore, in addition to semaméendencies, there
are sequentialdependencies that need to be formalised and checked in a smiliar
fashion. The importance of checking these sequential dependéadiegghtened
by the fact that an increasing number of services, such as VirtAlds and Virtual
Private Networks, involve configuration changes on multiple d=viat the same
time.

While the semantical dependences in network device configusatiane been
widely debated in the network management literature (Daminetoal., 2001;
Warmeret al, 1999; Crubézy, 2002; Jacksenal, 2000; Halléet al, 2004b), the
sequential dependences have not yet been extensively coveredgAeoworks on
the subject, (Couclet al, 2003) examine a convergent approach to automated
configuration and provide an algebraic model of configuration mamagé
According to this model, the managed processes can be decomptseegions or
intents of non-conflicting, stateless actions. Each oféhemn-commutative regions
can then be processed separately. Using this model, proceduresgescwhich are
composed of non-commutative operations, can be redesigned asradivel
processes, which are composed of commutative operations. Thersullustrate
their approach with examples from file editing.

The transactional aspect of the device configuration processkisntinto
account by the Netconf configuration protocol (Enns, 2005), whicta isew
protocol designed for manipulating network device configuratiotmwvever, this
protocol provides transactional operations at device level, bas dmt currently
have similar operations for the network level.

The purpose of this paper is twofold. First, we raise the questioncpfesgial
constraints in network configuration operations and show bguple of examples
that their presence is as common as semantical ones; usingptstorrowed from
the field of model checking, we also demonstrate how these @nttrcan be
accurately formalised in Kripke structures by temporal logic foasulSecond, we

Sequential Dependencies in Configuration Operations 3

define the notion ofmilestonestates in a Kripke structure in terms of these
mathematical grounds and claim that these states make good casdidat
validation, synchronization and rollback points during the dgplent of a service,
and illustrate how the Netconf protocol could be enhanced byatidition of a
likewise transactional component.

The paper is structured as follows. In section 2, we briefly oesvvihe
concepts of configuration tree and semantical dependencies &odiupe by the
means of concrete examples the concept of sequential dependencylsiVe a
describe the mathematical framework of model checking and $towwsequential
dependencies can be modelled by temporal logic. In section 3, wadutde the
concept of milestone and apply it to the Netconf protocol. Finaléction 4 shows
some experimental results and section 5 concludes wittefpaiths of work.

2. The Sequential Aspect of Network Management

The deployment of a service over a network basically consistltering the
configuration of one or many equipments to implement the desiredifuradities.
We can presuppose without loss of generality that all properties ofvangi
configuration are described by attribute-value pairs hieraatlyiorganised in a
tree structure (Hallé&t al, 2004a; Villemaireet al, 2005) like the one shown in
Figure 1.

router = routerl

/\

ip-vrf=vpn-1 interface = ethernet
a: route-distinguisher = 100:110 number = 0.0 number = 0.1

//\

B ip-vrf-forwarding = vpn-1 o encapsulation = 802.1Q B: vlan-number = 100

Figure 1. A sample configuration tree. Nodes labeledy, Sand S are not
present initially, but are added in the process of deploying the netwmikes
given later as examples.

Possible alterations to the configuration typically include tiete or adding
new parameters to the configuration of a device, or changing the v existing
parameters. In most cases, the parameters involved in suchicatidiis are both
syntactically and semantically interdependent. For instative value of some
parameter might be required to depend in a precise way on the valuetbfean
parameter; the simplest example of such dependency is the fact thRteatdress
must match the subnet mask that comes with it. More complex depeiedenight

4 GRES, 09 - 12 Mai 2006, Bordeaux.

constrain the existence of a parameter to the existence of emd®ecent works
have shown how such dependencies can be automatically checkegidal lmols
on a given configuration snapshot (Hadtéal, 2004b).

2.1.Sequential Dependencies at the Service Level

However, the situation becomes more complex when one wantsttmlby
deploy a service from scratch. In addition to constraints on the valoks
parameters, the dependencies may also impose that the modificaggerformed
in a specific order. When done in an uncoordinated way, changing, gditin
removing components or data that implement network servicesbcmg the
network in an inconsistent or undefined state. This fact besoacutely true in the
case where operations must be distributed on multiple networkeslesnas they
cannot be modified all at once. Moreover, while a single intsieat device can
ultimately be restarted when all else fails, there is no suebtéart” option when an
entire network configuration becomes inconsistent.

We illustrate the concept of sequential dependencies by the meatgoof
examples taken from the deployment of network services. For eédhese
examples, a sequential dependency is extracted and formalised.

2.1.1.Example 1: Virtual LANs

A Virtual LAN (VLAN) is a group of devices spanning multiple LAN segnien
that are configured to communicate as if they were connectelesame wire.
Each VLAN works as a completely separate entity that can onlyobeed by a
router. Since VLANs are logically (rather than physically)ustured, they are
extremely flexible. Among the several protocols designed to pligpose, IEEE
802.1Q (IEEE, 1998) has become the standard.

When configuring a router on a VLAN, the subinterface that is emted to a
VLAN trunk must be set to support the 802.1Q protocol; since each subinterface is
attached to a specific VLAN, the number of this VLAN must also pecified
when configuring the trunk. Therefore, configuring a VLAN trunk Iwilave for
effect of adding nodes and§$ in the configuration tree of Figure 1.

However, 802.1Q frames are designed in a way that they must contain th
VLAN number; therefore, encapsulation and VLAN number must beigored
toghether. From this simple example, one can deducdrdtiséquential rule:

Sequential Constraint 11n a router, the VLAN number must be set at the same
time the encapsulation protocol is enabled.

In the case of Figure 1, this means that nodesd3 must be added to the tree
in the same step.

Sequential Dependencies in Configuration Operations 5

2.1.2.Example 2: Virtual Private Networks

A VPN is a private network constructed within a public network sacha
service provider's network (Rosest al., 1999). A customer might have several
sites, which are contiguous parts of the network, dispersed througiheumternet
and would like to link them together by a protected communicatitime VPN
ensures the connectivity and privacy of the customer's comratiois between
sites.

Such a service consists of multiple configuration operations;him d¢ase of
Layer 3 VPNSs, it involves setting the routing tables and th&\M&warding tables,
setting the MPLS, BGP and IGP connectivity on multiple equipmérgging
various roles, such as the customer edge (CE), provider edge (PE) ardepro
core (PC) routers. An average of 10 paramters must be added or changachi
device involved in the deployment of the VPN.

As an example, for a Layer 3 VPN using MPLS, Figure 1 shows two ledésio
that must be added, each in its own position, to the configuratiam dfea PE
router. Nodex' corresponds to the creation of the Virtual Routing and Forwarding
Tables (VRF) necessary for the proper functioning of the VPNiers associates
this VRF to a specific interface on the router. Semanticatlyisiclear that one
cannot associate a VRF to an interface before the VRF is extest memory.
Therefore, trying to add nod&' to the configuration before node' is created is
nonsensical and generates an error. From this situation, weelggit a second
sequential rule:

Sequential Constraint 2To add nodé p- vr f - f or war di ng to a configuration
tree, the nodeout e- di sti ngui sher must already be present.

Special emphasis must be made on the fact that the noodet e-
di sti ngui sher has to be present in the tréeforenodei p- vr f - f or war di ng
is added, which rules out the possibility that both nodes be added imghesi
operation.

2.2.Formalising Sequences of Configuration Operations

To formalise the sequences of operations, we first need todatesome basic
concepts taken from the theory of model checking (Clakal., 2000). LetSbe a
set ofstatesrepresenting a unit situation at a given time. In the context ofort
configuration, states are labelled trees, as descriletbpsly.

We call transition from a states, to a states, the structural modifications that
transforms, into S, . Formally, transitions can be defined as a subset of tuples
TS SXS; there exists a transition from to S, if and only if(s;,s,)€T. The
tuple (S,T)forms a directed graplks that we call aKripke structure Figure 2
shows an example of a Kripke structure.

6 GRES, 09 - 12 Mai 2006, Bordeaux.

SN

X
i\/Mi

AN

O O

NS

Figure 2. A Kripke structure with multiple paths from a start state to a tostgte.
Each state represents a labelled tree.

In the case of the labelled trees we use for modelling deviceigumaitions,
structural modifications are limited to addition of a labellediado a leaf, deletion
of a leaf node and change in a node's value. These modificatiarigvaly refer to
addition, deletion or modification of a parameter in ¢befiguration of a device.

A pathis a finite sequence of statés; ..., s,) such that, for any ,s,, , there
exists ateT such that=(s,s,,) .

The deployment of a service is a path in such a structure that stamisaf given
configuration,s;, and ends at a target configuratisn For example, in the case of
Figure 1, a possible start state could be the tree without any,of' , 8, 8', and a
possible target state could be the same tree with all these nbdlatid deployment
sequence could be a sequence of addition of the nodes that respeats, aiimer
things, Sequential Rules 1 and 2.

2.3.Formalising Sequential Dependencies

The state space generated by spanning all possible transitébwsdn a start
and target state is fairly large. For the 4 nodes of Figure 1, ther@4mpossible
unconstrained paths, and in general, igrossible operations, there arepossible
paths. We must now restrict our study to acceptable patitisat is, paths that
respect the elicited sequential constraints. For this purposeyssethe Linear
Temporal Logic (LTL) commonly used in model checking (&éeet al, 2000).

LTL is a logic aimed at describing sequential properties along pathsgiven
Kripke structure. Its syntax is based on classical propositioogic] to which
modal path operators have been added.

Sequential Dependencies in Configuration Operations 7

The first such modal operator 8, which means “globally”. Formally, the
formula G ¢ is true on a given patht when, for all states along this path, the
formulae is true. The second modal operator commonly used gnext”). The
formula X @ is true on a given path of the Kripke structure when the next state
alongm satisfiesg . Finally, a formula of the forn ¢ (“eventually”) is true on a
path when at least one state of the path satigfiesOther modal operators exist,
but go beyond the scope of this paper.

A LTL formula is a well-formed combination of the classidaldisjunction),
(conjunction),=~ (negation), - (implication) and~ (equivalence) operators with
modal operators. Thatomsof LTL are the base-level Boolean expressions over
which the formulas are built. In the present case, since stagdabelled trees, we
take the atoms to be formulas themselves, based on a tree lodicasu€L
(Villemaire et al,, 2005).

Equipped with it, it is now possible to formalize sequential coristsainto
logical formulas. Without delving into further details, suppose thais a CL
formula that is true if and only if noda is present in a given configuration tree.
Then, the Sequential Constraint 1 presented in the previousosectin be
translated into the following formula:

Sequential Formula 1
G ®, o Py

This formula means that in all states of all paths where either 8 exists, the
other node must also exist. All temporal rules described earlierticarefore be
translated into LTL formulas of that kind. For example, SequentialeR2
becomes:

Sequential Formula 2
G (P - X (P - ﬁ(pﬁ'))

telling that the presence of noge implies that nodex' is present, and that is must
also have been present at least in the previous stap theployment.
3. Transactional Aspects of the Netconf Protocol

We now show how transactional aspects presented in the prectiers can
be applied to the Netconf protocol by enhancing it &ithansactional component.
3.1.Overview of the Netconf Protocol

To send configuration commands to a router, Netconf provides & Setrmoote
procedure calls” (RPC) and RPC-replies. In a simplified way, a@ i&Pa block of

8 GRES, 09 - 12 Mai 2006, Bordeaux.

XML data whose opening tag contains an identifier that eith&s aise router to
return a portion of its configuration file, or tells it to replace part of its
configuration with a snippet provided by the user and carried in thay lof the
RPC. Netconf offers other built-in operations, such as commahaolsing to lock a
part of the router's configuration so that only the current userrsadify it, and
subsequently unlock it. The RPC-reply is the XML block that is ne&ar to the
user.

The Netconf protocol defines a simple mechanism for device manege
However, its transactional model, which includes a validatiapability, is device-
centered, and does not provide a mechanism to ensure the coogistiethe
sequence of operations with respect to the rules eliziteection 2.

In order to bestow transactional semantics on the update opesationultiple
configurations, it is important to determine the optimal pointsvafidation,
commitment and roll-back during the update process of the netwoviceale
configurations.

3.2.Components and Milestones

We propose to determine these points by analysing special prapeftitne
Kripke structure induced by the sequential dependencies. To this purpese, w
introduce the notion ofnilestone stateA milestone state is a state by which all
valid paths must eventually pass. Formally, yebe some LTL temporal rule, and
T be a CL formula that is true only on state Then, in a Kripke structur&, mis
such that for every path beginning at the start state and thaffisaty , the
formulaF T, is true.

Milestones can be thought of as unavoidable steps in the path frarm tet
solution, since all acceptable paths must eventually pass by timaés, in the
order they appear. In the case of Figure 2, we see two milestoneethdl and
M.

We argue that milestones are good candidates to divide the modelleespro
into natural macro-steps of which they are the boundaries; congpitary to
milestone states areomponentsi.e. sets of states and transitions comprised
between two milestone states. The word “natural” is used hsirgse these
milestones emerge from the set of temporal constraints impogeethe lattice.
Different temporal constraints generally lead to défégrmilestones.

3.3 Towards a Transactional Model

The main advantage of the analysis of the lattice that arisea temporal
constraints is that it induces a way of synthesising a protoasl the

Sequential Dependencies in Configuration Operations 9

implementation of a service. By placing validation checkpoiritsndestones, we
ensure such checkpoints are placed in semantically sound logahiomughout the
deployment process. Since these checkpoints reflect the struotposed by the
temporal constraints, they also make good points to roll backase @ failure
occurs.

These points are important since they represent optimal placedidétion in
the flow of operations. Thus, a validation in one of these poiats check all or
most of the dependences that apply on the multiple flow streams tmerme
towards the validation point. Moreover, these convergence pairg unavoidable
during the configuration and, since they concentrate the flowspathvalidation
performed at such points provides a maximum extent of cpgdoa those flows.

Intuitively, we suggest that a validation point be used to validageotierations
that are situated along the flow path connecting it to a previoudregs
milestone, in which a validation has been already done. If thidatgon has been
successful, the update information generated by the operationsnisnitted.
Otherwise, if the validation or the commitment fails, the updat®rmation
generated by the operations is discarded and the configuratien®léd back to
the latest points of successful validation.

Netconf provides two phases of a successful configuration traoeaatiring a
service configuration procedure: preparation and commitmentnDuyieparation,
the configurations are retrieved from the network devices. Wredl the
configurations have been retrieved, the edition starts atcgelevel. The validation
at this stage ensures that the network configuration is considiefore the
proposed modifications required by the service. To ensure thgritteof the
configuration edition, the device configurations are locked, editetisubsequently
unlocked. When the service edition has been successfully acctmglighe
commitment starts. The validation at this stage ensures that rnibtwork
configuration remains consistent after the respective madifins of the network
configurations.

Since the network service update affects multiple device configurgta two-
phase commit is required. The first phase stores the update informati
temporary storage and validates it before entering the secomdephf the
validation is successful, the update information is transferratb dhe real
configurations, otherwise this information is discarded. Ineca$ erroneous
transfers during the second phase, the configurations are t@tgdand the second
phase can be resumed.

This semantics can be used with the Netconf configuration pobtocensure
the transactional properties of the service updates on multipleetevis already
mentioned, the Netconf protocol defines transactional opmratfor device level
but does not provide similar operations for network level, i.e. thoe multiple
device configurations supporting a network service.

10 GRES, 09 - 12 Mai 2006, Bordeaux.

Obviously, the higher-level validations may involve multiple deg. For
instance, the routing table and the protocol information indcdedepend on the
network addresses and the protocol information from other dsviSimilarly,
parameters such as protocol neighbors' IP addresses, autonontens sysbers,
protocols' process number and IP addresses must accurately codtemponore
than one device, in order for the network service that is deployed that network
to be consistent.

In this case, defining an operation that can validate multiplerpeters situated
on several devices might be highly recommendable. This multiedevalidation
operation would replace multiple single-device validation openatiand would
allow performing complex validation queries directly within the veg
configuration protocol.

neration time (s)

Figure 3. a)Validation time of a deployment sequence in terms of number of nodes
to alter and constraints per nod®) Generation time of a valid deployment
sequence in terms of number of nodes to alter and constraints per node.

4. Experimental Results

Since the structures generated by sevice deployments are Kripictuses and
that the sequential formulas can be formalised in LTL, it is gadedio submit the
problem directly to a model checker like NuSMV (Cimattial., 2002). Using this
tool, we generated sample deployment sequences and checked tlsat the
deployments respected a set of constraints similar to Sequéuties 1 and 2. For
each test, we varied the number of nodes in the sequence and theemomb
sequential constraints imposed on each nodes. The validatioes tfor these
experiments are summarised in Figure 3a. All times given in thisssebtive been
calculated on an AMD Athlon XP-M 2200+ running NuSMV 2.1.2 urCiggwin.

One can see that validation times for large sequences of opesdtipnto 150
nodes) remain under the reasonable bound of 10 seconds, and thanh#éngniee
number of constraints is not the principal factor tinakes the computation longer.

Sequential Dependencies in Configuration Operations 11

Additionally, it is possible to benefit from the counter-examplengyation
mechanism of NuSMV to find a deployment sequence that does notevialay
constraint. As a matter of fact, when a LTL property of the fo@np is false,
NuSMV provides the user with an execution trace on the Kripke structure f
which p is false. Ifp is the LTL property one wants to verify on a structure, it
suffices to submit the formul& -p for verification. If there exists a trace for
which p is true, then such a trace is a counter-example for the fori@utep, and
therefore NuSMV will display it to the user, giving by the same a valid
deployment sequence.

We have conducted experiments with NuSMV on sample deployment seguence

with constraints of the same form as Sequential Formulas 1 andevaifed the

size of the configurations and the number of sequential constrgier node
imposed on the structure, and computed the time NuSMV took to provideract
deployment sequence. The results of these experiments are preisehigdre 3b.
Each curve corresponds to the generation time of a valid deploysemtence
involving some number of nodes, with 1, 2 or 3 sequential consgamposed on
eachnode —that is, the total number of constraints actually increasdh ttie
number of nodes.

As expected, generating a valid sequence is much harder than validatin
existing one. Moreover, the number of sequential constrainteamh node does
matter in this case, and can change a rather simple situatioramtuntractable
one. One can see that, for sequences that involve the additiorodification of
about 10 nodes, which is comparable to deployment of a simple VPN ontarry
up to three sequential constraints per node can be imposed witheogetteration
time becoming prohibitive.

These findings suggest that model checking is indeed an interesbhfpt on-
the-fly validation of deployment sequences, and for offliaepriori synthesis of
valid sequences for network services with a complexity compartbla Virtual
Private Network.

5. Conclusion

In this paper, we have shown how Linear Temporal Logic applied tpkéri
structures can accurately formalise sequential constrainthendeployment of
network services. Using these model checking concepts, weedeftre notion of
milestonestates in a Kripke structure and gave arguments for using these psints a
validation, synchronization and rollback points during the dgplent of a
service,and illustrated how the Netconf protocol could be eobd by the addition
of a transactional component based on milestones.

Empirical results on sample network configurations demonstregddasibility
of validating deployment sequences using model checking tools, aod that

12 GRES, 09 - 12 Mai 2006, Bordeaux.

finding a deployment sequence that validates a set of constrasitsa i
computationally hard problem.

The authors plan future work on these concepts in order to further use
milestones in a hiearchical decomposition of a service deploymi@ such a
setting, each component could contain sub-milestones that viiaxttter divide a
process into sub-steps based on the same principle. Moreovercutient
methodology could be extended by considering all possible orderingsenations
in a component and eventually reduce the study to one specific oggenrthe
same waypartial order reductionreduces the state space in model checking
(Clarkeet al, 2000).

References

Cimatti, A., Clarke, E. M., Giunchiglia, E., Giunchiglia, F., Pisto M., Roveri, M.,
Sebastiani, R., Tacchella, A: NuSMV 2: An OpenSource Tool for Symbidaciel
Checking. Proc. International Conference on Computer-Aided VeiidicgCAV 2002),
359-364. (2002)

Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checkingl tess (2000)

Couch, A., Sun, Y.: On the Algebraic Structure of Convergence, Proc. NDQ003,
Springer, 28-40 (2003)

Crubézy, M.: The Protégé Axiom Language and Toolset (“PAL"). Ptémpject, Stanford
University (2002) http://protege.stanford.edu/

Daminaou, N., Dulay, N., Lupu, E., Sloman, M.: The Ponder policy Spetificd anguage,
Proc. Policy2001, Springer, 29-31 (2001)

Enns, R.: Netconf Configuration Protocol. Internet draft, April 2005.
http://www.ietf.org/internet-drafts/draft-ietf-netconf-pi@-txt

Hallé, S., Deca, R., Cherkaoui, O., Villemaire, R.: Automatedifitmtion of Service
Configuration on Network Devices. Proc. MMNS 2004, Springer, 188{2004).

Hallé, S., Deca, R., Cherkaoui, O., Villemaire, R., Puche, D.: fnfad Validation Model
for the Netconf Protocol. Proc. DSOM 2004, Springer, 147-158 (2004)

IEEE Standards for Local and Metropolitan Area Networks: Virtualdged Local Area
Networks. IEEE Standard 802.1Q-1998 (1998)

Jackson, D., Schechter, I., Shlyakhter, I.: Alcoa: the Alloy ConstrAnalyzer, Proc. ICSE
(2000)

Rosen, E., Rechter, Y.: BGP/MPLS VPNs. RFC 2547 (1999)

Villemaire, R., Hallé, S., Cherkaoui, O.: Configuration Logic:Multi-site Modal Logic.
Proc. TIME 2005, IEEE Computer Society, 131-137 (2005)

Warmer, J., Kleppe, A.: OCL: The constraint language of the UML. JouohaDbject-
Oriented Programming, May 1999.

