Graphe de Gaifman et voisinages Localités de Hanf et Gaifman Démonstrations Paradoxe

Localité en logique du premier-ordre

Roger Villemaire

Département d'informatique UQAM

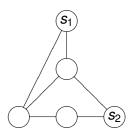
Séminaire de logique du GRILo 17 avril 2008

Plan

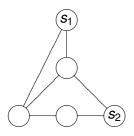
- Graphe de Gaifman et voisinages
 - Motivation
 - Graphe et distance de Gaifman
- Localités de Hanf et Gaifman
 - Localité de Hanf
 - Localité de Gaifman
- Démonstrations
 - La logique du premier-order est Hanf-locale
 - Si Hanf- alors Gaifman-local
- Paradoxe

Plan

- Graphe de Gaifman et voisinages
 - Motivation
 - Graphe et distance de Gaifman
- Localités de Hanf et Gaifman
 - Localité de Hanf
 - Localité de Gaifman
- Démonstrations
 - La logique du premier-order est Hanf-locale
 - Si Hanf- alors Gaifman-local
- Paradoxe

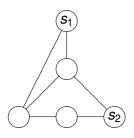


- ⟨S; A⟩
- $d_G(s_1, s_2) =$ la longueur du plus petit chemin de s_1 à s_2
- V_d(s₁), l'ensemble des voisins à distance ≤ d (sous-graphe)
- $V_d(\bar{s}) = \bigcup_{s \in \bar{s}} V_d(s)$

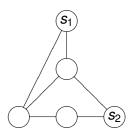


⟨S; A⟩

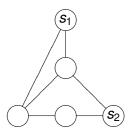
- $d_G(s_1, s_2) =$ la longueur du plus petit chemin de s_1 à s_2
- V_d(s₁), l'ensemble des voisins à distance ≤ d (sous-graphe)
- $V_d(\bar{s}) = \bigcup_{s \in \bar{s}} V_d(s)$



- ⟨S; A⟩
- d_G(s₁, s₂) = la longueur du plus petit chemin de s₁ à s₂
- V_d(s₁), l'ensemble des voisins à distance ≤ d (sous-graphe)
- $V_d(\bar{s}) = \bigcup_{s \in \bar{s}} V_d(s)$



- ⟨S; A⟩
- $d_G(s_1, s_2) =$ la longueur du plus petit chemin de s_1 à s_2
- V_d(s₁), l'ensemble des voisins à distance ≤ d (sous-graphe)
- $V_d(\bar{s}) = \bigcup_{s \in \bar{s}} V_d(s)$



- ⟨S; A⟩
- d_G(s₁, s₂) = la longueur du plus petit chemin de s₁ à s₂
- V_d(s₁), l'ensemble des voisins à distance ≤ d (sous-graphe)
- $V_d(\bar{s}) = \bigcup_{s \in \bar{s}} V_d(s)$

La localité

- Une formule du premier-ordre ne "voit" pas loin de ses arguments
- Si s_1, s_2 sont des sommets "éloignés" l'un de l'autre et si $V_d(s_1) \cong V_d(s_2)$ alors $\varphi(s_1, s_2)$ ssi $\varphi(s_2, s_1)$

La localité

- Une formule du premier-ordre ne "voit" pas loin de ses arguments
- Si s_1, s_2 sont des sommets "éloignés" l'un de l'autre et si $V_d(s_1) \cong V_d(s_2)$ alors $\varphi(s_1, s_2)$ ssi $\varphi(s_2, s_1)$

 $\mathcal{A} \approx_k \mathcal{B}$

Destructeur

 $a_1, a_2, a_3, \ldots a_k$

Constructeur

 $b_1, b_2, b_3, \ldots b_k$

 $\mathcal{A} \approx_k \mathcal{B}$

Destructeur

 $a_1, a_2, a_3, \ldots a_k$

Constructeur $b_1, b_2, b_3, \dots b_k$

$$\mathcal{A}pprox_{k}\mathcal{B}$$

Destructeur $a_1, a_2, a_3, \dots a_k$

Constructeur

$$b_1, b_2, b_3, \ldots b_k$$

$$\mathcal{A} \approx_k \mathcal{B}$$

Destructeur

 $a_1, a_2, a_3, \dots a_k$

Constructeur
$$b_1, b_2, b_3, \dots b_k$$

$$A \approx_k \mathcal{B}$$
Destructeur
 $a_1, a_2, a_3, \dots a_k$
Constructeur
 $b_1, b_2, b_3, \dots b_k$

$$\mathcal{A}pprox_{k}\mathcal{B}$$

Destructeur $a_1, a_2, a_3, \dots a_k$

Constructeur
$$b_1, b_2, b_3, \dots b_k$$

$$\mathcal{A} \approx_k \mathcal{B}$$
Destructeur
 $a_1, a_2, a_3, \dots a_k$
Constructeur
 $b_1, b_2, b_3, \dots b_k$

Destructeur
$$a_1, a_2, a_3, \dots a_k$$

Constructeur
$$b_1, b_2, b_3, \dots b_k$$

Le constructeur gagne si $(a_1, a_2, a_3, ..., a_k)$ et $(b_1, b_2, b_3, ..., b_k)$ satisfont les mêmes formules atomiques.

 $\mathcal{A} \approx_{k} \mathcal{B}$

Destructeur
$$a_1, a_2, a_3, \dots a_k$$

Constructeur
$$b_1, b_2, b_3, \dots b_k$$

Le constructeur gagne si $(a_1, a_2, a_3, \ldots, a_k)$ et $(b_1, b_2, b_3, \ldots, b_k)$ satisfont les mêmes formules atomiques.

 $\mathcal{A} \approx_{k} \mathcal{B}$

s₁, s₂ sont des sommets "éloignés" l'un de l'autre

En résumé

- $V_d(s_1) \cong V_d(s_2)$
- On veut avoir $\langle S; A, s_1, s_2 \rangle \approx_k \langle S; A, s_2, s_1 \rangle$
- Lorsque le Destructeur joue dans $V_d(s_1)$, le Constructeur réplique dans $V_d(s_2)$
- Lorsque le Destructeur joue dans $V_d(s_2)$, le Constructeur réplique dans $V_d(s_1)$
- Lorsque le Destructeur joue loin de s₁ et s₂, le
 Constructeur réplique en jouant le même élément

- s_1, s_2 sont des sommets "éloignés" l'un de l'autre
- $V_d(s_1) \cong V_d(s_2)$
- On veut avoir $\langle S; A, s_1, s_2 \rangle \approx_k \langle S; A, s_2, s_1 \rangle$
- Lorsque le Destructeur joue dans $V_d(s_1)$, le Constructeur réplique dans $V_d(s_2)$
- Lorsque le Destructeur joue dans $V_d(s_2)$, le Constructeur réplique dans $V_d(s_1)$
- Lorsque le Destructeur joue loin de s₁ et s₂, le
 Constructeur réplique en jouant le même élément

- s₁, s₂ sont des sommets "éloignés" l'un de l'autre
- $V_d(s_1) \cong V_d(s_2)$
- On veut avoir $\langle S; A, s_1, s_2 \rangle \approx_k \langle S; A, s_2, s_1 \rangle$
- Lorsque le Destructeur joue dans $V_d(s_1)$, le Constructeur réplique dans $V_d(s_2)$
- Lorsque le Destructeur joue dans $V_d(s_2)$, le Constructeur réplique dans $V_d(s_1)$
- Lorsque le Destructeur joue loin de s₁ et s₂, le
 Constructeur réplique en jouant le même élément

- s₁, s₂ sont des sommets "éloignés" l'un de l'autre
- $V_d(s_1) \cong V_d(s_2)$
- On veut avoir $\langle S; A, s_1, s_2 \rangle \approx_k \langle S; A, s_2, s_1 \rangle$
- Lorsque le Destructeur joue dans $V_d(s_1)$, le Constructeur réplique dans $V_d(s_2)$
- Lorsque le Destructeur joue dans $V_d(s_2)$, le Constructeur réplique dans $V_d(s_1)$
- Lorsque le Destructeur joue loin de s₁ et s₂, le
 Constructeur réplique en jouant le même élémen

- s₁, s₂ sont des sommets "éloignés" l'un de l'autre
- $V_d(s_1) \cong V_d(s_2)$
- On veut avoir $\langle S; A, s_1, s_2 \rangle \approx_k \langle S; A, s_2, s_1 \rangle$
- Lorsque le Destructeur joue dans $V_d(s_1)$, le Constructeur réplique dans $V_d(s_2)$
- Lorsque le Destructeur joue dans $V_d(s_2)$, le Constructeur réplique dans $V_d(s_1)$
- Lorsque le Destructeur joue loin de s₁ et s₂, le
 Constructeur réplique en jouant le même élémen

- s₁, s₂ sont des sommets "éloignés" l'un de l'autre
- $V_d(s_1) \cong V_d(s_2)$
- On veut avoir $\langle S; A, s_1, s_2 \rangle \approx_k \langle S; A, s_2, s_1 \rangle$
- Lorsque le Destructeur joue dans $V_d(s_1)$, le Constructeur réplique dans $V_d(s_2)$
- Lorsque le Destructeur joue dans $V_d(s_2)$, le Constructeur réplique dans $V_d(s_1)$
- Lorsque le Destructeur joue loin de s₁ et s₂, le
 Constructeur réplique en jouant le même élémen

- s_1, s_2 sont des sommets "éloignés" l'un de l'autre
- $V_d(s_1) \cong V_d(s_2)$
- On veut avoir $\langle S; A, s_1, s_2 \rangle \approx_k \langle S; A, s_2, s_1 \rangle$
- Lorsque le Destructeur joue dans $V_d(s_1)$, le Constructeur réplique dans $V_d(s_2)$
- Lorsque le Destructeur joue dans $V_d(s_2)$, le Constructeur réplique dans $V_d(s_1)$
- Lorsque le Destructeur joue loin de s₁ et s₂, le
 Constructeur réplique en jouant le même élément

Plan

- Graphe de Gaifman et voisinages
 - Motivation
 - Graphe et distance de Gaifman
- Localités de Hanf et Gaifman
 - Localité de Hanf
 - Localité de Gaifman
- Démonstrations
 - La logique du premier-order est Hanf-locale
 - Si Hanf- alors Gaifman-local
- Paradoxe

Graphe et distance de Gaifman

- Le Graphe de Gaifman de $\mathcal{B} = \langle B; R_1, \dots, R_n \rangle$ est $\langle B; A \rangle$ où :
 - A(b,b') ssi il existe $\bar{b} \in B$ tel que $b,b' \in \bar{b}$ et $R_i(\bar{b})$ pour un $i=1,\ldots,n$
- La distance de Gaifman est la distance dans le graphe de Gaifman

Graphe et distance de Gaifman

- Le Graphe de Gaifman de $\mathcal{B} = \langle B; R_1, \dots, R_n \rangle$ est $\langle B; A \rangle$ où :
 - A(b,b') ssi il existe $\bar{b} \in B$ tel que $b,b' \in \bar{b}$ et $R_i(\bar{b})$ pour un $i=1,\ldots,n$
- La distance de Gaifman est la distance dans le graphe de Gaifman

Graphe et distance de Gaifman

- Le Graphe de Gaifman de $\mathcal{B} = \langle B; R_1, \dots, R_n \rangle$ est $\langle B; A \rangle$ où :
 - A(b,b') ssi il existe $\bar{b} \in B$ tel que $b,b' \in \bar{b}$ et $R_i(\bar{b})$ pour un $i=1,\ldots,n$
- La distance de Gaifman est la distance dans le graphe de Gaifman

Plan

- Graphe de Gaifman et voisinages
 - Motivation
 - Graphe et distance de Gaifman
- Localités de Hanf et Gaifman
 - Localité de Hanf
 - Localité de Gaifman
- Démonstrations
 - La logique du premier-order est Hanf-locale
 - Si Hanf- alors Gaifman-local
- Paradoxe

bijection d-locale

- $\langle A; R_1, \dots, R_n, \bar{a} \rangle \leftrightarrows_d \langle B; R_1, \dots, R_n, \bar{b} \rangle$ si
 - Il existe une bijection $f: A \to B$ telle que $V_d(\bar{a}a) \cong V_d(\bar{b}f(a))$
- Lorsqu'on veut spécifier le nom de la bijection on écrira $f: \langle A; R_1, \dots, R_n, \bar{a} \rangle \hookrightarrow_d \langle B; R_1, \dots, R_n, \bar{b} \rangle$

bijection d-locale

- $\langle A; R_1, \dots, R_n, \bar{a} \rangle \hookrightarrow_d \langle B; R_1, \dots, R_n, \bar{b} \rangle$ si
 - Il existe une bijection $f: A \to B$ telle que $V_d(\bar{a}a) \cong V_d(\bar{b}f(a))$
- Lorsqu'on veut spécifier le nom de la bijection on écrira $f: \langle A; R_1, \dots, R_n, \bar{a} \rangle \leftrightarrows_d \langle B; R_1, \dots, R_n, \bar{b} \rangle$

bijection *d*-locale

- $\langle A; R_1, \dots, R_n, \bar{a} \rangle \leftrightarrows_d \langle B; R_1, \dots, R_n, \bar{b} \rangle$ si
 - Il existe une bijection $f: A \rightarrow B$ telle que $V_d(\bar{a}a) \cong V_d(bf(a))$
- Lorsqu'on veut spécifier le nom de la bijection on écrira

$$f:\langle A;R_1,\ldots,R_n,\bar{a}\rangle \leftrightarrows_{d}\langle B;R_1,\ldots,R_n,\bar{b}\rangle$$

Localité de Hanf

• Un prédicat $P(\bar{x})$ est Hanf-local s'il existe un d, tel que pour toutes structures A, B et tuplets $\bar{a} \in A$, $\bar{b} \in B$ on a

•
$$A \models P(\bar{a}) \text{ ssi } \mathcal{B} \models P(\bar{b}) \text{ lorsque}$$

 $\langle A; R_1, \dots, R_n, \bar{a} \rangle \leftrightarrows_d \langle B; R_1, \dots, R_n, \bar{b} \rangle$

Théorème [Hanf (1965), Fagin-Stockmeyer-Vardi (1994)]
 La logique du premier-ordre est Hanf-locale

Localité de Hanf

- Un prédicat $P(\bar{x})$ est Hanf-local s'il existe un d, tel que pour toutes structures A, B et tuplets $\bar{a} \in A$, $\bar{b} \in B$ on a
 - $A \models P(\bar{a}) \text{ ssi } \mathcal{B} \models P(\bar{b}) \text{ lorsque}$ $\langle A; R_1, \dots, R_n, \bar{a} \rangle \leftrightarrows_d \langle B; R_1, \dots, R_n, \bar{b} \rangle$
- Théorème [Hanf (1965), Fagin-Stockmeyer-Vardi (1994)]
 La logique du premier-ordre est Hanf-locale

Localité de Hanf

- Un prédicat $P(\bar{x})$ est Hanf-local s'il existe un d, tel que pour toutes structures A, B et tuplets $\bar{a} \in A$, $\bar{b} \in B$ on a
 - $\mathcal{A} \models P(\bar{a}) \text{ ssi } \mathcal{B} \models P(\bar{b}) \text{ lorsque}$ $\langle A; R_1, \dots, R_n, \bar{a} \rangle \hookrightarrow_d \langle B; R_1, \dots, R_n, \bar{b} \rangle$
- Théorème [Hanf (1965), Fagin-Stockmeyer-Vardi (1994)]
 La logique du premier-ordre est Hanf-locale

- Être un graphe connexe n'est pas définissable du premier-ordre
 - Sinon cette propriété serait Hanf-locale pour un certain *d*.
 - Deux graphes \mathcal{G} et \mathcal{H} tels que $\mathcal{G} \leftrightarrows_d \mathcal{H}$ seraient tous les deux soient connexes, soient non-connexes
 - Il existe une bijection d-locale entre le cycle C_{4d+2} et l'union disjointes de deux cycles C_{2d+1} ∪ C_{2d+1}
 - Pourtant C_{4d+2} est connexe alors que $C_{2d+1} \dot{\cup} C_{2d+1}$ ne l'est pas (contradiction)

- Être un graphe connexe n'est pas définissable du premier-ordre
 - Sinon cette propriété serait Hanf-locale pour un certain *d*.
 - Deux graphes \mathcal{G} et \mathcal{H} tels que $\mathcal{G} \leftrightarrows_d \mathcal{H}$ seraient tous les deux soient connexes, soient non-connexes
 - Il existe une bijection d-locale entre le cycle C_{4d+2} et l'unior disjointes de deux cycles C_{2d+1} ∪ C_{2d+1}
 - Pourtant C_{4d+2} est connexe alors que $C_{2d+1} \dot{\cup} C_{2d+1}$ ne l'est pas (contradiction)

- Être un graphe connexe n'est pas définissable du premier-ordre
 - Sinon cette propriété serait Hanf-locale pour un certain *d*.

 - Il existe une bijection d-locale entre le cycle C_{4d+2} et l'unior disjointes de deux cycles C_{2d+1} ∪ C_{2d+1}
 - Pourtant C_{4d+2} est connexe alors que $C_{2d+1} \dot{\cup} C_{2d+1}$ ne l'est pas (contradiction)

- Être un graphe connexe n'est pas définissable du premier-ordre
 - Sinon cette propriété serait Hanf-locale pour un certain *d*.
 - Deux graphes \mathcal{G} et \mathcal{H} tels que $\mathcal{G} \hookrightarrow_{d} \mathcal{H}$ seraient tous les deux soient connexes, soient non-connexes
 - Il existe une bijection d-locale entre le cycle C_{4d+2} et l'union disjointes de deux cycles $C_{2d+1} \dot{\cup} C_{2d+1}$
 - Pourtant C_{4d+2} est connexe alors que $C_{2d+1} \dot{\cup} C_{2d+1}$ ne l'est pas (contradiction)

- Être un graphe connexe n'est pas définissable du premier-ordre
 - Sinon cette propriété serait Hanf-locale pour un certain d.
 - Deux graphes \mathcal{G} et \mathcal{H} tels que $\mathcal{G} \hookrightarrow_{d} \mathcal{H}$ seraient tous les deux soient connexes, soient non-connexes
 - Il existe une bijection d-locale entre le cycle C_{4d+2} et l'union disjointes de deux cycles $C_{2d+1} \dot{\cup} C_{2d+1}$
 - Pourtant C_{4d+2} est connexe alors que $C_{2d+1} \dot{\cup} C_{2d+1}$ ne l'est pas (contradiction)

Limitations de la localité de Hanf

 Pratique pour les propriétés (prédicats d'arités 0), mais plus difficile à utiliser pour des prédicats d'arités > 0

Plan

- Graphe de Gaifman et voisinages
 - Motivation
 - Graphe et distance de Gaifman
- Localités de Hanf et Gaifman
 - Localité de Hanf
 - Localité de Gaifman
- Démonstrations
 - La logique du premier-order est Hanf-locale
 - Si Hanf- alors Gaifman-local
- Paradoxe

- Un prédicat $P(\bar{x})$ est Gaifman-local s'il existe un d, tel que pour toute structure A, et tuplets $\bar{a}, \bar{a'} \in A$ on a
 - $A \models P(\bar{a}) \text{ ssi } A \models P(\bar{a}') \text{ lorsque } V_d(\bar{a}) \cong V_d(\bar{a}')$
- Attention : Une seule structure
- Théorème [Hella-Libkin-Nurmonen (1999)] La logique du premier-ordre est Gaifman-locale

- Un prédicat $P(\bar{x})$ est Gaifman-local s'il existe un d, tel que pour toute structure A, et tuplets $\bar{a}, \bar{a'} \in A$ on a
 - $\mathcal{A} \models P(\bar{a}) \text{ ssi } \mathcal{A} \models P(\bar{a}') \text{ lorsque } V_d(\bar{a}) \cong V_d(\bar{a}')$
- Attention : Une seule structure
- Théorème [Hella-Libkin-Nurmonen (1999)] La logique du premier-ordre est Gaifman-locale

- Un prédicat $P(\bar{x})$ est Gaifman-local s'il existe un d, tel que pour toute structure A, et tuplets $\bar{a}, \bar{a}' \in A$ on a
 - $\mathcal{A} \models P(\bar{a}) \text{ ssi } \mathcal{A} \models P(\bar{a'}) \text{ lorsque } V_d(\bar{a}) \cong V_d(\bar{a'})$
- Attention: Une seule structure
- Théorème [Hella-Libkin-Nurmonen (1999)] La logique du premier-ordre est Gaifman-locale

- Un prédicat $P(\bar{x})$ est Gaifman-local s'il existe un d, tel que pour toute structure A, et tuplets $\bar{a}, \bar{a'} \in A$ on a
 - $\mathcal{A} \models P(\bar{a})$ ssi $\mathcal{A} \models P(\bar{a}')$ lorsque $V_d(\bar{a}) \cong V_d(\bar{a}')$
- Attention: Une seule structure
- Théorème [Hella-Libkin-Nurmonen (1999)] La logique du premier-ordre est Gaifman-locale

- La relation chemin(x, y) satisfaite par les couples de sommets x, y reliés par un chemin (orienté), n'est pas définissable du premier-ordre
 - Sinon cette propriété serait Gaifman-locale pour un certain d.
 - Considérons le chemin \vec{P}_{4d+3} , ainsi que deux sommets a et b, situés à distance 2d+1 l'un de l'autre et à distance d des extrémités
 - Il y a un chemin soit de a à b ou de b à a, mais pas les deux
 - Pourtant $V_d(a)$ et $V_d(b)$ sont isomorphes à \tilde{P}_{2d+1} (contradiction)

- La relation chemin(x, y) satisfaite par les couples de sommets x, y reliés par un chemin (orienté), n'est pas définissable du premier-ordre
 - Sinon cette propriété serait Gaifman-locale pour un certain d.
 - Considérons le chemin \vec{P}_{4d+3} , ainsi que deux sommets a et b, situés à distance 2d+1 l'un de l'autre et à distance d des extrémités
 - Il y a un chemin soit de a à b ou de b à a, mais pas les deux
 - Pourtant $V_d(a)$ et $V_d(b)$ sont isomorphes à \vec{P}_{2d+1} (contradiction)

- La relation chemin(x, y) satisfaite par les couples de sommets x, y reliés par un chemin (orienté), n'est pas définissable du premier-ordre
 - Sinon cette propriété serait Gaifman-locale pour un certain d.
 - Considérons le chemin \vec{P}_{4d+3} , ainsi que deux sommets a et b, situés à distance 2d+1 l'un de l'autre et à distance d des extrémités
 - Il y a un chemin soit de a à b ou de b à a, mais pas les deux
 - Pourtant $V_d(a)$ et $V_d(b)$ sont isomorphes à \vec{P}_{2d+1} (contradiction)

- La relation chemin(x, y) satisfaite par les couples de sommets x, y reliés par un chemin (orienté), n'est pas définissable du premier-ordre
 - Sinon cette propriété serait Gaifman-locale pour un certain d.
 - Considérons le chemin \vec{P}_{4d+3} , ainsi que deux sommets a et b, situés à distance 2d+1 l'un de l'autre et à distance d des extrémités
 - Il y a un chemin soit de a à b ou de b à a, mais pas les deux
 - Pourtant $V_d(a)$ et $V_d(b)$ sont isomorphes à \vec{P}_{2d+1} (contradiction)

- La relation chemin(x, y) satisfaite par les couples de sommets x, y reliés par un chemin (orienté), n'est pas définissable du premier-ordre
 - Sinon cette propriété serait Gaifman-locale pour un certain d.
 - Considérons le chemin \vec{P}_{4d+3} , ainsi que deux sommets a et b, situés à distance 2d+1 l'un de l'autre et à distance d des extrémités
 - Il y a un chemin soit de a à b ou de b à a, mais pas les deux
 - Pourtant $V_d(a)$ et $V_d(b)$ sont isomorphes à \vec{P}_{2d+1} (contradiction)

Plan

- Graphe de Gaifman et voisinages
 - Motivation
 - Graphe et distance de Gaifman
- Localités de Hanf et Gaifman
 - Localité de Hanf
 - Localité de Gaifman
- Oémonstrations
 - La logique du premier-order est Hanf-locale
 - Si Hanf- alors Gaifman-local
- Paradoxe

Théorème

Si
$$f: \langle A; R_1, \dots, R_n, \bar{a} \rangle \hookrightarrow_d \langle B; R_1, \dots, R_n, \bar{b} \rangle$$
, alors $\langle A; R_1, \dots, R_n, \bar{a}, a \rangle \hookrightarrow_{\lfloor \frac{d-1}{2} \rfloor} \langle B; R_1, \dots, R_n, \bar{b}, f(a) \rangle$

- On cherche $h: \langle A; R_1, \dots, R_n, \bar{a}, a \rangle \hookrightarrow_{\lfloor \frac{d-1}{2} \rfloor} \langle B; R_1, \dots, R_n, \bar{b}, f(a) \rangle$
- On a $V_d(\bar{a}a) \cong V_d(\bar{b}f(a))$
- On définit h pour les $V_{\lfloor \frac{d-1}{2} \rfloor}(u) \subseteq V_d(\bar{a}a)$
- On définit h pour les $V_{\lfloor \frac{d-1}{2} \rfloor}(u) \not\subseteq V_d(\bar{a}a)$

Théorème

Si
$$f: \langle A; R_1, \dots, R_n, \bar{a} \rangle \hookrightarrow_d \langle B; R_1, \dots, R_n, \bar{b} \rangle$$
, alors $\langle A; R_1, \dots, R_n, \bar{a}, a \rangle \hookrightarrow_{\lfloor \frac{d-1}{2} \rfloor} \langle B; R_1, \dots, R_n, \bar{b}, f(a) \rangle$

Démonstration.

$$h: \langle A; R_1, \ldots, R_n, \bar{a}, a \rangle \hookrightarrow_{\lfloor \frac{d-1}{2} \rfloor} \langle B; R_1, \ldots, R_n, \bar{b}, f(a) \rangle$$

- On a $V_d(\bar{a}a) \cong V_d(\bar{b}f(a))$
- On définit h pour les $V_{\lfloor \frac{d-1}{\alpha} \rfloor}(u) \subseteq V_d(\bar{a}a)$
- On définit h pour les $V_{\lfloor \frac{d-1}{2} \rfloor}(u) \not\subseteq V_d(\bar{a}a)$

Théorème

Si
$$f: \langle A; R_1, \dots, R_n, \bar{a} \rangle \hookrightarrow_d \langle B; R_1, \dots, R_n, \bar{b} \rangle$$
, alors $\langle A; R_1, \dots, R_n, \bar{a}, a \rangle \hookrightarrow_{\lfloor \frac{d-1}{2} \rfloor} \langle B; R_1, \dots, R_n, \bar{b}, f(a) \rangle$

Démonstration.

$$h: \langle A; R_1, \ldots, R_n, \bar{a}, a \rangle \hookrightarrow_{\lfloor \frac{d-1}{2} \rfloor} \langle B; R_1, \ldots, R_n, \bar{b}, f(a) \rangle$$

- On a $V_d(\bar{a}a)\cong V_d(\bar{b}f(a))$
- On définit h pour les $V_{\lfloor \frac{d-1}{2} \rfloor}(u) \subseteq V_d(\bar{a}a)$
- On définit h pour les $V_{\lfloor \frac{d-1}{2} \rfloor}(u) \not\subseteq V_d(\bar{a}a)$

Théorème

Si
$$f: \langle A; R_1, \dots, R_n, \bar{a} \rangle \hookrightarrow_d \langle B; R_1, \dots, R_n, \bar{b} \rangle$$
, alors $\langle A; R_1, \dots, R_n, \bar{a}, a \rangle \hookrightarrow_{\lfloor \frac{d-1}{2} \rfloor} \langle B; R_1, \dots, R_n, \bar{b}, f(a) \rangle$

Démonstration.

$$h: \langle A; R_1, \ldots, R_n, \bar{a}, a \rangle \hookrightarrow_{\lfloor \frac{d-1}{2} \rfloor} \langle B; R_1, \ldots, R_n, \bar{b}, f(a) \rangle$$

- On a $V_d(\bar{a}a) \cong V_d(\bar{b}f(a))$
- On définit h pour les $V_{\lfloor \frac{d-1}{2} \rfloor}(u) \subseteq V_d(\bar{a}a)$
- On définit h pour les $V_{\lfloor \frac{d-1}{2} \rfloor}(u) \not\subseteq V_d(\bar{a}a)$

Théorème

Si
$$f: \langle A; R_1, \dots, R_n, \bar{a} \rangle \hookrightarrow_d \langle B; R_1, \dots, R_n, \bar{b} \rangle$$
, alors $\langle A; R_1, \dots, R_n, \bar{a}, a \rangle \hookrightarrow_{\lfloor \frac{d-1}{2} \rfloor} \langle B; R_1, \dots, R_n, \bar{b}, f(a) \rangle$

Démonstration.

$$h: \langle A; R_1, \ldots, R_n, \bar{a}, a \rangle \hookrightarrow_{\lfloor \frac{d-1}{2} \rfloor} \langle B; R_1, \ldots, R_n, \bar{b}, f(a) \rangle$$

- On a $V_d(\bar{a}a) \cong V_d(\bar{b}f(a))$
- On définit h pour les $V_{\lfloor \frac{d-1}{2} \rfloor}(u) \subseteq V_d(\bar{a}a)$
- On définit h pour les $V_{\lfloor \frac{d-1}{2} \rfloor}(u) \not\subseteq V_d(\bar{a}a)$

Théorème

La logique du premier-order est Hanf-locale.

- Par induction sur la structure de la formule.
- Pour une formule atomique, un isomorphisme 0-local fera l'affaire.
- Pour la négation, prendre le même d. Pour les opérateurs booléens binaires, le maximum des d.
- Pour le quantificateur existentiel, utiliser le résultat précédent.

Théorème

La logique du premier-order est Hanf-locale.

- Par induction sur la structure de la formule.
- Pour une formule atomique, un isomorphisme 0-local fera l'affaire.
- Pour la négation, prendre le même d. Pour les opérateurs booléens binaires, le maximum des d.
- Pour le quantificateur existentiel, utiliser le résultat précédent.

Théorème

La logique du premier-order est Hanf-locale.

- Par induction sur la structure de la formule.
- Pour une formule atomique, un isomorphisme 0-local fera l'affaire.
- Pour la négation, prendre le même d. Pour les opérateurs booléens binaires, le maximum des d.
- Pour le quantificateur existentiel, utiliser le résultat précédent.

Théorème

La logique du premier-order est Hanf-locale.

- Par induction sur la structure de la formule.
- Pour une formule atomique, un isomorphisme 0-local fera l'affaire.
- Pour la négation, prendre le même d. Pour les opérateurs booléens binaires, le maximum des d.
- Pour le quantificateur existentiel, utiliser le résultat précédent.

Théorème

La logique du premier-order est Hanf-locale.

- Par induction sur la structure de la formule.
- Pour une formule atomique, un isomorphisme 0-local fera l'affaire.
- Pour la négation, prendre le même d. Pour les opérateurs booléens binaires, le maximum des d.
- Pour le quantificateur existentiel, utiliser le résultat précédent.

Plan

- Graphe de Gaifman et voisinages
 - Motivation
 - Graphe et distance de Gaifman
- Localités de Hanf et Gaifman
 - Localité de Hanf
 - Localité de Gaifman
- Oémonstrations
 - La logique du premier-order est Hanf-locale
 - Si Hanf- alors Gaifman-local
- Paradoxe

Théorème

Un prédicat qui est Hanf- est Gaifman-local.

- Comme dans la démonstration de l'extensibilité de la localité de Hanf
- On fait correspondre les voisinages de tailles $\lfloor \frac{d-1}{2} \rfloor$ qui sont à l'intérieur d'un voisinage de taille d.
- Pour l'extérieur, on utilise le fait qu'on est dans une seule et même structure

Théorème

Un prédicat qui est Hanf- est Gaifman-local.

- Comme dans la démonstration de l'extensibilité de la localité de Hanf
- On fait correspondre les voisinages de tailles $\lfloor \frac{d-1}{2} \rfloor$ qui sont à l'intérieur d'un voisinage de taille d.
- Pour l'extérieur, on utilise le fait qu'on est dans une seule et même structure

Théorème

Un prédicat qui est Hanf- est Gaifman-local.

- Comme dans la démonstration de l'extensibilité de la localité de Hanf
- On fait correspondre les voisinages de tailles $\lfloor \frac{d-1}{2} \rfloor$ qui sont à l'intérieur d'un voisinage de taille d.
- Pour l'extérieur, on utilise le fait qu'on est dans une seule et même structure

Théorème

Un prédicat qui est Hanf- est Gaifman-local.

- Comme dans la démonstration de l'extensibilité de la localité de Hanf
- On fait correspondre les voisinages de tailles $\lfloor \frac{d-1}{2} \rfloor$ qui sont à l'intérieur d'un voisinage de taille d.
- Pour l'extérieur, on utilise le fait qu'on est dans une seule et même structure

- Attention : Si on augmente la signature d'un graphe pour contenir aussi Ā (le complémentaire de la relation d'adjacence), on a
 - Exactement le même niveau d'expressivité
 - Tous les sommets sont à distance de Gaifman 1, l'un de l'autre
 - C'est toujours Hanf- et Gaifman-local, mais ça n'est plus tellement utile!

- Attention : Si on augmente la signature d'un graphe pour contenir aussi Ā (le complémentaire de la relation d'adjacence), on a
 - Exactement le même niveau d'expressivité
 - Tous les sommets sont à distance de Gaifman 1, l'un de l'autre
 - C'est toujours Hanf- et Gaifman-local, mais ça n'est plus tellement utile!

- Attention: Si on augmente la signature d'un graphe pour contenir aussi Ā (le complémentaire de la relation d'adjacence), on a
 - Exactement le même niveau d'expressivité
 - Tous les sommets sont à distance de Gaifman 1, l'un de l'autre
 - C'est toujours Hanf- et Gaifman-local, mais ça n'est plus tellement utile!

- Attention : Si on augmente la signature d'un graphe pour contenir aussi Ā (le complémentaire de la relation d'adjacence), on a
 - Exactement le même niveau d'expressivité
 - Tous les sommets sont à distance de Gaifman 1, l'un de l'autre
 - C'est toujours Hanf- et Gaifman-local, mais ça n'est plus tellement utile!

- Attention : Si on augmente la signature d'un graphe pour contenir aussi Ā (le complémentaire de la relation d'adjacence), on a
 - Exactement le même niveau d'expressivité
 - Tous les sommets sont à distance de Gaifman 1, l'un de l'autre
 - C'est toujours Hanf- et Gaifman-local, mais ça n'est plus tellement utile!

Conclusion

- La logique du premier-ordre a un portée "locale"
- Les principes de localité de Hanf et Gaifman sont de nature combinatoire
- Le langage (signature) est d'une importance cruciale

Conclusion

- La logique du premier-ordre a un portée "locale"
- Les principes de localité de Hanf et Gaifman sont de nature combinatoire
- Le langage (signature) est d'une importance cruciale

Conclusion

- La logique du premier-ordre a un portée "locale"
- Les principes de localité de Hanf et Gaifman sont de nature combinatoire
- Le langage (signature) est d'une importance cruciale

Graphe de Gaifman et voisinages Localités de Hanf et Gaifman Paradoxe En résumé

Elements of Finite Model Theory.

Springer, 2004.

