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a b s t r a c t 

We introduce a novel method for assessing the robustness of clusters found by partition- 

ing algorithms. First, we show how the stability of individual objects can be estimated 

based on repeated runs of the K -means and K -medoids algorithms. The quality of the 

resulting clusterings, expressed by the popular Calinski–Harabasz, Silhouette, Dunn and 

Davies–Bouldin cluster validity indices, is taken into account when computing the stabil- 

ity estimates of individual objects. Second, we explain how to assess the stability of in- 

dividual clusters of objects and sets of clusters that are found by partitioning algorithms. 

Finally, we present a new and effective stability-based algorithm that improves the ability 

of traditional partitioning methods to determine the number of clusters in datasets. We 

compare our algorithm to some well-known cluster identification techniques, including 

X -means, Pvclust, Adegenet, Prediction Strength and Nselectboot. Our experiments with 

synthetic and benchmark data demonstrate the effectiveness of the proposed algorithm 

in different practical situations. The R package ClusterStability has been developed to pro- 

vide applied researchers with new stability estimation tools presented in this paper. It is 

freely distributed through the Comprehensive R Archive Network (CRAN) and available at: 

https://cran.r-project.org/web/packages/ClusterStability . 

© 2017 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

1. Introduction 

Clustering algorithms have been successively applied in many fields, including banking, bioinformatics, computer vision,

marketing, and security, in order to extract the structure from a given dataset and to gain insight into its natural clusters

[14,35] . There are two main clustering approaches that encompass hierarchical clustering and partitioning algorithms. In this

article, we focus on the techniques for partitioning N objects into K clusters according to a specific similarity criterion. The

total number of partitions of N objects into K non-empty and non-overlapping clusters is asymptotically equivalent to K 

N / K !,

as N tends to infinity [40] . Thus, heuristic algorithms such as K- means [29] and K- medoids [23] have been proposed to limit

the number of possible solutions when searching for an optimal partition of objects. These heuristic algorithms are often

preferred to more complex alternatives because of their simplicity and relatively good performances [41] , as well as because

of the availability of their parallel versions, which are scalable to large recognition problems [50] . Despite their popularity,
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K -means and K -medoids usually provide solutions that are only local optima [35,41] . Moreover, these algorithms highly

depend on the number of random starts [41] , and the choice of starting partitions is crucial for them [32,41,43] . In addition,

the K- means algorithm is very sensitive to the presence of noisy features in the data [18,19] . Usually, several hundred starts

of K -means with different input random partitions are required in order to select an appropriate clustering [41] . Finally, like

many partitioning algorithms, K- means and K- medoids also suffer from the need to specify the desired number of clusters

[29,35] . 

Recently, there has been a renewed interest in assessing the robustness of clustering solutions that are provided by

partitioning algorithms [16,28,43] . Furthermore, alternative methods, such as model-based evaluation [10] or bootstrapping

[18,19] , have been proposed to assess the reproducibility of clusterings. Despite this increased attention, the intriguing and

challenging problem of estimating the stability of individual objects in clustering has not been fully addressed in the litera-

ture [25,28] . 

In this paper, we define a novel measure for assessing the stability of individual objects (i.e., individual ST- index) in

clustering solutions provided by partitioning algorithms, based on their repeated runs. We also propose a cluster stability

index, which reflects the stability of clusters, and a global stability index (i.e., global ST- index), which characterizes the

robustness of entire clusterings (i.e., resulting partitions or clustering solutions found by partitioning algorithms). These

new indices can help practitioners decide which individual objects and clusters should be kept in the dataset and which

of them should be removed from it in order to improve the stability of a given clustering. Moreover, the results of our

simulation study indicate that the stability of a clustering estimated by our stability indices is directly related to its quality,

and that the global ST -index can be effectively used to improve the ability of traditional clustering algorithms to determine

the true number of clusters in datasets. Our R package ClusterStability provides researchers with the new stability estimation

tools that we describe in this paper. 

2. Background and related work 

2.1. Cluster validity indices 

A variety of cluster validity indices are available to determine the number of clusters in a given dataset [2,10,34] . They

can be defined as measures of partitioning quality. Most of these indices take into consideration the compactness of the

objects in the same cluster and their separation in the distinct clusters [2,34] . In our experiments with real and synthetic

data, we will use the Calinski–Harabasz [11] , Silhouette [39] , Dunn [9] and Davies–Bouldin [13,24] measures, which have

been among the most recommended cluster validity indices according to several simulation studies [2,10,34] . 

The Calinski–Harabasz index is a normalized ratio of the overall inter-cluster variance and the overall intra-cluster vari-

ance [11] . The Silhouette width [39] of an individual object i is defined using its average intra-cluster distance, a ( i ), and

its average nearest-cluster distance, b ( i ). It is calculated as follows: ( b ( i ) −a ( i ))/max ( a ( i ), b ( i )). The global Silhouette width

is defined as the average of the individual Silhouette widths of all the objects. The Dunn index is a ratio-type coefficient

in which the cluster separation is expressed through the maximum cluster diameter, and the cluster cohesion is expressed

through the nearest neighbor distance [9] . While there are various versions of the Dunn coefficient, the most reliable are the

generalized Dunn’s indices [9] . The Davies–Bouldin index is also based on a ratio of intra-cluster and inter-cluster distances

[13] . For a pair of clusters ( C 1 , C 2 ), the pairwise cluster distance db ( C 1 , C 2 ) is first calculated as the sum of the average

distances between the objects and centroids in both clusters, which is then divided by the distance between the cluster

centroids. The Davies–Bouldin index is defined as the average of the largest db ( C k , C l )’s ( l � = k ), computed over all avail-

able clusters C k . An improved variant of this coefficient proposed by Kim and Ramakrishna [24] provides very good cluster

recovery performances according to a recent comparative study of cluster validity indices conducted by Arbelaitz et al. [2] . 

2.2. Stability of clustering solution 

A number of theoretical and empirical studies have addressed the problem of solution stability in clustering

[6,16,18,19,26,33,41-43] . Milligan and Cheng [33] were first to investigate how the addition and removal of objects influence

the quality of the resulting clusterings. Ben-Hur et al. [6] proposed to use, as a measure of cluster stability, the distribution

of pairwise similarities between partitions obtained from clustering sub-samples of a given dataset. In order to determine

the true number of clusters in a dataset, the authors suggested examining the clusters in which a transition from a stable

to an unstable clustering state can occur. Lange et al. [26] introduced a measure that quantifies the reproducibility of clus-

tering solutions and defined a function that minimizes the risk of misclassification. Ben-David et al. [4] provided a formal

definition of cluster stability and concluded that, for large datasets, cluster stability is closely related to the behavior of the

objective function of a given clustering algorithm. 

Hennig [18,19] discussed several strategies for assessing the support of individual clusters in a clustering solution. One

of these strategies relies on the use of the Jaccard coefficient and resampling techniques such as bootstrapping, jittering,

and subsetting [18] . Hennig [19] showed how to determine the dissolution point and the isolation robustness of a cluster

by adding to it new objects and outliers. Fang and Wang [16] proposed a different variant of data bootstrapping that allows

for selecting the number of clusters in a dataset by examining randomness in the samples. While several papers discuss the

stability of clustering methods with respect to changes in a given dataset, the work of de Mulder [37] focuses on cluster
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stability with respect to changes in the starting conditions of partitioning algorithms. de Mulder introduced the notions

of instability and structure-preserving data elements and proved that the removal of a structure-preserving unstable data

element from the dataset is a way for improving the robustness of a clustering solution. 

Bertrand and Mufti [7] showed how the stability of a given cluster can be characterized using Loevinger’s measures of

rule quality. The authors defined the stability of a whole partition as a weighted mean of the stability scores of all clusters

in the partition. Wang [49] proposed an efficient criterion for selecting the number of clusters in datasets that minimizes

the algorithm’s instability. He developed a new instability estimation scheme based on cross-validation and tested it in the

framework of K -means clustering. 

Several works addressing the problem of stability of K -means clustering have examined a set of solutions obtained for

different starting partitions [22,43] . Steinley [43] presented a way of conducting stability analysis based on an object-by-

object co-occurrence matrix, which was determined after several repeated runs of K -means. This matrix can be clustered

and subsequently reordered to create a visual interpretation of the multidimensional cluster structure. Afterward, stability-

based measures can be defined to determine the overall structure of a dataset and identify the number of its clusters [43] .

Kuncheva and Vetrov [25] also assessed the stability of cluster ensembles with respect to random K -means initializations.

They proposed a combined stability index, which was defined as the sum of the pairwise individual and ensemble stabilities.

In order to define the pairwise and nonpairwise stability, Kuncheva and Vetrov used the average Adjusted Rand Index (ARI)

between pairs of clusters in the ensemble and the entropy of the consensus matrix of the ensemble. 

Despite the existing research efforts, the problem of stability of individual elements in clustering solutions has not been

sufficiently addressed. In their recent work, Lord et al. [28] have proposed a simple way of defining the stability of an object

in the context of clustering bioinformatics workflows. However, most of the work focuses on the analysis of the most stable

and unstable groups of objects in datasets (where the unstable groups can be eventually associated with some kind of

misclassified or noisy elements) [7,16,18,19,43] . In the next section, we will introduce a novel stability measure designed to

characterize the robustness of individual objects, based on the random starts (i.e., random initializations) of a partitioning

algorithm. There are two main properties that distinguish our measure from existing stability indices: (1) it takes into

account the quality of each partition (i.e., expressed through the value of the selected cluster validity index) obtained after

each random start of the selected partitioning algorithm, and (2) it includes a correction for chance co-occurrence (i.e.,

probability that two objects belong to the same cluster only by chance). 

3. New indices for estimating the stability of objects, clusters and whole clustering solutions 

In this section, we introduce a new stability index for individual objects in a clustering. It is defined by using partitions

obtained after a series of random starts of a given partitioning algorithm. We will show that the elimination of the most

unstable individual objects from the dataset increases the stability of clustering solution, therefore improving the clustering

quality. The proposed individual stability index will be extended to calculate the robustness estimates for clusters (i.e., clus-

ter stability score) and entire clustering solutions (i.e., global stability score). In many instances, clusters with low stability

scores can be considered as clusters of noise which should be removed from the dataset. Moreover, we will present a new

algorithm that can be used to determine the number of clusters in a dataset based on the value of the global stability score.

Let N , ( N > 1), be the number of objects in a given dataset and K , (1 < K ≤ N ), be the number of classes (i.e., clusters,

groups) in the solution provided by the selected partitioning algorithm (here K- means or K- medoids). Let R be the number

of random starts of this algorithm. Assume that at random start r , (1 ≤ r ≤ R ), the algorithm calculates the partition P r of

non-overlapping classes. A partition score, S r , accounting for the partitioning quality, can be associated with each partition

P r (1 ≤ r ≤ R ). For instance, the popular Calinski–Harabasz and Silhouette cluster validity indices can be used as partition

scores. 

First, the pairwise support, PS, of two distinct objects i and j is defined as follows: 

P S i j = 

R ∑ 

r=1 

S 
r,i j 

R ∑ 

r=1 

S r 

, (1)

where S r is the value of the selected cluster validity index associated with partition P r ; S r, ij = S r if objects i and j belong to

the same class in partition P r , and S r, ij = 0, otherwise. The values of PS ij are located in the interval [0, 1]. For instance, PS ij = 1

if objects i and j belong to the same class in all considered partitions P r (1 ≤ r ≤ R ), and PS ij = 0 if objects i and j belong

to different classes in all of these partitions. The computation of PS ij is straightforward in the case of the Calinski–Harabasz

index. Since the Silhouette width varies from −1 to 1, a feature rescaling should be carried out to bring the values of S r
into a positive range (e.g., [0,1] interval). Clearly, the pairwise support PS ij depends not only on the number of partitions in

which objects i and j are located in the same class but also on the quality of these partitions. 
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The singleton support of object i , reflecting the probability that i is a single element in its class, is defined as follows: 

P S i = 

R ∑ 

r=1 

S 
r,i 

R ∑ 

r=1 

S r 

, (2) 

where S r, i = S r if object i belongs to a singleton class in partition P r , and S r, i = 0, otherwise. Thus, an object that is always

classified as an element belonging to a singleton class will have its singleton support score equal to 1, whereas all pairwise

support scores involving this object will be equal to 0. In the case of the Calinski–Harabasz (CH) index, the computation of

all coefficients S r , (1 ≤ r ≤ R ), takes O ( RNM ) time, since the time complexity of the CH computation is O ( NM ), where M is

the number of variables. Thus, the computation of PS ij for a given pair of objects ( i,j ) (or of PS i for a given object i ) takes

O ( RNM ) time, while the computation of all pairwise and singleton supports (1 ≤ i, j ≤ N ) takes O ( RN 

2 + RNM ) time. 

By using a probabilistic approach, we can now define individual stability indices, or ST- indices , for objects. For all pairs

of objects ( i,j ), we compare their pairwise score, PS ij ( Eq. 1 ), with the probability, p ( N , K ), that two randomly chosen objects

x and y are located in the same class in a randomly selected K -class partition P of N objects. The closer PS ij to p ( N, K ),

the greater the probability that objects i and j have been assigned to the same class only by chance. Likewise, we need to

compare the singleton support scores, PS i ( Eq. 2 ), with the probability, p s ( N, K ), that a randomly chosen object x is located

in a singleton class in a randomly selected K -class partition P of N objects. 

The quantities p ( N, K ) and p s ( N, K ) can be computed as follows. Let � be a set of objects of cardinality N . Consider two

distinct randomly chosen objects x and y in �, and a random partition, P , of objects of � into K non-empty classes. For any

integer K ≥ 0 and any set of objects E , we denote by Par( E, K ) the set of all possible partitions of E into K non-empty classes.

Note that Par( E, K ) = ∅ if card( E ) < K , and Par( E , 0) = ∅ for any non-empty set E . If we denote by Par( �, K, x, y ) ⊂Par( �, K )

the set of all partitions P of � into K non-empty classes, such that x and y are located in the same class of P , we can define

a map ∂: Par( �, K, x, y ) → Par( �/{ x }, K ), such that ∂( P ) is the restriction of partition P of objects of � to �/{ x }. This map

is well defined. Indeed, all classes of ∂( P ) are non-empty, since every class containing x also contains y . The defined map

is clearly injective. It is also surjective because for all partitions P ’ of �/{ x }, partition ∂ −1 ( P ’) is the partition obtained by

adding x to the class containing y . Let S ( N, K ) be the cardinality of the set Par( E, K ) for any set E containing N objects. Thus,

we obtain: 

p(N, K) = 

Card ( Par (�, K, x, y ) ) 

Card ( Par (�, K) ) 
= 

Card ( Par (�/ { x } , K) ) 

Card ( Par (�, K) ) 
= 

S(N − 1 , K) 

S(N, K) 
. (3) 

The quantities S ( N, K ) are the Stirling numbers of the second kind. They can be computed by means of the following

recurrence formula: S ( N, K ) = K ×S ( N −1, K ) + S ( N −1, K −1), with the following initial conditions: S (0, 0) = 1, S (0, K ) = S ( N ,

0) = 0 and S ( N , 1) = 1, for K ≥ 1 and N ≥ 1 [36] . Using these formulas, the Stirling numbers of the second kind can be

calculated in O ( N 

2 ). They can also be calculated using the following explicit formula [27] : 

S(N, K ) = 

1 

K ! 

∑ 

0 ≤l≤K 
(−1) 

K−l 

(
K 

l 

)
l N . (4) 

In order to avoid the stack overflow issue in our simulations (see Sections 4 and 5 ), we used an approximation of the Stir-

ling numbers of the second kind. For instance, if we fix K and if K < 

N 
ln (N) 

, we have the following asymptotic approximation,

as N → + ∞ [40] : 

S(N, K ) = 

K 

N 

K ! 
exp 

[ (
N 

K 

− K 

)
e −

N 
K 

] 
( 1 + o(1) ) . (5) 

In particular, we have: li m N→ + ∞ 

S(N,K) 

K N /K! 
= 1 . 

Then, we obtain: 

lim 

N→ + ∞ 

p(N, K) = lim 

N→ + ∞ 

K 

N−1 /K! 

K 

N /K! 
= 

1 

K 

. (6) 

In the same way, it is easy to prove that we have the following formula for p s ( N, K ): 

p s (N, K) = 

Card ( Par (�/ { x } , K − 1) ) 

Card ( Par (�, K) ) 
= 

S(N − 1 , K − 1) 

S(N, K) 
. (7) 

Thus, the following limit can be obtained: 

lim 

N→ + ∞ 

p s (N, K) 

( K − 1 ) 
N−1 

/ K 

N−1 
= 1 . (8) 

Now we can define the individual stability index , ST ( i ), characterizing object i as follows: 

ST (i ) = 

1 
N 

N ∑ 

j =1( j � = i ) 
ma x 

(
1 

1 −p(N,K) 
×

(
P S i j − p( N, K) 

)
; 1 

p(N,K) 
×

(
p( N, K) − P S i j 

))
+ 

1 
N 

max 
(

1 
1 −p s (N,K) 

× ( P S i − p s (N, K) ) ; 1 
p s (N,K) 

× ( p s (N, K) − P S i ) 
)
. 

(9) 
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Average ST(green objects) = 0.999

Average ST(red objects) = 0.414

Individual ST-indices obtained using K-means with
the number of classes K = 3 and 1000 random starts

Average ST(black objects) = 0.910

Fig. 1. A two-dimensional dataset, featuring 3 very stable green objects, 22 black objects, and 3 very unstable red objects, used to illustrate the impact 

of the proposed individual and global stability indices on the stability of clustering solutions. The exact coordinates of these objects are reported in 

Supplementary Table 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using Formulas 6 and 8, we obtain the following approximation of ST ( i ): 

S T approx (i ) = 

1 
N 

N ∑ 

j =1( j � = i ) 
ma x 

(
K 

K−1 
×

(
P S i j − 1 

K 

)
; K ×

(
1 
K 

− P S i j 

))
+ 

1 
N 

max 

(
K N−1 

K N−1 −(K−1) 
N−1 ×

(
P S i − (K−1) 

N−1 

K N−1 

)
; K N−1 

(K−1) 
N−1 ×

(
(K−1) 

N−1 

K N−1 − P S i 

))
. 

(10)

This approximation should be used for large values of N , i.e., those for which the large values of S ( N, K ) can cause

overflow errors in the computer program. The following experimental limits for the exact computation of the individual

stability index ST have been found by our R program (R version 3.2.1 was used) executed on an IBM PC computer equipped

with an Intel i7 processor and 8Go of RAM: N = 1020 was the maximum possible value of N for this version of R and our

computer configuration (with K = 2), and N = 219 was the greatest value of N for which we were able to calculate all values

of S ( N, K ) . 

In the case of the Calinski–Harabasz index, the computation of an individual stability index ST ( i ), or ST approx ( i ), for a given

object i, takes O ( RN + RNM + N 

2 ) time, since the computation of p ( N, K ) and p s ( N, K ) can be completed in O ( N 

2 ). Therefore,

the computation of all N indices ST ( i ), or ST approx ( i ), 1 ≤ i ≤ N , requires O ( RN 

2 + RNM ) time. 

The stability score of cluster C , denoted by ST C , can be defined as follows: 

S T C = 

1 

N c 

N c ∑ 

i =1 

ST (i ) , (11)

where N c is the number of objects in C . 

Finally, the global stability score, ST global , which characterizes the stability of the whole clustering solution, can be com-

puted as follows: 

S T global = 

1 

N 

N ∑ 

i =1 

ST (i ) . (12)

The first maximum appearing in Eqs. (9) and ( 10 ) accounts for the proportion of random starts where objects i and

j belong (the first term of the maximum) or do not belong (the second term of the maximum) to the same class, while

taking into consideration a correction for chance co-occurrence. Thus, two objects always, or never, belonging to the same

class contribute the maximum value of 1 to the sums appearing in Eqs. (9) and ( 10 ). This corresponds to the maximum

possible pairwise stability. The second maximum appearing in these equations accounts for the stability of the singleton

elements. Both equations are normalized by the number of their terms, and the values of the three introduced stability

indices (i.e., for individual objects - Eqs. (9) and ( 10 ), clusters - Eq. (11) , and the whole clustering solution - Eq. (12) ) vary

from 0 to 1. The closer the global ST- index ( Eq. 12 ) to 1 , the higher the stability of the associated partitioning solution.

Importantly, Eq. (12) can be also used to select the optimal number of classes, i.e., in the sense of robustness, in a dataset.

This optimal number will correspond to the number of classes, K , providing the maximum value of ST global . 

The following simple example illustrates how the introduced individual and global stability scores reflect the contribu-

tion of individual objects to clustering (see Fig. 1 ). This figure presents a set of 28 objects in a two-dimensional space.
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The depicted objects were clustered using traditional K -means with the following options: the number of classes K = 3,

the cluster validity index = CH, and the number of random starts R = 10 0 0. Fig. 1 shows 3 very stable green objects with

the average individual stability index ST (green objects) = 0.999, 22 black objects with the average individual stability index

ST (black objects) = 0.910, and 3 very unstable red objects with the average individual stability index ST (red objects) = 0.414.

The 3 red objects constantly change their class location, and thus their class neighbours selected among the black objects,

in 10 0 0 clustering solutions resulting from 10 0 0 random starts of K -means. The global stability score, ST global , is 0.867 for

this clustering solution. The individual stability indices help us identify both the most stable elements, which should be kept

in the dataset, and the most unstable ones, which should be removed from it, in order to improve the stability and, as we

will see in the next section, the quality of a given clustering solution. For instance, by removing the 3 red objects from the

dataset presented in Fig. 1 , we were able to considerably improve the stability of the original clustering. This is expressed

through the increased value of the global stability score ( ST global = 0.993) for the modified dataset containing the green and

the black objects only. In the next sections, we will show how the global stability score can be used to improve the recovery

of the true number of classes in a dataset provided by traditional partitioning algorithms. The optimal number of classes for

partitioning algorithms based on the introduced stability indices will correspond to the maximum value of ST global . 

The algorithm for both calculating the individual stability scores of objects and identifying the number of classes in a

dataset is presented below. 

Algorithm 1. Computation of ST -indices and identification of the number of classes, K opt . 

INPUT: 

- the dataset � of N objects 

- the partitioning method (e.g., K- means or K- medoids) 

- the cluster validity index, CVI (e.g., Calinski–Harabasz or Silhouette) 

- the number of random starts ( R ) 

- the minimum and maximum numbers of classes ( K min , K max ) 

OUTPUT: 

- the global ST- indices: ST global = { ST global ( K min ), …, ST global ( K max )} 

- the optimal number of classes K opt 

- the optimal individual ST- indices: ST = { ST (1), …, ST ( N )} corresponding to K opt 

PROCEDURE: 

for K = K min to K max do 

for r = 1 to R do 

Generate a random starting partition, RP r , of objects of � into K non-empty classes 

Execute K- means or K- medoids using RP r as input to get partition P r 
for i = 1 to N do 

Compute the singleton support PS i using the selected CVI and Eq. (2) 

for j = i + 1 to N do 

Compute the pairwise support PS ij using the selected CVI and Eq. (1) 

for i = 1 to N do 

Compute the individual stability index ST ( i,K ) or its approximate variant ST approx ( i,K ) 

using the support scores PS i and PS ij , and Eq. (9) and (10) 

Compute the global stability index, ST global ( K ), for the case of K classes using Eq. (12) 

end of the first loop for 

Find the maximum value of ST global ( K ) over all tested values of K: K min ≤ K ≤ K max 

The optimal number of classes, K opt , will correspond to the maximum of ST global ( K ) 

for i = 1 to i = N do 

ST ( i ) = ST ( i,K opt ) 

end of the algorithm 

Note that Algorithm 1 can be executed several times, with the most unstable objects removed from � after each new

execution, according to the individual stability index ST ( i,K ). Such repeated executions of the proposed algorithm allowed us

to improve the clustering performance of our stability-based technique in several cases (see, for example, the analysis of the

Iris dataset in Section 4.3 ). 

Here the time complexity of our algorithm is determined in the case of the K -means partitioning method and the

Calinski–Harabasz (CH) index. For a fixed number of classes K , the time complexity of K -means is O ( KNMR ), where M is

the number of variables, N is the number of objects and R is the number of random starts. The time complexity of K -means

executed over the interval [ K min , K max ] of values of K is O (( K max − K min )( K max + K min ) RNM ). This is equivalent to the total num-

ber of all K -means-related operations in our algorithm. Moreover, the complexity of the calculation of all stability indices

ST ( i,K ) is O (( K max − K min )( RN 

2 + RNM )). This leads to the overall time complexity of O (( K max − K min ) RN (( K max + K min ) M + N )).

After replacing K max − K min and K max + K min by K max , we obtain a simpler running time estimate for our algorithm, which is

O ( K max RN ( K max M + N )). 
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Table 1 

Datasets’ main characteristics and the numbers of classes obtained for the 21 selected benchmark datasets from the UCI repository [3] by classical K - 

means [29] , K -means based on our stability index ( ST- index) and Hennig’s bootstrapping and jittering techniques applied to K -means [18] . These results 

were obtained using the Calinski–Harabasz and Silhouette cluster validity indices with the number of classes varying from 2 to 20. The last row reports 

the mean absolute differences between the obtained number of classes and the true numbers of classes as well as the corresponding standard deviation. 

Dataset Characteristics Classical K -means K -means ST a Hennig’s methods 

Number of 

objects 

Number of 

features 

Number of 

classes Calinski–Harabasz Silhouette Calinski–Harabasz Silhouette Bootstrap b Jittering c 

Breast tissue 106 9 6 6 2 4 4 4 3 

B. Wisconsin 569 30 2 6 2 2 2 2 2 

Ecoli 336 7 8 3 3 2 2 2 2 

Glass 214 9 7 2 3 2 2 2 2 

Haberman 306 3 2 4 2 4 4 4 4 

Ionosphere 351 34 2 2 2 2 2 2 2 

Iris 150 4 3 3 2 2 2 2 2 

Move. libras 360 90 15 2 9 20 20 2 2 

Musk 476 166 2 2 3 3 3 3 3 

Parkinson 195 22 2 4 4 3 3 4 3 

Segmentation 2310 19 7 5 11 4 3 3 3 

Sonar all 208 60 2 2 2 2 2 3 3 

Spectf. Heart 267 44 2 2 2 2 2 2 2 

Transfusion 748 4 2 13 2 2 2 2 2 

Vehicule 946 18 4 2 2 2 2 2 2 

Vert. column 310 6 3 2 2 2 2 2 2 

Vowel context 990 10 11 2 2 4 4 2 4 

Wine 178 13 3 6 2 2 3 2 2 

Wine qual. red 1599 11 6 3 2 5 5 2 4 

Yeast 1484 8 10 2 2 2 2 2 2 

Zoo 101 17 7 2 5 7 7 4 2 

Mean absolute difference ± SD 3.57 ± 3.83 2.57 ± 2.71 2.19 ± 2.50 2.19 ± 2.56 3.10 ± 3.43 3.00 ± 3.33 

a 10 0 0 random starts of K- means. 
b 10 0 0 bootstrap replicates. 
c 10 0 0 random starts of K- means and jittering level of 0.75. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Experiments with benchmark data 

In this section and the one to follow, we will use the introduced individual and global ST- indices to analyze real and

simulated datasets that contain different numbers of objects, variables and clusters, and that encompass different types and

levels of noise. First, we will evaluate the behavior of the individual and global ST- indices by considering 21 real datasets (see

Table 1 or Supplementary Table 2 for their characteristics) from the popular UCI Machine Learning Repository [3] . Specif-

ically, we selected the same 20 benchmark datasets that were examined by Arbelaitz et al. in their recent study, which

compared different cluster validity indices in the framework of K -means clustering (see Table 1 here or Table 2 in [2] ). We

added to these data the well-known Zoo dataset [17] . In our simulations, we used the Euclidian distance and the classical

MacQueen’s implementation of K- means available in R. In the case of K- medoids, we carried out the R function Weighted-

Cluster [44] . Both partitioning algorithms were executed with the limit of 100 iterations in the main algorithm’s loop. The

number of random starts for each dataset and both partitioning algorithms was set to 10 0 0. To detail the advantages of the

new method, we will more thoroughly describe the experimental results obtained for the Zoo, Blood transfusion and Iris

datasets ( Sections 4.1 –4.3 ) before presenting the overall simulation results for real-world data ( Section 4.4 ). 

4.1. Analysis of Zoo dataset 

The Zoo dataset ( N = 101, K = 7) [17] includes measurements characterizing 101 species (i.e., objects) divided into 7 em-

pirical classes: mammals (41), birds (20), reptiles ( 5 ), fishes (13), amphibians ( 4 ), insects ( 8 ), and invertebrates ( 10 ). Each

species is described by a set of 16 binary variables (e.g ., presence or absence of feathers) and one integer variable account-

ing for the number of legs. Zoo data are often used to demonstrate the application of partitioning and machine learning

methods [31] . Similar to many empirical datasets (e.g., the Iris dataset presented in Section 4.3 ), the Zoo dataset cannot be

clearly divided into 7 non-overlapping classes by traditional clustering algorithms. 

The results provided by the conventional K- means and K -medoids algorithms used with the Calinski–Harabasz (CH) and

Silhouette (SI) cluster validity indices exhibited similar trends, with slightly higher stability scores obtained for K- medoids.

Thus, only the results provided by K -means are discussed here. As shown in Fig. 2 a (the solution for K = 7 is presented

here), the individual species support in clustering varies greatly, but the boundaries between different classes can be clearly

identified by means of the individual ST- indices. We can observe that fruit bat ( Fig. 2 a: Object 1, ST = 0.495) and vampire

bat ( Fig. 2 a: Object 5, ST = 0.496) have the lowest stability scores among all species. This implies that both species of bats

were often assigned to different classes through the partitioning process. The positions of girl and gorilla ( Fig. 2 a: Objects



36 E. Lord et al. / Information Sciences 393 (2017) 29–46 

 

 

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 4 4 4 4 4 4 4 5 5 6 6 6 6 7 7 7 7 7

0.70

0.75

0.80

0.85

0.90

0.95

1.00

2 3 4 5 6 7 8 9 10

PS
G

 G
lo

ba
l

Number of classes (K)

Original classes
1 2 4 5 6 73

In
di

vi
du

al
ST
-in
de
x

1.00

0.90

0.80

0.70

0.60

0.50

0.40

K-means Calinski-Harabasz

K-means Silhouette

K-means Calinski-Harabasz

K-means Silhouette

Number of classes (K)

a

b

G
lo

ba
lS
T-
in
de
x

1

2 3
4

5

6
7

8
9

Mammals Birds

Reptiles

Fishes

Amphibians

Insects Inverte-
brates

10 11 12

K = 7

Fig. 2. Analysis of Zoo dataset: (a) Variation of the individual ST- scores for the species of Zoo dataset obtained using K- means partitioning and the CH 

and SI cluster validity indices. The annotated species (i.e., objects) are as follows: 1) fruit bat, 2) girl, 3) gorilla, 4) sea lion, 5) vampire bat, 6) wallaby, 7) 

tortoise, 8) tuatara, 9) crab, 10) porpoise, 11) dolphin, and 12) seal; (b) Variation of the global ST- scores with respect to the number of classes, K , shown 

for the CH and SI indices. The black arrow indicates the true number of classes for this dataset ( K = 7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 and 3) were also very unstable (their individual ST- indices were equal to 0.643 and 0.641, respectively). On the other

hand, and in accordance with previous results [31] , porpoise and dolphin showed high stability within mammals ( Fig. 2 a:

Objects 10 and 11). The groups of amphibians and reptiles were the most poorly supported, including the species of tortoise

( Fig. 2 a: Object 7) and tuatara ( Fig. 2 a: Object 8), which had low individual ST- indices. As noted by McKenzie and Forsyth

[31] , the neural network and KNN algorithms misclassify the reptiles as amphibians or fishes. Moreover, it is very likely that

the poor stability observed for the reptiles also contributed to the low stability for the amphibians, since frequent inter-class

pairings of individual objects decrease the stability of both involved classes. It is worth noting that the low values of some

stability indices can be explained by the presence of binary features, which are often not as discriminative as continuous

variables. 

Finally, the global stability of the K -means partitioning solutions obtained on the range of 2 to 10 classes ( Fig. 2 b) using

the CH and SI cluster validity indices was evaluated for the Zoo dataset. The maxima of the curves in Fig. 2 b can be used

as indicators of the correct number of classes. The maxima of both, CH and SI, curves shown in Fig. 2 b allow us to find the

true number of classes ( K = 7) for Zoo data even though the solutions with 5, 6 or 8 classes also seem to be appropriate

here. Note that the traditional K -means algorithm found that 2 and 5 would be the optimal numbers of classes for Zoo data,

according to the CH and SI indices, respectively. 

4.2. Analysis of Blood transfusion dataset 

The Blood transfusion service dataset ( N = 748, K = 2) contains blood donor data collected at Blood transfusion Hsin-Chu

City Service Center in Taiwan [3,12,15] . Its four attributes describe respectively the number of months since last donation, the

total number of blood donations, the total volume of donated blood, and the number of months since the first donation. The
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Fig. 3. Analysis of Blood transfusion dataset: (a) Variation of the individual ST- scores of objects of Blood transfusion dataset obtained using K- means 

partitioning and the CH and SI cluster validity indices for K = 2; (b) Variation of the individual ST- scores for K = 13; (c) Variation of the global ST- scores 

with respect to the number of classes, K , shown for the CH and SI indices; the black arrow indicates the true number of classes for this dataset ( K = 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dataset is divided into two classes. The first of them includes 570 individuals who did not donate blood in March 2007, while

the second includes 178 individuals who were the blood donors during this period. The Blood transfusion dataset has been

examined in a number of classification studies and has been complicated for clustering with traditional methods [12,15] .

For example, Deus and Liao [15] found that 172 blood donors were misclassified by the traditional K -means algorithm.

Moreover, Chaimontree et al. [12] , who examined this dataset using K -means in conjunction with different cluster validity

indices, observed that the number of classes found by K -means could vary from 2 to 15, depending on the selected cluster

validity index. According to the same authors, the KNN clustering does not offer better results for this dataset, since the

partitions with up to 18 classes were identified by different versions of KNN for Blood transfusion data. 

The results of the traditional K -means analysis conducted on Blood transfusion data showed that the number of classes

found using the CH index was 13, the SI index 2, the Dunn index 5, and the Davies–Bouldin (DB) index also 5 (see

Table 1 and Supplementary Table 2). The application of our global ST -index allowed us to improve the results of tradi-

tional K -means: the highest global ST value was found for K = 2 with all the four cluster validity indices tested here (see

Supplementary Table 4 and Fig. 3). The CH and SI-based stability curves drawn for the cases K = 2 (global ST = 0.973 for

CH and 0.972 for SI; see Fig. 3 a) and K = 13 (global ST = 0.812 for CH and 0.821 for SI; see Fig. 3 b) indicate that the latter

clusterings have much higher variability of individual stability indices. It is worth noting that in the case of K -medoids, the

use of the ST -index allowed us to reduce the difference between the estimated and true numbers of classes for all four
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Table 2 

Datasets’ main characteristics and the numbers of classes obtained for the 21 selected benchmark datasets from the UCI repository [3] by classical K - 

medoids [23] , K -medoids based on our stability index ( ST- index) and Hennig’s bootstrapping and jittering techniques applied to K -medoids [18] . These 

results were obtained using the Calinski–Harabasz and Silhouette cluster validity indices with the number of classes varying from 2 to 20. The last row 

reports the mean absolute differences between the obtained number of classes and the true numbers of classes as well as the corresponding standard 

deviation. 

Dataset Characteristics Classical K -medoids K -medoids ST a Hennig’s methods 

Number of 

objects 

Number of 

features 

Number of 

classes 

Calinski–Harabasz Silhouette Calinski–Harabasz Silhouette Bootstrap b Jittering c 

Breast tissue 106 9 6 20 3 5 5 2 2 

B. Wisconsin 569 30 2 2 2 2 2 2 2 

Ecoli 336 7 8 3 3 3 3 3 4 

Glass 214 9 7 3 3 4 4 2 2 

Haberman 306 3 2 4 2 3 3 2 4 

Ionosphere 351 34 2 2 3 3 3 2 2 

Iris 150 4 3 3 2 2 2 2 2 

Move. libras 360 90 15 5 10 6 6 6 6 

Musk 476 166 2 2 3 3 3 2 2 

Parkinson 195 22 2 13 8 4 4 2 3 

Segmentation 2310 19 7 5 2 3 3 2 2 

Sonar all 208 60 2 2 2 3 3 2 2 

Spectf. Heart 267 44 2 3 2 5 5 2 3 

Transfusion 748 4 2 7 10 3 3 3 9 

Vehicule 946 18 4 2 2 4 4 2 3 

Vert. column 310 6 3 2 2 4 4 2 2 

Vowel context 990 10 11 2 2 4 4 4 4 

Wine 178 13 3 20 2 4 4 2 3 

Wine qual. red 1599 11 6 5 2 4 4 3 3 

Yeast 1484 8 10 2 3 3 3 2 3 

Zoo 101 17 7 4 4 8 8 4 3 

Mean absolute difference ± SD 4.52 ± 5.05 3.14 ± 2.80 2.48 ± 2.52 2.48 ± 2.52 2.62 ± 2.89 2.95 ± 2.84 

a 10 0 0 random starts of K- medoids. 
b 10 0 0 bootstrap replicates. 
c 10 0 0 random starts of K- medoids and jittering level of 0.75. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cluster validity indices (from 7 to 3 for CH, from 10 to 3 for SI, from 7 to 3 for Dunn, and from 5 to 3 for DB; see Table 2

and Supplementary Table 3) even though the stability-based K -medoids procedure did not find the true number of classes

in this instance. 

4.3. Analysis of Iris dataset 

The stability of individual objects and of entire clusterings was also evaluated for the well-known Iris dataset ( N = 150,

K = 3). This dataset consists of a series of 4 measurements (i.e., sepal length, sepal width, petal length and petal width)

taken over 150 Iris plants [1] belonging to three species of Iris: I. setosa (50), I. virginica (50) and I. versicolor (50). It has

the property that the classes I. virginica and I. versicolor cannot be clearly separated using traditional partitioning algorithms

such as K- means and K- medoids ([45]; see also our PCA plot in Fig. 4 a). The stability of the individual elements of Iris

was assessed by carrying out the K- means and K- medoids algorithms with the CH and SI cluster validity indices ( Fig. 4 b;

the solution for K = 3 is shown here). For both partitioning algorithms, the elements of the class I. setosa showed a strong

individual stability: the mean (over CH and SI) ST- index = 0.938 for K- means and the mean (over CH and SI) ST- index = 1.0

for K- medoids. However, these scores were much lower for the individual elements of the two remaining classes, I. virginica

and I. versicolor . The strongest drop in the individual ST- scores for both cluster validity indices was observed with K- medoids.

For example, we found that for the 24 elements located in the grey area in Figs. 4 a and b, the mean individual ST- score

obtained using SI was equal to 0.621, whereas it was equal to 0.935 for the rest of the elements of I. virginica and I. versicolor .

Afterwards, we evaluated the behavior of the global ST- index ( Fig. 4 c). This measure represents the global stability of

the obtained clustering solution for a given number of classes. The highest global stability support for both K- means and

K -medoids and both CH and SI was attained with two classes ( ST global = 1.0). 

The Iris dataset is an example of data in which stability measures do not lead directly to the recovery of the true number

of classes because of the large overlap of the elements of I. versicolor and I. virginica [45] . Wang [49] , who examined the

global cluster stability of the Iris dataset using his cluster cross-validation procedure, also found that the highest cluster

stability of K -means partitioning was obtained with two classes. Furthermore, de Mulder [Fig. 1a in 37 ] noticed in his anal-

ysis, which was conducted with different cluster instability functions and the K -means and fuzzy C -means [8] algorithms,

that the lowest instability numbers for Iris were consistently obtained with two classes. On the other hand, Topchy et al.

[48] found that at least four classes were necessary for minimizing the number of misclassified objects in the Iris dataset

(see Fig. 4b in [48] ). In comparison, our cluster stability algorithm allows for the identification of the most unstable ele-
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true number of classes for this dataset ( K = 3). 

 

 

 

 

 

 

ments in the Iris dataset (i.e., the 24 elements located in the grey ellipse area on the PCA plot in Fig. 4 a; these elements are

well noticeable with the K -medoids stability analysis based on SI, see Fig. 4 b). Moreover, after the elimination of these 24

most unstable elements identified on the first run of our algorithm, and then rerunning it with the remaining 126 elements,

we obtained the highest possible value of the global stability index ( ST global = 1.0) using both K -means and K -medoids (with

both CH and SI) for the solutions with 3 classes. 

4.4. Analysis of 21 benchmark datasets using different clustering algorithms 

In this section, we evaluate the ability of the K -means and K -medoids partitioning algorithms based on the maximum

of the global ST -index to determine the true number of clusters in real datasets from the UCI Machine Learning Repository
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Table 3 

Datasets’ main characteristics and the numbers of classes obtained for the 21 selected benchmark datasets from UCI [3] by X -means [38] , Pvclust [46] , 

Adegenet [21,22] , Prediction strength [47] and Nselectboot [16] . The last row reports the mean absolute differences between the true and predicted numbers 

of classes as well as the corresponding standard deviation. 

Dataset Characteristics Clustering methods 

Number of 

objects 

Number of 

features 

Number of 

classes 

X -means a Adegenet b Pvclust c Prediction strength d Nselectboot e 

Breast tissue 106 9 6 3 6 2 2 13 

B. Wisconsin 569 30 2 3 4 3 2 2 

Ecoli 336 7 8 3 3 20 3 3 

Glass 214 9 7 5 3 2 2 2 

Haberman 306 3 2 2 3 3 1 20 

Ionosphere 351 34 2 3 8 20 2 20 

Iris 150 4 3 2 3 7 2 2 

Move. libras 360 90 15 4 3 2 1 20 

Musk 476 166 2 4 3 2 3 2 

Parkinson 195 22 2 4 7 2 1 8 

Segmentation 310 19 7 3 6 2 1 20 

Sonar all 208 60 2 4 6 20 1 20 

Spectf Heart 267 44 2 2 6 20 1 2 

Transfusion 748 4 2 2 4 3 1 20 

Vehicule 946 18 4 4 3 20 2 2 

Vert. column 310 6 3 2 3 5 1 20 

Vowel context 990 10 11 4 3 10 4 16 

Wine 178 13 3 3 3 2 2 19 

Wine qual. red 1599 11 6 2 3 20 3 4 

Yeast 1484 8 10 2 4 20 2 20 

Zoo 101 17 7 5 6 2 1 20 

Mean absolute difference ± SD 2.66 ± 2.95 3.14 ± 3.10 7.10 ± 6.61 3.33 ± 3.45 8.52 ± 6.88 

a 100 replicates. 
b 100 replicates of the find.clusters function. 
c 10 0 0 bootstrap replicates using the Ward agglomerative method. 
d 100 replicates using 100 divisions of the dataset with K -means. 
e 100 replicates and 10 0 0 resampling steps with K -means. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[3] and compare their results to those produced by several popular clustering algorithms. The main characteristics of the 20

UCI benchmark datasets recently analyzed by Arbelaitz et al. [2] and the above-discussed Zoo dataset [17] are presented in

the first three columns of Tables 1–3 . The K -means and K -medoids algorithms were carried out using the Calinski–Harabasz,

Silhouette, Dunn and Davies–Bouldin cluster validity indices. Clustering solutions obtained for the range of 2 to 20 classes

were examined. 

First, we compared the results of the stability-based K -means and K -medoids algorithms with those provided by conven-

tional K -means [29] and K -medoids [23] , as well as the bootstrapping and jittering techniques proposed by Hennig [18] . The

jittering method was carried out with the jittering levels of 0.25, 0.50 and 0.75, and the best results, corresponding to the

jittering level of 0.75, were reported. The bootstrapping and jittering methods were performed by the clusterboot function of

the fpc R package [20] using the default parameters. The results of these simulations are presented in Tables 1 and 2 , and

Supplementary Tables 2 to 5. The last row of these tables reports the average absolute difference between the true number

of classes in the datasets and the number of classes found by each method. Our results suggest that the proposed global sta-

bility index allows for improving the clustering performances of the traditional K -means and K -medoids algorithms in terms

of determining the true number of classes in a dataset. The new method also outperforms both bootstrapping and jittering

techniques. In particular, the lowest average absolute difference between the true and estimated numbers of classes and the

lowest standard deviation were obtained using the ST -index with the CH (2.19 ± 2.50), SI (2.19 ± 2.56) and Dunn (2.19 ± 2.72)

cluster validity indices for K -means (Supplementary Table 4), and with the DB index (2.38 ± 2.37) for K -medoids (Supple-

mentary Table 5). The best overall performances of our stability-based algorithms (in comparison to the other methods) were

obtained for the Blood transfusion, Wine quality red, and Zoo datasets. Overall, the results presented in Supplementary Ta-

bles 4 and 5 show that there was no significant difference in terms of determining the number of clusters by the global

ST -index with respect to the cluster validity index (CH, SI, Dunn or DB). This was particularly evident for the K -medoids

algorithm. 

Second, we compared the stability-based K -means and K -medoids procedures with the popular X -means [38] and Pvclust

[46] algorithms, which can automatically determine the number of clusters in a dataset. Moreover, our simulations also

included the following well-known clustering methods: Discriminant analysis of principal components (from the Adegenet 

package) of Jombart et al. [21,22] , Prediction Strength cluster validation method of Tibshirani and Walther [47] , and Bootstrap

stability procedure of Fang and Wang [16] . This comparison was also made using the 21 previously discussed benchmark

datasets from the UCI Machine Learning Repository [3] . The obtained results are reported in Table 3 . 

The X -means algorithm is a version of K -means that efficiently searches the space of cluster locations in order to optimize

either Bayesian Information Criterion (BIC) or Akaike’s Information Criterion (AIC) [38] . In Table 3 , we present the results
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obtained by X -means using its C ++ implementation by Pelleg and Moore [38] . The default parameters of Pelleg’s program

were used here (except the minimum and maximum numbers of classes that were set to 2 and 20, respectively). Our results

indicate that X -means favors small numbers of classes, providing the mean absolute difference of 2.66 between the true and

estimated numbers of classes (versus 2.19 yielded by our stability-based K -means). 

The Adegenet algorithm implemented in the function find.clusters of R uses sequential K -means and discriminant anal-

ysis of principal components to compute a BIC score for each clustering [21,22] . Then, the clustering corresponding to the

minimum BIC score is selected as optimal. As reported in Table 3 , Adegenet was able to correctly identify the number of

classes in some datasets, namely Breast tissue, Iris, Vertebral column, and Wine. However, it provided a higher mean abso-

lute deviation (equal to 3.14) from the true number of classes compared to X -means and our stability-based K -means. 

The popular Pvclust procedure of Suzuki and Shimodaira [46] relies on the calculation of p -values for each cluster using

bootstrap resampling techniques applied to hierarchies. Two types of p -values are available in Pvclust: approximately unbi-

ased p -values and bootstrap probability values. The Pvclust program was executed with the following options: 10 0 0 boot-

strap replicates for each random start of the program, the Ward agglomerative method, the significance threshold α = 0.95

and 100 random starts for each dataset (the minimum number of significant clusters found over 100 random starts is shown

in Table 3 ). Overall, the Pvclust procedure overestimated the true number of classes in our benchmark datas. Pvclust only

identified the correct number of classes for the Musk and Parkinson datasets. The mean absolute deviation from the true

number of classes was equal to 7.1 for this method. 

The two remaining clustering methods tested in our simulations are implemented in Hennig’s fpc package [20] . The first

of them is the Prediction Strength algorithm of Tibshirani and Walther [47] . This method views clustering as a supervised

classification problem in which it assesses the true class labels. The resulting prediction strength measure estimates how

many classes can be predicted from the data, and how well it can be done. It is worth noting that the Prediction Strength

algorithm can return solutions consisting of one class only (regardless of the minimum number of classes given as input to

the program). The K -means algorithm was set as the clustering method. The parameter accounting for the maximum number

of times that the dataset could be divided into two halves was set to 100, and the number of random starts was also set to

100 for each dataset. All other program parameters were the default parameters. The Prediction Strength algorithm found

9 one-cluster datasets among the 21 benchmark datasets tested in our simulations, while the mean absolute difference

between the predicted and the true number of classes was equal to 3.33 for this method. 

Finally, we also experimented with the Nselectboot stability-based clustering technique proposed by Fang and Wang [16] .

Multiple paired bootstrap samples are randomly drawn in Nselectboot and then the clustering solution that minimizes the

instability estimate calculated from these pairs is selected as optimal. The number of resampling steps was set to 10 0 0 in

the Nselectboot function of the fpc package, and the number of random starts was set to 100. All other parameters were

the default parameters of the program. This bootstrap-based algorithm highly overestimated the true number of classes in

several benchmark datasets, which resulted in the highest mean absolute difference between the predicted and the true

number of classes (equal to 8.52) and the highest standard deviation (equal to 6.88) among all the methods tested in our

simulations. 

Fig. 5 summarizes the performances of the 17 clustering algorithms compared in our simulations with real data. Here

we adopted graphical representation of Arbelaitz et al. [2] . In terms of the mean absolute difference between the true and

predicted numbers of classes ( Fig. 5 a), the stability-based K -means and K -medoids algorithms outperformed its competitors

regardless of the cluster validity index (CH or SI) used to select the number of classes. Their closest competitors here were

traditional K -means [29] using SI, the K -medoid-based bootstrapping of Hennig [18] , and the X -means algorithm of Pelleg

and Moore [38] . In terms of the success rate ( Fig. 5 b), which is the percentage of correct guesses (i.e., when the number

of classes was predicted correctly) made by each algorithm, the best overall results were achieved by our stability-based

K -means using SI and the K -medoid-based bootstrapping. These methods were followed by traditional K -means and our

stability-based K -means using CH. The K -medoids-based stability methods were not among the top performers in terms of

the success rate. 

Furthermore, we examined how many random starts of a partitioning algorithm are generally required for the conver-

gence of the ST -index function. Supplementary Table 6 shows that 100 to 250 random starts were usually necessary for

the ST -index convergence when running K -medoids, whereas 250 to 10 0 0 random starts were generally required for the

method’s convergence with K -means. Steinley [42] observed a rapid decline in the number of local optima when performing

50 0 0 random starts of K- means for both real and simulated datasets. He recommended using a combination of ARI and an

approximation of the number of local optima to determine the required number of random starts. In the future, it would be

interesting to investigate whether this approach could be applied for determining the number of random starts necessary

for the convergence of the global ST -index. 

5. Experiments with synthetic data 

To further examine the properties of the individual and global ST- indices, we carried out a simulation with synthetic

datasets that included various levels of noise and outliers. We first used the data generator of Milligan [32] to create 250

random datasets with 10 to 200 objects, 2 to 10 variables (dimensions or features), and 2 to 5 clusters; 250 datasets were

generated for each parameter combination. Each dataset was represented by an object-by-variable matrix Y , where y ij was

the value of the j th variable of the i th object. 
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Fig. 5. Comparison of 17 clustering algorithms on the 21 benchmark dataset from the UCI repository presented in Tables 1–3 . (a) Mean absolute difference 

between the true and predicted numbers of classes. (b) Success rate (given in %), accounting for the number of times the correct number of classes was 

found by each algorithm. The following clustering algorithms were compared: Traditional K -means and K -medoids using the Calinski–Harabasz (CH) and 

Silhouette (SI) cluster validity indices ( K-means CH, K-means SI, K-med CH and K-med SI ), K -means and K -medoids bootstrapping and jittering techniques of 

Hennig ( K-means Bootstrap, K-means Jittering, K-med Bootstrap and K-med Jittering ), X -means of Pelleg ( X-means ), Pvclust of Suzuki and Shimodaira ( Pvclust ), 

Adegenet of Jombart et al. ( Adegenet ), Prediction Strength of Tibshirani and Walther ( Prediction Strength ), Nselectboot of Fang and Wang ( Nselectboot ), and 

our stability-based K -means and K -medoids using the CH and SI indices (K-means-ST CH, K-means-ST SI, K-med-ST CH and K-med-ST SI – shown in bold 

in the figure). For the sake of clarity, the results of stability-based K -means and K -medoids obtained using the Dunn and Davies–Bouldin indices were not 

presented here (for more details, see Supplementary Tables 4 and 5). 

 

 

 

 

 

 

Different types of noise were then added to Y (Supplementary Fig. 1). Following the simulation protocol used by Milligan

[32] and by Makarenkov and Legendre [30] , we considered the four following noise generation schemes: 

(1) Error-free data: Original matrix Y without any noise or perturbation in the data (Supplementary Fig. 1a). 

(2) Outliers: We added 40% of outliers to the original data. For each cluster, the outliers were randomly generated ob-

jects drawn from a distribution with a standard deviation three times higher than the distribution of the cluster.

Moreover, all the dimensions of the outliers were not allowed to fall within the boundaries of any original cluster

(Supplementary Fig. 1b). 

(3) Error-perturbed data: This type of error involves the perturbation of Y by the addition of noise Noise = ( noise ij ) to all

of its dimensions (Supplementary Fig. 1c). The noise, noise ij , was randomly drawn from a standard normal distribution.
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Fig. 6. Variation of the average global stability index ( ST -index; panels a and d - error-free data, original data with outliers and error-perturbed data; 

panels b and e - original data with the addition of 1 to 3 noise features) and the Adjusted Rand Index (ARI; panels c and f) with respect to the noise 

conditions. The presented results are the averages obtained over 10 0 0 replicates. The left column panels (a-c) depict the results obtained using K- means, 

and the right column panels (d-f) depict the results obtained using K- medoids. The results obtained with the CH and SI cluster validity indices are shown. 

 

 

 

 

The resulting matrix Y’ = ( y ’ ij ) was computed as follows: 

y ′ i j = y i j + L × nois e i j , (12)

where the constant L was set to 2.0 as suggested in [38] . 

(4) 1-, 2-, 3-dimensional noise: In this case, 1, 2, or 3 noise variables were added to all objects of Y . These variables were

generated in the same range as the first dimension of Y , for which the cluster overlap was not allowed. Again, these

additional variables were drawn from a normal distribution with zero mean and the standard deviation equal to that
of the first dimension of Y (Supplementary Fig. 1d). 
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Fig. 7. Variation of the average individual stability indices for error-free data, original objects (after the addition of outliers) and outliers. The presented 

results are the averages obtained over 10 0 0 replicates. The left column panels (a and b) depict the results obtained using K- means, and the right column 

panels (c and d) depict the results obtained using K- medoids. The results for the CH (a and c) and SI (b and d) cluster validity indices are shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Z -score normalization was performed for all the variables in Y . Using the K- means and K- medoids partitioning algorithms

with the CH and SI cluster validity indices, we calculated the average values of the global ST- index and the Adjusted Rand

Index (ARI) ( Fig. 6 ); 10 0 0 random starts of partitioning algorithms were performed for each synthetic dataset we examined.

In the case of error-free data, the K- medoids partitioning ( Fig. 6 d) generally provided higher cluster stability than the K-

means partitioning ( Fig. 6 a). In the framework of the K- means partitioning, the addition of noise and outliers to the original

data caused a clear decline in stability ( Fig. 6 a), as well as in ARI ( Fig. 6 a), especially when the number of objects was

lower than 100. Indeed, the K- means algorithm is known to be very sensitive to noise and outliers [18,19] . The stability of

K- means ( Fig. 6 b) was also more affected by the addition of 1 to 3 noise features than the stability of K- medoids ( Fig. 6 e).

Interestingly, the increase in the number of objects led to the increase in the values of both global ST -index and ARI in all

cases (except the K -medoids partitioning with 1 to 3 noisy features) ( Fig. 6 e). 

Moreover, we evaluated the stability of individual objects in the case when 40% of outliers were added to the error-free

data. In particular, we separately calculated the average individual stability of the original objects and that of the outliers.

The three curves depicted in Fig. 7 represent the averages obtained for error-free data (original data before adding the

outliers), the original data only (after the outliers were added to the data), and the outliers only. For both partitioning

methods (see panels a and b of Fig. 7 for K -means, and panels c and d for K- medoids) and both cluster validity indices

(CH and SI) tested in these simulations, the original objects provided greater average stability scores than outliers. It is

worth noting, however, that the individual stability of the outliers that were located far away from the clusters of objects

were sometimes higher than the stability of the original objects in these clusters; but the individual stability of the outliers

located between two well-defined clusters, and thus sharing similarities with both of them, were always much lower than

the stability of the original objects (see Supplementary Fig. 1b). 

Finally, we carried out simulations using the noise generation procedure recommended by Hennig [18] . The original (i.e.,

error-free) datasets were generated as described above (see also Milligan [32] ). Hennig’s procedure allows for the replace-

ment of some randomly chosen original objects by objects drawn from a noise distribution. In our simulations, we used

uniformly distributed noise data with a range of [ −3,3] and the following proportions of replaced objects: 0%, 5%, 10%, 25%,
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50%, 75%, and 100%. Alternatively, in the jittering procedure, a small amount of normally distributed noise was added to any

single object [18] . The jittering level q , varying between 0 and 1, corresponds to the level of noise. Supplementary Fig. 2

illustrates the variation of the global ST- index (panels a and b) and ARI (panels c and d) in the framework of K- means par-

titioning. The results presented in this figure outline a very similar behavior for both considered indices. A gradual decrease

of the values of both ST -index and ARI can be observed with the increase in the level of noise (Supplementary Figs. 2a and

c), whereas a drastic drop in their values in jittering starts from the jittering level of 0.75 (Supplementary Figs. 2b and d). 

6. Conclusion 

In this paper, we have introduced a novel method for assessing the robustness of clustering solutions provided by par-

titioning algorithms. We have shown how the stability of individual objects, clusters, and entire clustering solutions can be

estimated based on a series of repeated runs of a partitioning algorithm. To compute our stability indices, we first deter-

mine the pairwise support scores of the objects. These scores are defined taking into account the quality of the obtained

clusterings expressed by the selected cluster validity index (CH, SI, Dunn and DB in our study). The stability indices are then

defined based on the proportion of returned partitions in which pairs of objects belong to the same class, and then making

a correction for chance co-occurrence. 

We have demonstrated that the proposed stability indices can effectively identify the most stable and the most unsta-

ble elements in complex datasets. As we have seen with the example of the Iris data, the removal of the most unstable

clustering elements leads to a better identification of the true number of clusters in datasets. Moreover, the results of our

simulations indicate that the use of our stability indices allows for the improved recovery of the number of clusters by

traditional clustering methods (the conventional K -means and K -medoids algorithms in this study). Our method also com-

pares advantageously to the well-known bootstrapping and jittering techniques [18,19] . Finally, this new method makes it

possible to recognize correct clustering patterns even in the presence of noise and outliers. Generally, our stability analysis

can identify the outliers as the most unstable clustering elements, which are then removed from the data. 

One possible extension of the presented method is the calculation of support scores based on triplets and quadruplets

of objects. Additionally, our stability indices can be easily generalized and applied in the framework of fuzzy clustering

algorithms, such as C -means [8] or OKM [5] . A new R package, called ClusterStability , which is freely distributed through the

CRAN repository, includes the implementation of the discussed cluster stability indices and the related clustering methods. 
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