An introduction to model checking

University of Alberta
Edmonton
July 3rd, 2002

Guy Tremblay
Dépt. d’informatique
UQAM

Outline

• What are formal specification and verification methods?

• What is model checking?
 – How can the behavior of a reactive system be specified?
 – How can temporal properties be specified?

• How can model checking be done?

• Why and how can model checking be done in parallel?
1 What are formal methods?

“[Formal methods are] mathematically based techniques used to describe the properties of computing systems. They [are used to] specify, develop, and verify systems in a systematic and rigorous manner […]” [Wing90]

Key elements of a formal method:

- Formal language for writing specifications
- Rules to check the quality of the specifications
- Strategies and rules to refine and verify the specifications

Foundation on which everything rests = Formal specifications

What is a formal specification language?

Formal language ⇒ well-defined syntax and semantics:

- Syntax = EBNF, syntax diagrams, etc.
- Semantics = algebras, automatas and transition systems, relations and predicates, etc.

Specification lang. ⇒ describes the external *behavior* of a software component . . .

- by describing its key properties
- in an *abstract* way (without unneeded implementation details)
- without saying how it is going to be implemented (*non-algorithmic*)
Thus, a programming language is not a specification language because …

- it is algorithmic
- it is not abstract (arrays, pointers, etc.)

A specification provides a non-algorithmic description

⇒ Describes the “what?” instead of the “how?”

An example (in Spec):

FUNCTION square_root{ precision: real SUCH THAT precision > 0.0 }

MESSAGE root(x: real SUCH THAT x >= 0.0)
 REPLY(r: real)
 WHERE r >= 0.0 & almost_equal(r^2, x)

CONCEPT almost_equal(r1 r2: real) VALUE(b: boolean)
 WHERE b <=> abs(r1 - r2) <= precision
END

What are the major benefits of formal specifications and formal methods?

“Having to better understand the specificand by compelling the analyst to be abstract yet precise about the properties of the system can be more rewarding than having the specification itself.” [Wing90]

- Specifications are more explicit, precise, with less ambiguity.
- Formalization effort ⇒ help identify errors, ambiguities, and problems early.

- Provide a better foundation for implementation work.
- Allows for use of tools (manipulation, analysis, simulation).
- Basis for developing tests.
- Provide a basis for doing formal verification.
Why are there many specif. lang. and methods?

Many different styles of specifications:

- Abstract modeling for machines and objects (VDM, Z, Spec, etc.);
- Algebraic specification for ADT (Larch, ACT ONE, etc.);
- Behavioral specification for reactive systems (CCS, CSP, LOTOS, ACP, etc.);
- Safety and liveness properties (modal and temporal logics);
- ...

Similar to programming languages:

- Diverse application domains
- Various styles and paradigms
- Varying expressive power and analyzability

2 Specifying reactive and concurrent systems

A system is said to be reactive ...

- when it maintains a constant interaction with its environment
- when its behavior is "event-driven"

A system is said to be concurrent

- when its behavior is determined by the interaction of multiple tasks (processes) that cooperate and exchange information
Modeling the behavior of reactive systems

- The behavior of a reactive system can be described by specifying the actions that it can (and cannot) perform
- A computation of a reactive system is generally infinite
 ⇒ use of labeled transition systems (automata)

A small example: Lotos specification and its graphical description

```plaintext
process P[a, b, c]: noexit :=
  a; c; a; P[a, b, c]
  []
  b; a; c; P[a, b, c]
endproc
```

Modeling concurrent systems

Concurrent behavior can be expressed by interleaving semantics:

- Concurrent (unordered) actions can occur in any order
 ⇒ any possible interleaving is allowed
- Synchronized actions = actions performed synchronously by two (or more) agents
 ⇒ only one action visible

Possible set of visible runs = \{ adbcd, abdcd, dabdc, dabcd \}
Specifying properties of the behavior

- Automata = form of operational description
 ≈ describes how to generate the possible sequences of actions

- But … such a description does not make explicit the properties satisfied by the behavior
 - Safety properties: nothing bad will ever happen.
 - Liveness: something good will eventually happen.

Different approaches to the specification of properties:

- Modal logic: local properties of current state
- Temporal logic: properties of runs
 - Linear-time logic
 - Branching-time logic

Linear-time logic

Linear-time property = property along a single path of execution
⇒ A state satisfies a linear-time logic property if all complete paths that start from this state satisfy the property

Example:

These two machines have the same set of (complete) paths:

{ coin;muffin, coin;cookies }

⇒ they will satisfy the same linear-time properties

…but do they really have the same behavior?
Modal logic

Modal logic = expresses (local) properties of the current state

- Possibility (may): $\langle a \rangle \phi$
 - it is possible to do action a and then reach a state that satisfies ϕ
- Necessity (must): $[a] \phi$
 - whenever action a is done, the resulting state satisfies ϕ

Two typical idioms:

- $\langle a \rangle tt = it is possible to do a$
- $[a] \not f \not f = a cannot be done$

Examples on $P = a \begin{array}{c} a \\ \end{array} b \begin{array}{c} a \\ \end{array} c $

- $P \models \langle a \rangle t t$
 (Liveness) P can do a as its first move

- $P \models [a][b] \not f \not f$
 (Safety) In its starting state, P cannot do an a followed by a b

- $P \models \not b \langle c \rangle t t \land \not a \langle a, d \rangle t t$
 (Liveness) If the 1st action is not a b, then the 2nd is a c and if the 1st is not an a, the 2nd is an a or a d
Modal logic ⇒ Machines M_1 and M_2 can now be distinguished:

- $M_1 \models \neg [\text{coin}](\text{muffin})$
- $M_2 \models [\text{coin}](\text{muffin})$

Temporal (branching-time) logic

Temporal logic
- Expresses properties of the runs (the paths)
- Describes qualitatively the occurrence of events in time

CTL = Computation Tree Logic:

- $s \models AG\phi$
 - ϕ holds on all possible states reachable from state s
 - $\text{Always}(\phi)$

- $s \models EF\phi$:
 - from s, there exists a path where ϕ eventually holds
 - $\text{Eventually}(\phi)$
Examples on $P = \{a, b, c\}$

- $P \models AG([b][c] EF)$
 - (Safety) For any run, it is never possible to do b followed by c

- $s \models AG(EF (a) t t t)$
 - (Weak liveness) Along every path starting from s, eventually, an action a will be possible.
Mu-calculus

Modal mu-calculus = A temporal logic with explicit fixpoint operators

Syntax:
\[\phi ::= t \mid f \mid X \mid \phi_1 \land \phi_2 \mid \phi_1 \lor \phi_2 \mid [L] \phi \mid \langle L \rangle \phi \mid \mu X. \phi \mid \nu X. \phi \]

Always and Eventually using fixpoint operators:
\[
\begin{align*}
\text{Always}(\phi) &= \nu X. \phi \land [\neg] X \\
\text{Eventually}(\phi) &= \mu X. \phi \lor (\neg) X
\end{align*}
\]

3 Model checking

Model checking = “A technique that relies on building a finite model of a system and checking that a desired property holds in that model.” [ClarkeEtAl96]

Model checking = An automatic technique for verifying properties of finite state systems

General approach:

1. Construct \(\mathcal{M} \) = a model (of the behavior of the system)
2. Specify \(\phi \) = a property expected of the system (expressed in modal/temporal logic)
3. Check that \(\mathcal{M} \) satisfies \(\phi \). If not, produce counter-examples.
Implementation requires exploration of the state space
⇒ Important requirement for M must be finite

Advantages/disadvantages of model checking (+/−):

+ Verification is completely automatic
+ Can produce counter-examples that represent subtle errors

− State explosion problem

Primary applications (so far) = hardware and protocol verification:

- IEEE Futurebus+ cache coherence protocol [McMillan93]
 (a number of previously undetected errors were found)

- ISDN/ISUP telecommunication protocol [Holzmann92]
 (122 errors found)

- HDLC channel controller [DePalmaGlia96]
 (uncovered major bug)

- Active structural control system in civil engineering [ElseaiddyEtAl96]
 (uncovered major bug that could have worsen effect of vibration)

- …
4 Implementation of model checking

4.1 Global vs. local model checking

- Global model checking: Given a finite model, M, and a formula, ϕ, determine the set of states in M that satisfy ϕ.
- Local model checking: Given a finite model, M, a formula, ϕ, and a state s in M, determine whether s satisfies ϕ.

Characteristics of global vs. local model checking:

- Solution to global problem \Rightarrow solution to local one
- Solution to global problem \Rightarrow exploration of the whole state space
- Solution to local \Rightarrow demand-driven exploration of state space

4.2 How to compute fixpoints

Solving model checking problem \Rightarrow need to find solutions to recursive equations.

Let $\langle -$ and $[-]$ denote the uses of the modalities with arbitrary actions.

Recall that:

- $\mathbf{AG} \phi = \mathbf{Always}(\phi)$
- $\mathbf{EF} \phi = \mathbf{Eventually}(\phi)$

\mathbf{Always} and $\mathbf{Eventually}$ can be defined recursively:

$$
\mathbf{Always}(\phi) = \phi \land [\neg] \mathbf{Always}(\phi)
$$

$$
\mathbf{Eventually}(\phi) = \phi \lor \langle \neg \rangle \mathbf{Eventually}(\phi)
$$
Definition: x is a fixpoint of f iff $f(x) = x$

Fact: A solution to a recursive equation is always a fixpoint of an appropriate function.

Example: $x = 2 \cdot x$
- Associated function: $\tau(x) = 2 \cdot x$
- Solution: 0 is a solution since $\tau(0) = 0$

Example: $x = x$
- Associated function: $\tau(x) = x$
- Solution: Any n is a solution since $\tau(n) = n$

Example: a recursive definition of a list of integers
- Equation: $l = 1 : l$
- Associated function: $\tau(l) = 1 : l$
- Solution: Let $ones = [1, 1, 1, 1, \ldots]$ be an infinite list of 1s. Then $\tau(ones) = ones$.

![Diagram of a list with an arrow indicating the recursive definition.](image-url)
Fact: The least solution of a functional τ can be obtained as the limit of a sequence of approximations (where \bot is the least element of the domain):

$$\bigcup_{n=0}^{\infty} \tau^n(\bot)$$

Example:

- Let $\tau(I) = 1 : I$
- Let $\tau^0(I) = \bot$
- Let $\tau^{i+1}(I) = \tau(\tau^i(I)) = 1 : \tau^i(I)$

\[
\begin{align*}
\tau^0(\bot) &= \bot \\
\tau^1(\bot) &= 1 : \bot \\
\tau^2(\bot) &= 1 : 1 : \bot \\
\cdots \\
\tau^{i+1}(\bot) &= 1 : 1 : \ldots : \bot
\end{align*}
\]

4.3 Global model-checking for mu-calculus

- Determine set of states satisfying property ϕ
- Compute denotational semantics (set of states)

\[
\begin{align*}
[\epsilon]_V &= \mathcal{P} \\
[\epsilon \in]_V &= \{\} \\
[X]_V &= V(X) \\
[\phi_1 \land \phi_2]_V &= [\phi_1]_V \cap [\phi_2]_V \\
[\phi_1 \lor \phi_2]_V &= [\phi_1]_V \cup [\phi_2]_V \\
[I\phi]_V &= \{ p \mid \forall a \in I, p' \in \mathcal{P} \implies p \xrightarrow{a} p' \implies p' \in [\phi]_V \} \\
[L\phi]_V &= \{ p \mid \exists a \in I, p' \in \mathcal{P} \implies p \xrightarrow{a} p' \land p' \in [\phi]_V \} \\
[\mu X. \phi]_V &= \mu^{x \in X} \tau_{\phi,V}(x) \\
\text{where } &\tau_{\phi,V}(x) = [\phi]_{V[x \mapsto x]}
\end{align*}
\]
Termination property: Since the model (number of states) is finite, a fixpoint will be reached after a finite number of iterations.

4.4 Local model-checking for mu-calculus

Determine whether a state satisfies a property ϕ.

Compute axiomatic semantics (inference rules).

Set of (inductive) rules that specify if a process p satisfies a formula ϕ.

\[
fix_\mu \tau_{\phi, \nu} = \bigcup_{n=0}^{\infty} \tau^n_{\phi, \nu}(\{\})
\]

Where

$\tau^0(x) = x$

$\tau^{i+1}(x) = \tau(\tau^i(x))$

$\models p \quad \models \tau^i(x) = x$

$\models p \quad \models \tau^{i+1}(x) = \tau(\tau^i(x))$

$p \models \top$

$p \not\models \bot$

$p \models \phi \land \psi \quad \text{iff} \quad p \models \phi \text{ and } p \models \psi$

$p \models \phi \lor \psi \quad \text{iff} \quad p \models \phi \text{ or } p \models \psi$

$p \models [L] \phi \quad \text{iff} \quad \forall a \in L, p' \in \mathcal{P} \colon p \xrightarrow{a} p' \Rightarrow p' \models \phi$

$p \models \langle L \rangle \phi \quad \text{iff} \quad \exists a \in L, p' \in \mathcal{P} \colon p \xrightarrow{a} p' \land p' \models \phi$

$p \models \mu X. \phi \quad \text{iff} \quad \ldots$
5 Parallel model checking

5.1 The state explosion problem

Modeling of concurrency by interleaving ⇒ Total number of states may grow exponentially with the number of concurrently executing components.

Example:

- 100 lines Lotos specification with 10 small processes ⇒
 - 56,000 states
 - 180,000 transitions

Global model checking and exhaustive exploration of the state space

⇒ keep state space in memory to avoid multiple exploration of same state
⇒ lot of space required to store the graph (LTS)

Possible solutions to state explosion problem

- Symbolic model checking
- Exploit various kinds of information to reduce the number of states/transitions
 (as long as the key properties are preserved)
- ...
- Use a parallel machine with multiple nodes to provide more memory
5.2 Target machine and environment

Target parallel machine = EARTH (CAPSL, Univ. of Delaware, Newark, DE)

- Fine-grain multi-threaded parallelism = multiple levels of parallelism (threads vs. fibers)
- Irregular dynamic parallelism = data flow style scheduling
- Off-the-shelf computer = EARTH-RTS (Pthreads and sockets)
 - Earthquake = 16-processors Beowulf cluster (University of Delaware)
- Programming language = Threaded-C

CADP toolbox (INRIA, Grenoble, France):

- Translator from Lotos to LTS + numerous other tools:
 - Simulation
 - Equivalence checking
 - Model checking for regular alternation-free μ-calculus
 - …

- LTS provides an implicit representation of the graph (transition function)
- Goal = construct an explicit representation (state graph)
5.3 Distributing the graph

General strategy for distributing the graph

- Traverse the graph by evaluating the transition function

- Use a dispersion function h to distribute the states on the various processors

- Handle transition $t = (s_1, e, s_2)$ on processor $h(s_2)$

- Never send a transition more than once by keeping track of the states that have been visited

Pseudo-code:

```
// Initialization phase in process 0
s0 = start_state();
visited = \{s0\};
FOREACH transition $t = (s0, e, s1)$ going out of $s0$ DO
    SEND $t$ TO processor $h(s1)$;
END

// Processing phase (on all processors)
WHILE not terminated (?) DO
    RECEIVE transition $t0 = (s0, e0, s1)$ from arbitrary process;
    IF !(s1 IN visited) THEN
        visited = visited U \{s1\};
        FOREACH transition $t = (s1, e, s2)$ going out of $s1$ DO
            SEND $t$ TO processor $h(s2)$;
        END
    END
END
END
```
5.4 Detecting termination

Key problem = Detecting when all transitions have been processed
Currently implemented solution = Distributed detection termination based on the number of messages sent/received

5.5 Next step = perform model checking

- Currently: Only distribution of transitions has been implemented (graduate course project)
- Still need to add processing associated with model checking itself
 - Global model checking \(\Rightarrow \) multiple exploration of the graph (fixpoint computation)
 - Local model checking \(\Rightarrow \) demand-driven exploration

6 Conclusion

- Model checking is an interesting approach to formal verification because it is automatic
- Major difficulty = need to handle large state space

- On-going and future work:
 - Short-term = see how parallel and distributed execution can help with state explosion problem
 - Long-term = apply model checking to \(\pi \)-calculus
 \(\Rightarrow \) handle mobile processes (dynamic and non-finite state space)