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Statistical Analysis of Systematic Errors
in High-Throughput Screening

DMYTRO KEVORKOV1 and VLADIMIR MAKARENKOV2

High-throughput screening (HTS) is an efficient technology for drug discovery. It allows for screening of more than 100,000
compounds a day per screen and requires effective procedures for quality control. The authors have developed a method for
evaluating a background surface of an HTS assay; it can be used to correct raw HTS data. This correction is necessary to take
into account systematic errors that may affect the procedure of hit selection. The described method allows one to analyze ex-
perimental HTS data and determine trends and local fluctuations of the corresponding background surfaces. For an assay with
a large number of plates, the deviations of the background surface from a plane are caused by systematic errors. Their influ-
ence can be minimized by the subtraction of the systematic background from the raw data. Two experimental HTS assays
from the ChemBank database are examined in this article. The systematic error present in these data was estimated and re-
moved from them. It enabled the authors to correct the hit selection procedure for both assays. (Journal of Biomolecular
Screening 2005:557-567)
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INTRODUCTION

HIGH-THROUGHPUT SCREENING (HTS) is an effective drug dis-
covery method. This technology allows for screening of

more than 100,000 compounds a day per screen. A typical HTS
operation in the pharmaceutical industry generates approximately
50 million data points per year.1 Such a great amount of experi-
mental data requires an efficient automatic routine for the selection
of hits. Unfortunately, random and systematic errors can cause a
misinterpretation of HTS signals.

Various methods for quality control and correction of HTS data
have been proposed in the scientific literature. Their descriptions
can be found in the articles by Heuer et al.,1 Gunter et al.,2 Brideau
et al.,3 Heyse,4 and Zhang et al.5,6 It is essential to identify and com-
pensate for the systematic variability of HTS measurements.
Heuer et al.1 and Brideau et al.3 showed examples of systematic
trends in HTS plates; the trends of this kind are present in all plates
of an assay. The systematic errors caused by aging, reagent evapo-
ration, or decay of cells can be recognized as smooth trends in plate
means/medians over a screen. Errors in liquid handling and mal-
function of pipettes can also generate localized deviation of ex-

pected data values. Variation in incubation time, time drift in mea-
suring different wells or different plates, and reader effects may be
recognized as smooth attenuation of measurement over an assay.1

An example discussed by Brideau et al.3 illustrates a systematic er-
ror caused by the positional effect of the detector. Throughout the
entire screening campaign involving more than 1000 plates, signal
values in row A were on average 14% lower than those in row P
(see Brideau et al.3, Figure 1). Such effects may have a significant
influence on the hit selection process. They can cause either
underestimation (false negatives) or overestimation (false
positives) of measured data.

The aim of this work was to develop a method for minimizing
the impact of systematic errors in the analysis of HTS data. A sys-
tematic error can be defined as a systematic variability of values
among all plates of an assay. We will show how a systematic error
can be detected and its effect removed by analyzing the back-
ground patterns in plates of the same assay.

MATERIALS AND METHODS

Experimental data

We have selected for evaluation freely available HTS data from
the collection of the ChemBank database (http://chembank.med.
harvard.edu/). This data bank has been maintained by the Institute
for Chemistry and Cell Biology at Harvard Medical School
(ChemBank Development Team, Institute for Chemistry and Cell
Biology, Harvard Medical School, 250 Longwood Ave, SGM 607,
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Boston, MA 02115). It contains public HTS data from various
high-throughput chemical screens. Among available HTS assays,
we have chosen for our analysis the 2 largest data sets.

The 1st one is provided by the Chemistry Department of
Princeton University (http://chembank.med.harvard.edu/screens/
screen_table.html?screen_id=76). It consists of a screen of com-
pounds that inhibit the glycosyltransferase MurG function of
Escherichia coli. The experimental data for 164 plates were con-
sidered in this study. According to the ChemBank description, this
assay has been obtained during the screen that has measured the
binding of MurG to a fluorescent (fluorescein-labeled) analogue
of UDP-GlcNAc. Screening positives are the compounds that in-
hibit binding of GlcNAc to MurG. The data set contains the mea-
surements for the tested compounds and the hits selected by the
screen authors. No information about controls and the hit selection
procedure is provided for these data, and there is no reference for
the article describing the experimental details given on the
ChemBank Web site. After the literature search, we have found the
reference7 discussing these experimental data.

The 2nd assay considered was provided by Dr. Robert Shapiro
from Harvard Medical School (http://chembank.med.harvard.edu/
screens/screen_table.html?screen_id =59). It consists of 59 plates.
It is a primary screen for the compounds that inhibit the activity of
human angiogenin, a protein with RNase activity that can induce
angiogenesis. Similar to the previous assay, this data set contains
measurements for the tested compounds and the hits identified; no
further information about this assay is given. We have found the
reference8 discussing these experimental data.

Experimental procedure

To detect a systematic error, the following assumptions about
HTS data have been made:

1. screened samples can be divided into active and inactive,
2. most of the screened samples are inactive,
3. values of the active samples differ substantially from the inactive

ones,
4. samples are arranged in a 2-dimensional format and are operated

in sequence,
5. systematic error causes a repeatable influence on the measure-

ments in all plates, and
6. samples are located randomly within plates.

The first 3 assumptions divide the samples into 2 groups. The big-
ger group contains inactive samples. Their values, measured for a
large number of plates, are similar, and their variability is caused
mainly by systematic errors. Therefore, inactive samples can be
used for the computation of the background. In the ideal case, the
background surface is a plane. Random errors produce residuals
that compensate each other during the computation of the mean
background for a large number of plates. Systematic errors gener-
ate repeatable local artifacts and smooth global drifts, which be-
come more noticeable while computing a mean background.

The analysis of experimental HTS data requires a preprocess-
ing to ensure the statistical meaningfulness and accuracy of the
background analysis and the hit selection. If the experimental HTS
data have a Gaussian distribution, a logarithmic transformation can
be applied prior to normalization. This transformation makes nor-
malized data additive and renders variation more independent of
absolute magnitude. The following main steps were performed in
this study:

• normalization of experimental HTS data,
• outlier elimination,
• topological analysis of the background,
• elimination of systematic errors,
• selection of hits, and
• analysis of hit distribution.

Normalization

Plate means and standard deviations vary from plate to plate.
Therefore, to compare and analyze together experimental data
from various plates and, consequently, to generate a statistically
correct background, all measurements should be normalized. We
have considered and compared 2 normalization procedures.

Mean centering and unit variance standardization. This nor-
malization procedure, also known as “normalization to zero mean
and unit standard deviation” or “zero mean and unit variance stan-
dardization,” ensures that all processed elements are transformed
in such a way that the mean value of the normalized elements is
zero, whereas the standard deviation and the variance are equal to
unity. The mean value of n elements xi can be computed as
follows:

µ =
=
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and the standard deviation σ is as follows:
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Applying the following formula, we can normalize the elements of
the input data:

′ = −
x

x
i

i µ
σ

, (3)

where xi is the input element, x′i is the normalized output element,
µ is the mean value, σ is the standard deviation, and n is the total
number of elements in the plate. The output data conditions will be
µx′ = 0 and σx′ = 1.

Normalization to interval. This normalization procedure deter-
mines the maximum xmax and minimum xmin values and ensures
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that all input elements are transformed proportionally into prede-
fined upper and lower limits. It performs a transformation of the in-
put elements xi into the normalized output elements x i:

′ = − −
−

+x
x x L L

x x
Li

i( )( )min max min

max min
min, (4)

where xi is the input element, x i is the normalized output element,
Lmax and Lmin are the predefined upper and lower limits, and xmax and
xmin are the maximum and minimum values of the input elements.
In our experiments, Lmax and Lmin were set to 1 and –1, respectively.

The comparison of both methods has not demonstrated any sig-
nificant difference between them. In our study, the computed back-
grounds obtained with the 2 normalization procedures had the sim-
ilar shapes. However, the application of mean centering and unit
variance standardization would be more convenient for the back-
ground generation. The main advantage on this approach is that all
mean values of the normalized plates’ measurements equal zero.
Therefore, the mean value of the overall evaluated background will
be also zero. This gives the possibility for an accurate data correc-
tion by the direct subtraction of the evaluated background from the
normalized experimental data. Another advantage of mean center-
ing and unit variance standardization is that the impact of outliers
on the normalized data would be much lower compared to
normalization to interval.

Background evaluation

The computation and topological analysis of the background is
essential for the development of a method that detects local back-
ground effects and automatically compensates for systematic er-
rors. We define an assay background as a mean of the normalized
plate measurements:

z
N

xi i j
j
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= ′
=
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1
, , (5)

where x i,j is the normalized value at well i of plate j, zi is the back-
ground value at well i, and N is the total number of plates. The big-
ger the number of plates, the more meaningful the background for-
mula is. For a large number of homogeneous plates (>100), a
sufficient number of low values not corresponding to hits will
compensate high values of hits.

If an assay contains a small number of plates (<100), high val-
ues of hits and outliers can have a negative influence on the back-
ground surface and create false patterns not existing in the reality.
In such cases, we propose to eliminate them from the background
analysis. In our study, we have considered 3 cases of hit and outlier
elimination. Thus, we can cut the hit and outlier values that exceed
either 1σ or 2σ, or 3σ deviations from the mean of each plate. For
instance, in the case of 3σ elimination, formula 5 can be rewritten
as follows:
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where x i,j is the normalized value at well i of plate j after the elimi-
nation of hits and outliers defined as (hit/outlier ∈[ –∞; (µ – 3*σ)]
∪ [(µ + 3*σ); +∞ ] ), zi is the background value at well i, N is the to-
tal number of plates, and N i

h / o is the total number of hits and outli-
ers at well i over N plates.

Topological analysis of the background surface

To discover general trends and local effects characterizing the
evaluated background, we carried out its trend-surface analysis.9,10

This global surface-fitting procedure is widely used in geograph-
ical applications, digital surface modeling, and biostatistics. A
polynomial function is usually chosen for the approximation of ex-
perimental data. The polynomial can be expanded to any desired
degree, and the unknown coefficients can be found by the polyno-
mial least squares fit or by the multiple linear regression. The fol-
lowing formula presents the polynomial function of the 5th degree
for a 2-dimensional surface:

Z(X,Y) = a0 + a1X + a2Y + 1st degree

a3X
2 + a4XY + a5Y

2 + 2nd degree

a6X
3 + a7X

2Y + a8XY2 + a9Y
3 + 3rd degree

a10X
4 + a11X

3Y + a12X
2Y2 + a13XY3 + a14Y

4 + 4th degree

a10X
5 + a11X

4Y + a12X
3Y2 + a12X

2Y3 + a13XY4 + a14Y
5 5th degree. (7)

In our analysis, we defined X as a column number, Y as a row num-
ber, and Z(X,Y) as a measured value at the well located in the inter-
section of column X and row Y.

To find the polynomial coefficients and to validate the correct-
ness of our procedure, we used both the polynomial least squares
and the multiple linear regression methods. The polynomial least
squares proceeds by solving a set of linear equations that includes
the sums of powers and cross-products of the values of X, Y, and Z.
As an example, we examine the computation of the coefficients for
the 2nd-degree polynomial using the polynomial least squares. We
have to solve the system of 6 linear equations presented in a matrix
format (see Exhibit 1) where n is the number of wells in each plate.
The solution of this system provides the best fit according to the
least squares criterion. As a result, we obtain 6 optimal least square
coefficients (a0, a1, a2, a3, a4, a5) for the 2nd-order polynomial pre-
sented in formula 8:

Z(X,Y) = a0 + a1X + a2Y + a3X
2 + a4XY + a5Y

2. (8)

It is worth noting that both, the polynomial least squares and the
multiple linear regression, have produced the identical results ex-
pected. Here, the R2 and F statistics were used to determine the
most appropriate polynomial degree.
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Elimination of systematic error and analysis of hit distribution

The presence of systematic error can be detected during the
analysis of the hit distribution. If systematic error is absent, aver-
age numbers of selected hits for each well should be similar when a
large number of homogeneous plates (>100) are considered. A big
variation of hit numbers indicates the presence of systematic error.
We examined the hit distribution by rows and columns as well as
analyzed the number of hits at each well to prove the presence of
systematic errors in experimental assays.

As we mentioned above, deviations of the background surface
from a zero plane reflect the influence of systematic errors on ex-
perimental measurements. Therefore, we can correct the raw HTS
data by subtracting the evaluated background from the normalized
values of each plate of an assay. Then, we can reassess the back-
ground surface and the hit distribution obtained after the applica-
tion of this correction procedure.

The evaluation of the hit distributions in the raw and corrected
data sets is a 2-fold process. The subtraction of the evaluated back-
ground changes the standard deviation in the data set under consid-
eration. The residuals, and hence their distribution, of the back-
ground-corrected data set will be changed. Generally, new
standard deviations, that are calculated from the trend-corrected
data, will be smaller. Obviously, the computation of the standard
deviations and the hit selection are done separately for the original
and corrected data sets.

RESULTS

Assay 1

In Figure 1, we present the evaluated background surface and
its approximation by the 4th-degree polynomial computed for the
assay comprising the data for compounds that inhibit the

glycosyltransferase MurG function of E. coli. To estimate this
background, we used normalized measurements for 164 plates
containing 16 rows and 22 columns each. The total number of
plates for this assay was 208, but 44 of them were excluded from
our analysis because of the presence of missing rows or columns.
Formula 5 was applied to compute the evaluated background. No
hit/outlier elimination was done in this case.

As mentioned above, we have considered 3 cases of hit elimina-
tion. The background surface computed for 1σ elimination is pre-
sented in Figure 2a (the values that deviated for more than 1σ from
the plate means were removed from the background computation).
The solution surface looks like a flat surface with some minor local
effects on the edges. In contrast to the background surface for 1σ
hit elimination, the evaluated backgrounds for 2σ and 3σ hit elimi-
nation (see Figs. 2b and 2c) as well as the background surface com-
puted with no hit elimination at all (see Fig. 2d) demonstrate the
substantial deviations from a plane (i.e., they depict the presence of
an important systematic error). Consequently, we have assumed
that the 1σ elimination procedure removes not only the hit impact
but also the impact that is due to systematic error. Therefore, the
background determined using 1σ hit elimination was not suitable
for the evaluation of systematic errors present in this assay.

We have to mention that Figure 2d corresponds to Figure 1b.
Figure 1b has the background variation axis inversed; this presen-
tation enabled us to compare the background surface to the hit dis-
tribution surface (Fig. 4b). The ChemBank Web site contains no
information on how the hits were selected by the researchers who
conducted the experiments. After the analysis of the indicated hits,
we supposed that they selected as hits the values that deviated for
more than 1σ from the plate means. The procedure using 1σ hit se-
lection gave us the results similar to those presented by the authors
of this assay. We carried out the analysis of the hit distribution by
columns and rows, selecting as hits the values deviating for more
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FIG. 1. (a) Evaluated background surface of assay 1 (164 plates) and (b) its approximation by the 4th-degree polynomial.
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FIG. 2. Trend-surface approximation of the computed background of assay 1 (164 plates) with (a) 1σ, (b) 2σ, (c) 3σ hit elimination, and (d) with no hit
elimination at all.



than 1σ from the plate means. This distribution (presented in Fig.
3a) clearly demonstrates the difference between the number of hits
on the edges and in the middle of the plates (e.g., the average num-
ber of hits in row 1, computed over 164 plates, was 38.5; in con-
trast, the average numbers of hits in rows 7 and 11 were 21.2 and
21.1, respectively). Such a difference is unlikely due to random er-
rors and, in our opinion, is caused by a systematic error of the mea-
surements. To conduct a more detailed analysis, we determined the
number of hits at each well. The resulting surface is presented in
Figure 4a. To detect the tendencies of the hit distribution, we also
carried out the trend-surface analysis of this pattern. The hit distri-
bution surface fitted by the 4th-degree polynomial is shown in Fig-
ure 4b. It is easy to see that the trends of the hit distribution surface
shown in Figure 4b correlate with the trends of the background
surface illustrated in Figure 1b.

To remove the effect of systematic errors, we subtracted the
overall evaluated background (without hit/outlier elimination)
from each of the 164 plates used in our study. The corrected values
were used for further analysis. Using the above-described proce-
dure, new hits were selected, and their distribution was reexam-
ined. In Figure 5, we compare the distribution of hits by rows and
columns for the raw and corrected data. The hit distribution for raw
data, plotted as columns, corresponds to that presented in Figure
3b. The data corrected by the subtraction of the evaluated back-
ground are depicted by a solid line with squares. We also evaluated
the data correction made by the subtraction of the approximated
background. The obtained hit distribution is shown by a solid line
with triangles. The detailed comparison of these distributions is
presented in the next section.
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FIG. 3. Hit distribution by (a) rows and (b) columns of assay 1 computed for 164 plates.
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FIG. 4. (a) Hit distribution surface of assay 1 and (b) its approximation by the 4th-degree polynomial.



Assay 2

To estimate the background for the 2nd assay, comprising the
data for compounds that inhibit the activity of human angiogenin,
we used normalized measurements for 54 plates containing 16
rows and 20 columns each. The total number of plates in this assay
was 59, but 5 of them were excluded from our analysis because of
missing rows or columns. Since the number of plates was small,
compared to assay 1, and due to a relatively big amount of outliers
in this data set, we applied formula 6 in this case. To compute the
evaluated background, we eliminated hits and outliers that devi-
ated for more than 3σ from the mean value of each plate. Plate val-

ues without outliers were normalized with the mean centering and
unit variance standardization procedure and used for the back-
ground evaluation. In Figures 6a and 6b, we present the evaluated
background surface with 3σ hit/outlier elimination and its approxi-
mation by the 4th-degree polynomial. To detect the presence of
systematic errors, we analyzed the hit distribution surface using the
previously described procedure. We chose the hits with the 1σ
selection method. The obtained hit distribution surface is
presented in Figure 7a.

Most of the wells of assay 2 contain fewer than 3 hits (for 54
plates), but the hit numbers in 3 of the 4 plate corners are much
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FIG. 5. Hit distribution by rows in assay 1 (164 plates): (a) hits selected with the threshold 1σ; (b) hits selected with the threshold 2σ.
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FIG. 6. (a) Evaluated background surface of assay 2 (54 plates) with 3σ hit/outlier elimination and (b) its approximation by the 4th-degree polynomial.



higher. For instance, the well in column 1 and row 16 contains 13
hits. Such a big difference indicates the presence of a systematic er-
ror. The hit distribution surface illustrated in Figure 7a shows a
good correlation with the evaluated background surface presented
in Figure 6a.

The raw assay data were corrected to remove the impact of the
systematic errors. We subtracted the evaluated background from
each of the 54 plates of the assay. The corrected values were used to
select the new hits. The hit distribution for the corrected data,
shown in Figure 7b, is certainly more appropriate than the hit dis-
tribution of the raw data shown in Figure 7a. The high values in the
plate corners (see Fig. 7a) were reduced to the reasonable values
(see Fig. 7b). Also, more hits were selected (see Fig. 7b) in the low

values region between the columns 4 and 19 and rows 5 and 14 (see
Fig. 7a).

In Figure 8, we compared the distribution of hits by rows and
columns for the raw and corrected data. The notations used in Fig-
ure 5 were also adopted here. We have to mention that the hit distri-
bution by rows was corrected sufficiently well (see Fig. 8a), but
their distribution by columns (see Fig. 8b) was still affected by
local fluctuations.

We have computed the least squares deviation from the mean
value for the hit distribution by rows/columns using the following
formula:

Q xi
i

n

= −
=
∑( )µ 2

1

, (9)
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FIG. 7. Hit distribution surfaces for (a) raw and (b) corrected data sets of assay 2 (54 plates).
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FIG. 8. Hit distribution by rows (a) and (b) columns in assay 2 for 54 plates before and after the correction.



where Q is the least squares deviation from the mean value, xi is the
number of hits per well at row/column i, and µ is the mean value of
hits per well for the whole assay.

The least squares deviations from the mean value for the hit dis-
tributions shown in Figures 5 and 8 are presented in Table 1.

DISCUSSION

This article describes a useful method suited to analyze raw
HTS data, detect systematic errors and positional effects, and make
corresponding corrections of HTS signals. The method is based on
the statistical analysis of signal variation within plates of an assay.
It requires a sufficient amount of homogeneous experimental data
to be available to produce viable results.

The normalization procedure plays an important role in this
method. The application of the mean centering and unit variance
standardization technique allows one to set to zero the mean values
of the measurements in all plates. Regular deviations of the evalu-
ated background from a zero plane can be explained by the pres-
ence of systematic errors. The background is computed as the
mean of the normalized plate values. In the perfect case, when sys-
tematic error is absent, it leads to a zero plane. In the case of real
data, the background surface will be affected by random and sys-
tematic errors. Random errors cause residuals on the background
surface. They vary from plate to plate and should compensate each
other during the overall background computation. Thus, their in-
fluence on the background surface can be minimized by increasing
the number of plates analyzed. Systematic errors generate repeat-
able deviations from a zero plane. We can detect and characterize
them using the trend-surface analysis of the background. The
minimization of random errors certainly enhances the accuracy of
the systematic error analysis. Therefore, for the small number of
plates, we propose to remove outliers from the background
computation.

Another problem may appear during the analysis of large as-
says. Plate patterns may change from batch to batch or shift over a
day. We have to mention that the determination of breaks between
batches should be done (preferably automatically) for large assays.
In the present article, we assume that the behavior of the systematic

error does not change substantially within 1 assay (see the Experi-
mental Procedure section, assumption 5). For large industrial
assays, a procedure allowing one to break (in an automated fash-
ion) the given assay into homogeneous parts can be carried out. We
can suggest 2 possible breaking procedures. First, the user could
define the size of the sliding window that would go through the en-
tire data set separating it into subsets that will be analyzed sepa-
rately. Such a procedure would work under the assumption that the
homogeneity is preserved for a certain interval of time. Another al-
ternative would be to divide a large assay in k subsets (where k can
be defined by the user), compute a distance measure between
plates, and carry out a k-means algorithm to form k homogeneous
clusters that could be analyzed separately.11 Ideally, and we are
currently working on it, the program will find an optimal k from a
range of values defined by the user.

To estimate the impact of systematic errors on the hits selection
procedure, we examined the distribution of hits in 2 experimental
assays from the ChemBank database. The 1st one comprises ex-
perimental data for 164 plates. The screening positives are the
compounds that inhibit the binding of GlcNAc to MurG. The 2nd
assay includes experimental data for 54 plates. The screening
positives here are compounds that inhibit the activity of human
angiogenin. As hits, we marked the values that were lower than the
plate means and deviated from them for more than 1σ. Brideau
et al.3 mentioned that a common method considers the threshold of
3σ for the selection of hits. Obviously, the hit selection with 1σ
gave us more hits for the analysis. The common hit rate in an HTS
screening campaign is in the range of 0.1% to 5%.

We have analyzed the hit distributions obtained for various σ
levels. If we consider assay 2, selecting hits with the threshold of
3σ, the total number of selected hits for the whole assay will be 4.
Thus, the hit rate here will be only 0.02%. The threshold of 2σ for
assay 2 gives the following numbers:

• total number of selected hits = 24 and
• hit rate = 0.13%.

The threshold of 1σ for assay 2 gives the following numbers:

• total number of selected hits = 301 and
• hit rate = 1.74%.

With these numbers, the most appropriate threshold for the analy-
sis of the hit distribution of this assay would be 1σ; it is impossible
to carry out any kind of statistical analysis considering 4 or 24 hits
only.

For assay 1, the threshold of 3σ gives the following numbers:

• total number of selected hits = 313 and
• hit rate = 0.54%.

The threshold of 2σ for assay 1 gives the following numbers:

• total number of selected hits = 1055 and
• hit rate = 1.82%.

The threshold of 1σ for assay 1 gives the following numbers:
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Table 1. Least Squares Deviations From the Mean Value for
the Hit Distributions Presented in Figures 5 and 8

Assay 1 Assay 1 Assay 2 (1σ)
(1σ), (2σ),

Fig. 5a Fig. 5b Fig. 8a Fig. 8b

Raw data 325.75 19.34 13.42 15.06
Evaluated background
subtracted 12.73 2.97 0.94 3.13

Approximated background
subtracted 34.14 4.35 1.40 2.78



• total number of selected hits = 9092 and
• hit rate = 15.7%.

Our aim was to demonstrate the impact of systematic error on the
hit selection procedure. The thresholds of 1σ and 2σ gave us the
best chance to show it despite a lot of false positives that were se-
lected in these cases. It also gave us the possibility to illustrate
that their impact was reduced after the data correction (see Figs. 5
and 8).

In general, the thresholds of 2.5 or 3σ would certainly be more
appropriate for the hit selection, but in this case, they do not pro-
duce enough hits for our hit distribution analysis.

As shown in Figures 3, 5, and 8, a simple analysis of the hit dis-
tribution by rows and columns can indicate the presence of system-
atic errors. The attempt to plot the hit distribution at wells produced
the complex 3-dimensional surfaces shown in Figures 4a and 7a.
To identify the trends in these surfaces, we performed a trend-sur-
face analysis discussed in this article. The comparison of the hit
distribution surfaces (Fig. 4 for assay 1 and Fig. 7a for assay 2)
against the background surfaces (Fig. 1 for assay 1 and Fig. 6 for
assay 2) demonstrates that the distribution of hits corresponds to
the background fluctuations.

To eliminate the systematic error from the original data, we sub-
tracted the evaluated background from the raw values and
reanalyzed the distribution of hits. The hit distribution by rows and
columns is depicted by the solid lines with squares in Figures 5 (as-
say 1) and 8 (assay 2). The solid lines with triangles in Figures 5

(assay 1) and 8 (assay 2) correspond to the data corrected by the
subtraction of the approximated background. The corrected data
provide a more appropriate distribution by rows and by columns
than the raw data (see Table 1). Both the raw and the corrected data
have a comparable mean number of hits per row/column, but the
standard deviation of the corrected data is 2 to 4 times lower than
the standard deviation of the raw data (see Table 2). The data sets
corrected by the approximated background have higher standard
deviations than do those corrected by the evaluated background.
This is certainly due to the small fluctuations that were not
represented in the approximated surfaces.

The advantage of the proposed correction is that it is independ-
ent from a hit selection procedure. In our study, we used a 1σ devi-
ation for the selection of hits, but the common 3σ deviation can be
used as well as any other method. However, the procedures that
employ high and low controls for the selection of hits will require a
specific correction for the controls values. The standard approach
considering controls for the hit selection is based on the following
formula:

z
H x

H Li
i= −

−
* %100 , (10)

where xi is the measured value at well i, H is the mean of high con-
trols, L is the mean of low controls, and zi is the evaluated percent-
age at well i.

The measured values of controls should be normalized along
with all other values of the same plate. However, the control values
must not be taken into account while computing a background sur-
face; the controls should be considered as outliers. Subsequently,
the normalized values of controls could be used in the hit selection
procedure based on the following formula:

′= ′ − −
′ − ′

z
H x b

H Li
i i( )

* %100 , (11)

where xi is the normalized value at well i, bi is the background value
at well i, H ′ is the mean corrected value of high controls after the
subtraction of the background, L′ is the mean corrected value of
low controls after the subtraction of the background, and zi′ is the
evaluated percentage at well i.

CONCLUSION

We have designed a background evaluation procedure that can
be used to objectify the hit selection and provide an effective tool
for the analysis and correction of HTS screens. This correction is
necessary to estimate systematic errors and remove their effects
from the data at hand. The described method allows one to analyze
experimental HTS data and determine trends and local fluctuations
of the background surface. Because the mean deviations of the
background surface from a plane, computed for a sufficiently large
number of plates, are caused by systematic errors, their impact can

Kevorkov and Makarenkov

566 www.sbsonline.org Journal of Biomolecular Screening 10(6); 2005

Table 2. Statistical Analysis of Hit Distribution
for Assays 1 and 2

Standard
Type of Correction Mean Deviation Distribution by

Assay 1 (1σ)
Raw values (no correction) 25.69 3.752 Columns

25.69 4.660 Rows
Evaluated background subtracted 25.83 0.953 Columns

25.83 0.745 Rows
Approximated background subtracted 26.11 1.414 Columns

26.11 1.522 Rows
Assay 1 (2σ)

Raw values (no correction) 3.16 0.68 Columns
3.16 1.25 Rows

Evaluated background subtracted 3.00 0.56 Columns
3.00 0.54 Rows

Approximated background subtracted 3.03 0.60 Columns
3.03 0.60 Rows

Assay 2 (1σ)
Raw values (no correction) 1.063 0.890 Columns

1.063 0.946 Rows
Evaluated background subtracted 0.759 0.406 Columns

0.759 0.251 Rows
Approximated background subtracted 0.747 0.382 Columns

0.747 0.305 Rows



be minimized by the subtraction of the systematic background
from the raw HTS data. An application of the trend-surface analy-
sis enables one to visualize the behavior of the systematic error
patterns.

In this article, we examined 2 assays of experimental HTS data
from the ChemBank database. The background analyses showed
the presence of systematic errors on the plate edges. We demon-
strated that systematic errors can have a significant influence on
the hit selection and the positional distribution of hits within plates.
We corrected the HTS data for assays with 164 and 54 plates by
subtracting the evaluated background from the raw data. The anal-
ysis of the corrected data sets showed that the applied modifica-
tions significantly improved the hit distribution. The positional ef-
fects caused by systematic errors were also minimized after this
correction.

The software allowing researchers to carry out the background
evaluation analysis of HTS data has been developed. The program
is distributed as a Windows console application and its C++ source
code. A graphical version of this software is freely available on our
Web site (http://www.labunix.uqam.ca/makarenv/hts.html).
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