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Abstract. Among the various forms of canonical analysis available in the statistical
literature, RDA (redundancy analysis) and CCA (canonical correspondence analysis) have
become instruments of choice for ecological research because they recognize different roles
for the explanatory and response data tables. Data table Y contains the response variables
(e.g., species data) while data table X contains the explanatory variables. RDA is an ex-
tension of multiple linear regression; it uses a linear model of relationship between the
variables in X and Y. In CCA, the response variables are chi-square transformed as the
initial step, but the relationship between the transformed response data and the explanatory
variables in X is still assumed to be linear. There is no special reason why nature should
linearly relate changes in species assemblages to changes in environmental variables. When
modeling ecological processes, to assume linearity is unrealistic in most instances and is
only done because more appropriate methods of analysis are not available. We propose two
empirical methods of canonical analysis based on polynomial regression to do away with
the assumption of linearity in modeling the relationships between the variables in X and
Y. They are called polynomial RDA and polynomial CCA, respectively, and may be viewed
as alternatives to classical linear RDA and CCA. Because the analysis uses nonlinear
functions of the explanatory variables, new ways of representing these variables in biplot
diagrams have been developed. The use of these methods is demonstrated on real data sets
and using simulations. In the examples, the new techniques produced a noticeable increase
in the amount of variation of Y accounted for by the model, compared to standard linear
RDA and CCA. Freeware to carry out the new analyses is available in ESA’s Electronic
Data Archive, Ecological Archives.

Key words: canonical correspondence analysis; multiple linear regression; nonlinear canonical
analysis; permutation test; polynomial regression; redundancy analysis.

INTRODUCTION

Canonical analysis has become an instrument of
choice for ecologists who want to relate a data table
(Y) of response variables (which are often species
abundances) to a second data table (X) of explanatory
variables (often environmental factors). Two bibliog-
raphies of ecological papers on the subject, covering
the periods 1983–1993 and 1994–1998 (H. J. B. Birks,
S. M. Peglar, and H. A. Austin; and H. J. B. Birks, N.
E. Indrevær, and C. Rygh, unpublished manuscripts),
contain 804 titles. One can obtain a canonical ordi-
nation of the response variables whose axes are max-
imally and linearly related to the explanatory variables.
Canonical analysis, which is also called constrained
ordination analysis, provides interesting statistics, such
as the proportion of variance of the response data that
is accounted for by the explanatory variables, and tests
of significance of this statistic and of individual ca-
nonical eigenvalues.

Manuscript received 9 May 2000; revised 17 April 2001; ac-
cepted 30 April 2001; final version received 4 June 2001.

3 Please address correspondence to this author.
E-mail: pierre.legendre@umontreal.ca

The forms of canonical analysis discussed in this
paper are Redundancy Analysis (RDA) and Canonical
Correspondence Analysis (CCA). Other forms of ca-
nonical analysis, such as canonical correlation analysis
and discriminant analysis, are not of interest here. The
development of Redundancy Analysis (RDA) is due to
C. R. Rao (1964, 1973). RDA is an extension of mul-
tiple linear regression; it uses a linear model of rela-
tionships among the variables in Y and between the
variables in X and Y. It may also be considered as a
constrained extension of Principal Component Anal-
ysis (PCA) which identifies trends in the scatter of data
points that are maximally and linearly related to a set
of constraining (explanatory) variables. RDA consists
of a series of multiple linear regressions followed by
an eigenvalue decomposition of the table of fitted val-
ues. When table Y contains species abundance data,
the component axes resulting from RDA are interpret-
able in terms of differences in the abundances of the
species; thus the component axes in RDA biplots rep-
resent gradients in absolute species abundances, con-
strained by the explanatory variables.

Canonical Correspondence Analysis (CCA), devel-
oped by ter Braak (1986, 1987a) as an extension of
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FIG. 1. RDA and CCA using polynomial regression.

Correspondence Analysis (CA), approximates unimo-
dal responses of the species to environmental gradients,
but it still assumes linearity of the relationships be-
tween the variables in X and Y. A chi-square trans-
formation of the species abundances is done, but the
relationship between the transformed response data and
the explanatory variables in X is assumed to be linear.
The component axes resulting from CCA basically rep-
resent gradients in species proportions, constrained by
the explanatory variables.

There is no special reason why nature should linearly
relate changes in species assemblages to changes in
environmental variables. When modeling ecological
processes, to assume linearity is unrealistic in most
instances and is only done because more appropriate
methods of analysis are not available.

This paper proposes a canonical (or constrained) or-
dination method based on polynomial regression to do
away with the assumption of linearity in describing the
relationships between the variables in X and Y (Fig.
1). This method, which builds upon the pioneering
work of Rao and ter Braak, may be viewed as a non-
linear alternative to classical RDA and CCA. Our strat-
egy is to apply polynomial regression, whose use is
justified below, to describe the relationship between
each response variable y of Y and the explanatory var-
iables in X, in place of multiple linear regression. This
approach may allow a noticeable increase in the ex-
plained variation of Y, compared to the linear model.
The new approach often produces greater significance
of the model than the linear approach; the significance
of a canonical ordination model can be assessed using
a permutation test.

The polynomial regression algorithm described in
this paper allows modeling of polynomial relationships
between the matrices of response and explanatory var-
iables considered in RDA and CCA. The matrix of
fitted values Ŷ used in the analysis is no longer a linear
combination of the explanatory variables in X, but their
polynomial combination. In this study, we only con-
sidered polynomials for which the degree of any par-
ticular explanatory variable included in any term of the
polynomial is one or two. The regression algorithm
proposed in this paper does not aim at providing an
optimal polynomial with a fixed number of terms; it
only tries to explain a portion of the variance, reflecting
nonlinearities in the relationships, that cannot be ac-
counted for by a linear regression model. Økland
(1999) noted that species composition data rarely meet
the assumptions of the species response models which
are implicit in various methods of ordination and con-
strained ordination analysis. The nonlinear adjustments
proposed in the present paper provide a way to enhance
the fit of the model to the data in such cases.

The problem of expressing nonlinear relationships
in canonical analysis has been investigated in the past.
Van der Burg and de Leeuw (1983) used alternating
least squares to find optimal nonlinear transformations
of discrete data in canonical correlation analysis. Du-
rand (1993) used additive spline transformations in
RDA; Donovan (1998) also used spline transformations
to express nonlinearities in RDA and CCA. These au-
thors noted that the shapes of the transformations they
obtained were generally not interpretable. We inves-
tigated the use of polynomial regression with the same
objective in mind. Polynomials offer an elegant and
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easy way to obtain approximations of nonlinear rela-
tionships of unknown functional forms. The resulting
equation is linear in its parameters, but the relationship
between the response and explanatory variables may
be linear or not; the linear equation is the simplest form
of a polynomial function. Finally, a polynomial equa-
tion is an algebraic function and can be represented
graphically. From the ecological point of view, poly-
nomials represent a more flexible tool than linear mod-
els, which are embedded in them, to describe relation-
ships between the response and explanatory variables.
Product terms retained in polynomial equations rep-
resent combinations of variables having significant im-
pact on the response data while significant second-or-
der terms represent nonlinear relationships between ex-
planatory and response variables.

A FORTRAN program was used to carry out the
computations (Polynomial RDACCA; see the Supple-
ment). After computing polynomial RDA or CCA, us-
ers of this program can also perform standard RDA and
CCA based on multiple linear regression and assess the
difference in explained variation between the two mod-
els, linear and polynomial, using a specially-designed
permutation test.

This paper is organized as follows. (1) The new
method of polynomial regression is first presented.
(2) Classical RDA based on multiple linear regression
is described, as well as its polynomial generalization.
(3) CCA and its polynomial generalization are then
presented, followed by (4) a discussion about ways of
representing the explanatory variables in biplots and
(5) tests of significance in polynomial canonical anal-
ysis. (6) To illustrate the new methods, a classical eco-
logical data set containing nonlinear species–environ-
ment relationships is reanalyzed using polynomial
RDA and CCA.

POLYNOMIAL REGRESSION ALGORITHM

The algorithm described in this section aims at ex-
pressing each response variable y separately as a poly-
nomial function of the explanatory variables most re-
lated to it. The variables should have already been
transformed, if necessary, to insure homoscedasticity
of the response variables. Reduction of the number of
explanatory variables in the polynomial regression is
necessary to avoid overfitting the response variables;
in the linear case, overfitting occurs when a response
variable is fitted using a number of explanatory vari-
ables larger than (n 2 1) where n is the number of
observations. The polynomial algorithm proceeds by
successively reducing the matrix of explanatory vari-
ables X while increasing the value of the coefficient of
multiple determination R2 for the response variable y
under study. This reducing procedure is applied inde-
pendently to each response variable y, corresponding
to a column of the matrix of response variables Y. Let
y be one of the response variables, associated with a
vector of data y 5 (y1, y2, . . . , yn). The algorithm is

comprised of four basic steps, described below, which
are repeated (m 2 1) times as the matrix of explanatory
variables X with m columns is reduced to a single vec-
tor.

1) X is a matrix of explanatory variables of order (n
3 m). The variables in X are centered on their respec-
tive means in order to reduce the collinearity between
the linear and quadratic terms of the polynomial, cal-
culated below. Binary explanatory variables, that may
stand alone or may be used to code for multistate qual-
itative descriptors, may or may not be centered on their
means; this is up to the user. The first step consists in
regressing y on all variables in X following a classical
least-squares multiple linear regression model. We find
the vector of fitted values ŷ using vector b of the re-
gression coefficients:

21ŷ 5 Xb 5 X[X9X] X9y. (1)

2) The second step is to obtain the vector of residual
values (yres) from the multiple regression:

y 5 y 2 ŷ.res (2)

3) The task of the third step is to select the pair of
variables in X that provides the best quadratic approx-
imation of yres. To accomplish this selection, for each
pair of columns j and k of X, we compute a multiple
linear regression of vector yres on matrix Xjk (where j
and k are upper indices) containing variables xj, xk, xjxk,

, as columns, plus a column of 1’s. For example,2 2x xj k

let j 5 1 and k 5 2; a quadratic polynomial regression
of the vector of residuals yres (from Eq. 2) on variables
x1 and x2 is obtained by

12 12 12ŷ 5 X cres (3)

where c12 is the vector of regression coefficients for
explanatory variables j 5 1 and k 5 2, and matrix X12

is constructed as follows:

2 2 x x x x x x 111 21 11 21 11 21

2 2 x x x x x x 112 22 12 22 12 2212X 5 . 
_ _ _ _ _ _ 

2 2x x x x x x 11n 2n 1n 2n 1n 2n 

If x1 is a binary {0, 1} variable that has not been cen-
tered on its mean, the fourth column of X12 should not
be included in this matrix; likewise for variable x2. The
reason for this is that the square of a binary variable
is equal to itself. The vector of regression coefficients
c12 is computed using least squares, like vector b of
Eq. 1. The coefficient of multiple determination R2(1, 2)
is computed for this regression. The procedure is re-
peated for every pair ( j, k) of columns of X. Each time,
the coefficient of multiple determination R2( j, k) is
computed. The pair ( j, k) providing the largest coef-
ficient of determination, R2( j, k), is retained; this pair
will be used in step 4.

4) The two columns j and k selected in step 3 are
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FIG. 2. Iterations of the polynomial weighted regression
algorithm computed during the regression step of polynomial
CCA for the first species (Sp. 1, Al. accentuata) in Table 1;
the four explanatory variables are: x1, water content; x2, re-
flection of the soil surface; x3, percent cover by Calamagrostis
epigejos; x4, percent cover by Corynephorus canescens.

combined to form a new joint column t in X, which
replaces j and k for the remainder of the analysis. The
following formula is used to compute the new com-
bined variable t for each observation i (i 5 1, . . . , n):

jkx 5 x b 1 x b 1 ŷit ij j ik k res,i (4)

where the coefficients b are those of Eq. 1. Thus, matrix
X is reduced and now is comprised of one column (i.e.,
one variable) fewer than before. This new column com-
bines the terms corresponding to the contributions of
j and k to the linear regression of y on X (Eq. 1) as
well as the fitted values of the regression of residual
vector yres on matrix X12. Therefore, a new combined
explanatory variable t is formed, containing the linear
and quadratic contributions to the fitting of y by var-
iables j and k.

The four steps above are repeated (m 2 1) times as
matrix X(n 3 m) is transformed into a matrix X(n 3
1), which is a simple vector. To obtain the final vector
ŷ to be used in the analysis in place of y, we perform
a simple linear regression of y on X(n 3 1). It should
be clear that the vector of fitted values ŷ is now a
polynomial function of the explanatory variables in the
matrix X(n 3 m) considered at the beginning of the
regression procedure. This procedure also guarantees
that every single variable of X is expressed by linear
and quadratic terms in the reduced vector X(n 3 1).

We would not be able to control the maximum degree
of any single variable in the polynomial if the quadratic
form was used in matrix Xjk of Eq. 3 in each of the (m
2 1) iterations. To make sure that the degree of each
variable X is at most two in any single term of the
polynomial, the following rule for composing matrix
Xjk is applied for any pair of variables ( j, k), starting
from the second pass through the algorithm: if column
j is already a combined variable obtained by Eq. 4, then
its quadratic contribution (column ) should not be2xj

included in Xjk. The same applies to variable k if it is
a combined variable. Thus matrix Xjk may have from
four to six columns, depending on the nature of the
variables j and k.

The maximum degree of the polynomial is not
bounded; it was not our objective to do so. Control is
only exerted upon the highest degree, which is two, of
any one variable in a monomial. In the most extreme
case, one may end up with a polynomial of order m.
Polynomials generated by this algorithm contain sub-
sets of the terms from the following model:

ŷ 5 b 1 b x 1 b x 1 · · · 1 b x0 1 1 2 2 m m

2 21 b x 1 · · · 1 b xm11 1 2m m

21 b x x 1 · · · 1 b x x .P P2m11 1 2 i j
i j( j±i)

The algorithm is used to determine which terms should
be kept or deleted. This flexibility, as well as the huge
range of shapes that the polynomial can fit, are among

the advantages of this method. Distribution functions,
which reflect species responses to the environmental
factors found in real-life patterns, may vary a lot from
species to species. Polynomial modeling provides a
way of representing this diversity of responses. Ad-
mittedly, a polynomial model allows only an approx-
imation and not an exact representation of the nonlinear
relationships, whose functional forms are not known,
but this approach is still far more efficient than the
approximation by a straight line or a plane, as in clas-
sical linear regression.

Two examples of the use of this empirical procedure
are presented in the section Numerical examples. Fig.
2 illustrates the computations for species 1 of the sec-
ond example, where polynomial CCA is used. The
detailed description of the polynomial regression re-
sults are presented in that section. The estimation of
the number of independent parameters estimated by
the polynomial regression procedure and the number
of degrees of freedom left for statistical testing is
described in Appendix A.

To obtain the matrix of fitted values Ŷ to be used in
place of Y in the ordination analysis, (m 2 1) passes
through the algorithm are necessary for each response
variable yj (j 5 1, . . . , p) of Y. Taking into account
the O(nm2) time complexity of each loop consisting of
the four steps described above, the whole algorithm
performed on two matrices Y(n 3 p) and X(n 3 m)
requires time on the order of pnm3.

REDUNDANCY ANALYSIS AND ITS POLYNOMIAL

GENERALIZATION

There are dedicated software packages available to
perform classical RDA and CCA, such as CANOCO (ter
Braak 1988a, b, 1990, ter Braak and Smilauer 1998)
and RDACCA described in Legendre and Legendre
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(1998:579). Although the algorithmic strategies used
in these two packages differ, they lead to identical re-
sults. The approach of ter Braak is based upon the
iterative application of averaging or weighted aver-
aging equations; the ordination axes are computed one
by one. In this work, we follow the direct computa-
tional approach described in Legendre and Legendre
(1998). The main steps, implemented in the program
RDACCA, are summarized in Appendix B. In the pre-
sent section, we describe the modifications to that al-
gorithm needed to obtain polynomial RDA.

Let Y be a matrix of response variables with n rows,
representing the sites or objects, and p columns cor-
responding to the species or other variables under
study. For instance, Y may be a matrix of the abun-
dances of p species at n sites. Let X be a matrix of
explanatory variables with n rows representing the
same sites as in Y and m columns corresponding to the
explanatory variables observed at these sites.

The objective of the polynomial regression algo-
rithm, described in the previous section, is to explain
a part of the variance of Y which remained unexplained
after multiple linear regression. The approach is a direct
modification of the algorithm for classical RDA pre-
sented in Appendix B. The first step is to calculate the
polynomial regression of Y on X, i.e.,

2Ŷ 5 P(X, X ) (5)

where P(X, X2) denotes the polynomial equations of
the previous section, which may differ for each variable
y of Y not only in their polynomial coefficients but
also in the X variables that are included in the equa-
tions. The covariance matrix S of Ŷ is computed in the
classical way (Eq. B.2), followed by eigenanalysis of
S (Eq. B.4). The site scores needed to represent the Y
variables in biplots are calculated using equations of
the same type as in principal component analysis (Eq.
B.5 or B.6). In polynomial RDA, the matrix of eigen-
vectors U corresponding to non-null eigenvalues is of
size ( p 3 l) where l cannot exceed p or (n 2 1) but
may be larger than m.

Each canonical ordination axis is now a quadratic
function of the explanatory variables in X, the degree
of each variable X in the polynomial being at most two.
It is denoted as follows:

2ˆcord 5 Yu 5 P(X, X )u . (6)(space of explanatory variables X)k k k

CANONICAL CORRESPONDENCE ANALYSIS AND ITS

POLYNOMIAL GENERALIZATION

We will now show how to use polynomial regression
in the framework of canonical correspondence analysis
(CCA). Basically, CCA is similar to RDA; the main
difference is that it preserves chi-square distances, as
in correspondence analysis (CA), instead of Euclidean
distances among sites. Matrix Q̂ contains fitted values
obtained by weighted linear regression of a matrix Q̄
of the contributions to chi-square (also used in CA) on

the weighted explanatory variables found in matrix X.
There are several algorithms for CCA. Appendix C
outlines the one that served as the basis for this paper.

Let Y be a matrix of size (n 3 p) containing p species
abundance or presence–absence variables, or other fre-
quency data, observed at n sites. As in RDA, X is a
matrix of explanatory variables of size (n 3 m), with
rows representing the same sites as in Y and columns
corresponding to the explanatory variables observed at
the sites. The main differences from RDA are that Y
will be chi-square transformed into a matrix Q̄, as in
contingency table analysis, and that the rows of matrix
X will be weighted by the square roots of the row sums
of Y. An operational definition of matrix Q̄ is given in
Appendix C.

In the present section, we describe how the algorithm
for CCA outlined in Appendix C can be modified to
incorporate the polynomial regression technique. As in
RDA, the objective is to increase the percentage of
variance accounted for, compared to standard CCA. In
order to perform weighted polynomial regression, in
place of weighted linear regression, in the first step of
the analysis, we introduce the following changes to the
equations of the polynomial regression procedure. Let
q̄ be a variable corresponding to a single species from
matrix Q̄ (Eq. C.1). To take weights into account, the
changes to introduce into Eqs. 1–4 are the following:

21q̂ 5 X b 5 X [X9 X ] X9 q̄ (7)w w w w w

where Xw 5 D( pi1)1/2X is the weighted matrix of ex-
planatory variables,

q̄ 5 q̄ 2 q̂ (8)res

12 1/2 12 12q̂ 5 D(p ) X cres i1

1/2 12 129 12 215 D(p ) X [X (D(p )X ]i1 i1

129 1/23 X D(p ) q̄ . (9)i1 res

The following formula is used to compute the new
combined variable t for each observation i (i 5 1, . . . ,
n):

21/2 jkx 5 x b 1 x b 1 p q̂it ij j ik k i res,i (10)

Thus, a weighted polynomial relationship is described
between matrix Q̄ of the contributions to chi-square
and the matrix of explanatory variables X. After the
polynomial regression procedure, one obtains:

2Q̂ 5 P (X, X )w (11)

where Pw(X, X2) denotes polynomials in which the
highest degree of each variable is two, and whose co-
efficients depend on the weights. As in the case of
polynomial RDA, the polynomial forms may vary from
variable to variable.

The remainder of the analysis is based on matrix Q̂
and does not differ from the linear CCA outlined in
Appendix C. The only remaining difference involves
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the computation of the scores of the explanatory var-
iables X for biplots.

REPRESENTATION OF EXPLANATORY VARIABLES

IN BIPLOTS

Two strategies can be used to represent the explan-
atory (e.g., environmental) variables in polynomial
RDA and CCA biplots.

1) One can represent the individual terms of the poly-
nomial by arrows in the biplot. When matrix X contains
several variables, this strategy may produce too many
terms (arrows) to be represented in the diagram. One
may then apply an empirical rule, retaining only the
correlations larger than a preselected value. In RDA,
this strategy uses the correlations of the terms of the
polynomial with the constrained ordination of the ob-
jects given by Eq. 6 and scaled using Eq. B.7. In CCA,
the weighted correlations are obtained from Eq. C.12.

2) The second strategy is to represent each explan-
atory variable x by a single arrow in the biplot. This
arrow corresponds to the multiple correlation of x and
its quadratic form x2 with the ordination axes. It does
not include any of the interaction terms. This solution
may be preferred when there are so many explanatory
variables in the analysis that the first strategy would
produce a clogged diagram.

Let us examine this second option in more detail. In
polynomial RDA, to obtain the biplot score of an ex-
planatory variable x along a canonical ordination axis,
a multiple correlation is computed between a vector of
constrained ordination scores cord (from Eq. 6) and
vectors x and x2, giving the multiple linear correlation

. The sign of the simple linear correlation be-R 2cord,{x,x }

tween cord and x is assigned to . With scalingR 2cord,{x,x }

type 2, is used directly; with scaling 1,R 2cord,{x,x }

is multiplied by coefficient ck of Eq. B.7 toR 2cord,{x,x }

obtain the biplot score of x along the axis. Calculation
of multiple linear correlations is described in Eqs. 12
and 13. For a binary {0, 1} variable x that has not been
centered nor squared during polynomial regression, its
score is obtained by simple linear correlation.

In polynomial CCA, a weighted multiple linear cor-
relation is computed between the vector of constrained
site scores cord (from Eq. C.10 or C.11) corresponding
to a given axis and a pair of vectors {x, x2}. The weights
wi in Eq. C.12, which are associated with rows i of
vectors cord, x, x2, are equal to pi1.

In polynomial RDA, let Rcord,x be a coefficient of
simple linear correlation; in polynomial CCA, it is a
coefficient of weighted simple linear correlation be-
tween cord and x, computed using Eq. C.12. Let

and be the coefficients of (weighted) simpleR 2 R 2cord,x x,x

linear correlation between cord and x2, and between x
and x2, respectively. The coefficient of (weighted) mul-
tiple linear correlation is computed as follows:R 2cord,{x,x }

zM z3R 2 5 1 2 (12)cord,{x,x } ! zM z2

where matrices M3 and M2 are

 1 R R 2cord,x cord,x 
M 5 R 1 R 2 3 cord,x x,x 

R 2 R 2 1cord,x x,x 

1 R 2x,xM 5 . (13)2 [ ]R 2 1x,x

The sign of Rcord,x is assigned to to obtain theR 2cord,{x,x }

biplot score of x along a canonical ordination axis cor-
responding to constrained ordination vector cord.

Biplot scores of the centroids of binary explanatory
variables x are computed as in classical linear RDA
and CCA. If wi is the weight associated with row i of
vectors cord and x, the score of the centroid of a binary
variable x along vector cord is the following:

n

w cord xO i i i
i51Centroid(x, cord) 5 . (14)n

w xO i i
i51

Weights wi are 1 in RDA and polynomial RDA. The
arrow drawn using the biplot scores of a binary ex-
planatory variable points toward this centroid, as in
standard RDA and CCA based on (weighted) linear
regression.

The biplot scores of the explanatory variables from
matrix X are approximations of their real contributions
in the full-dimensional space of canonical ordination.
This point can be found in descriptions of biplots in
Gabriel (1982), ter Braak (1994), and Legendre and
Legendre (1998).

TESTS OF SIGNIFICANCE IN POLYNOMIAL

RDA AND CCA

Tests of significance can be carried out in linear or
polynomial RDA or CCA. The most general null hy-
pothesis is the same as in regression analysis; it states
that there is no special relationship between the re-
sponse and explanatory variables (independence of Y
and X), or that the model is not a significant represen-
tation of the response data. The pseudo-F statistic used
in the test as well as the method of permutation testing
are described in Appendix D.

If the linear and polynomial models are both signif-
icant, another interesting question can be addressed:
Which of the two models is the most appropriate to
describe the data? To answer this question, a permu-
tation procedure is used to assess the difference in var-
iance accounted for, between the polynomial model and
the linear model nested into it. Details of the method
are presented in Appendix D.

Appendix D also reports the results of simulation
studies showing (1) that our permutation test of sig-
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TABLE 1. The number of individuals of hunting spiders caught in 28 traps (sites) over a period of 60 weeks, plus the values
of four environmental variables measured at the same sites, from van der Aart and Smeenk-Enserink (1975).

Site
no.

Sp. 1,
Al. accent.

Sp. 2,
Al. cuneata

Sp. 3,
Al. fabrilis

Sp. 4,
Ar. lutetiana

Sp. 5,
Ar. perita

Sp. 6,
Au. albimana

Sp. 7,
Pa. lugubris

Sp. 8,
Pa. monticola

1
2
3
4
5

25
0

15
2
1

10
2

20
6

20

0
0
2
0
0

0
0
2
1
2

0
0
0
0
0

4
30

9
24

9

0
1
1
1
1

60
1

29
7
2

6
7
8
9

10

0
2
0
1
3

6
7

11
1
0

0
0
0
0
1

6
12

0
0
0

0
0
0
0
0

6
16

7
0
0

0
1

55
0
0

11
30

2
26
22

11
12
13
14

15
16

3
0

1
13
43

2

2
0
1
0

0
0
2
1

0
0
0
0

1
0

18
4

0
0
1
3

95
96
24
14

15
16
17
18
19

0
0
0
0
0

0
3
0
1
1

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

6
6
2
5

12

0
0
0
0
0

20
21
22
23
24

0
0
7

17
11

2
1
0
0
0

0
0

16
15
20

0
0
0
0
0

0
0
4
7
5

0
0
0
0
0

13
16

0
2
0

0
1
2
6
3

25
26
27
28

9
3

29
15

1
0
0
0

9
6

11
14

0
0
0
0

0
18

4
1

2
0
0
0

1
0
0
0

11
0
1
6

Notes: The 12 species (Sp. 1 to Sp. 12) form the matrix of response variables Y. In the first example (RDA), the matrix
of explanatory variables X contains the first two environmental variables, while in the second example (CCA), it contains
all four. Water content is expressed as percentage of dry mass; reflection refers to reflection of soil surface under a cloudless
sky (3100); Calamagrostis coverage is percent cover by Calamagrostis epigejos; Corynephorus coverage is percent cover
by Corynephorus canescens.

nificance for polynomial RDA and CCA has correct
type I error, and (2) that the test for the difference in
explained variation between the polynomial and linear
models also has correct type I error.

NUMERICAL EXAMPLES

Numerical examples of polynomial RDA and CCA
are now presented. We used a well-known data set con-
sisting of the abundance of 12 hunting spiders at 28
sampling sites, as well as the values of four environ-
mental variables measured at the same sites. The data,
displayed in Table 1, are from van der Aart and
Smeenk-Enserink (1975: Tables 2 and 4) who studied
them using PCA and canonical correlation analysis
(CCoA). This data set has been reanalyzed by ter Braak
(1986) in the paper where CCA was first described and
by other authors since then. It contains several nonlin-
ear species–environment relationships; examples are
displayed in Fig. 3. This property was discussed by van
der Aart and Smeenk-Enserink in their paper (1975).
The polynomial equations for the relationships between
the 12 species and two of the environmental variables
are shown in Table 2. This data set is then ideally suited
to display the advantages of polynomial canonical anal-
ysis.

Preliminary PCA of the log-transformed spider
abundance data and CCA of the raw data confirmed
the existence of a natural gradient in the data. The PCA
ordination (not presented here; a similar ordination,
including the same 28 plus 72 other traps, was pub-
lished by van der Aart and Smeenk-Enserink [1975:
Fig. 3]), had the shape of a horseshoe in two dimen-
sions, while CA produced an arch. The arrangement of
the sites along these bent structures, which indicates a
replacement of species along an environmental gradient
(see discussions in ter Braak 1987b and Legendre and
Legendre 1998), is essentially the same as in the poly-
nomial canonical ordinations presented below (Figs. 4b
and 5). Van der Aart and Smeenk-Enserink (1975) had
selected environmental variables to explain this gra-
dient. They tested their hypotheses using CCoA; ter
Braak (1986) did the same using CCA. We will now
show that polynomial RDA and CCA provide better
tests of these hypotheses than the linear forms. The
results are better in two ways: the polynomial analyses
provide (1) a higher proportion of variation of the spe-
cies data explained by the model, which leads to more
significant statistical tests, and (2) clearer identification
of the variables explaining the gradient.
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TABLE 1. Extended.

Sp. 9,
Pa. nigriceps

Sp. 10,
Pa. pullata

Sp. 11,
Tr. terricola

Sp. 12,
Zo. Spinimana

Water
content Reflection

Calamagrostis
coverage

Corynephorus
coverage

12
15
18
29

135

45
37
45
94
76

57
65
66
86
91

4
9
1

25
17

10.3
21.1
12.9
14.5
20.4

50
5

40
20
10

50
80
30

100
90

0
0
0
0
0

27
89

2
1
0

24
105

1
1
0

63
118

30
2
1

34
16

3
0
0

29.4
24.0
13.8
12.0

9.0

2
10

2
30
40

10
90
10

0
0

0
0
0

20
20

0
1

53
15

1
8

72
72

4
13
97
94

0
0

22
32

9.2
9.9

33.7
21.9

40
40
30

3

0
2

80
20

30
50

0
0

0
2
0
0
1

0
0
0
0
0

25
28
23
25
22

3
4
2
0
3

26.3
20.7
28.0
22.7
18.6

2
1
3
3
1

0
0
0
0
0

0
0
0
0
0

0
0
0
0
0

0
1
0
0
0

22
18

1
1
0

2
2
0
0
0

22.4
19.6

3.5
3.3
5.2

1
1

50
60
55

0
0
2
2
2

0
0
2

20
20

6
0
0
0

0
0
0
0

16
1
0
2

6
0
0
0

6.2
2.7
2.6
2.6

10
80
40
40

1
0
0
0

0
10
20
30

TABLE 2. Polynomial regression modeling of the spider species data (log-transformed vari-
ables) with respect to water content and reflection of the soil.

Species Water Reflection (Water)2
Water 3

Reflection (Reflection)2 R2

Sp. 1
Sp. 2
Sp. 3
Sp. 4
Sp. 5
Sp. 6

20.28
0.75

20.84
0.47

20.50

0.82
0.69

0.54

0.31

0.67

20.29
0.44

20.47

0.30

0.8267
0.5524
0.8440
0.2230
0.8981
0.1943

Sp. 7
Sp. 8
Sp. 9
Sp. 10
Sp. 11
Sp. 12

0.45
0.77
0.81
0.67

20.84
0.72

0.65
20.29

0.50

0.45

0.80
20.72

0.6147
0.4873
0.2049
0.3795
0.6720
0.4526

Notes: The table gives only the standard partial regression coefficients (which are comparable)
for the terms that were selected by backward elimination (rejection level: a 5 0.05). The
intercepts are omitted. ‘‘Water’’ refers to the water content of the soil; ‘‘reflection’’ refers to
the reflection of soil surface.

Example one: polynomial redundancy
analysis (RDA)

The 12 species of spiders form the matrix of response
variables Y (Table 1). In order to keep our first example
small and manageable, the matrix of explanatory var-
iables X only contains the first two environmental var-
iables: water content of the soil (variable ‘‘Water’’) and
reflection of soil surface (variable ‘‘Reflection;’’ high
values of reflection indicate dry sites). The two envi-
ronmental variables are highly negatively correlated in

the data set: r 5 20.7482. The species data were log e(y
1 1) transformed before analysis. Centering the ex-
planatory variables on their respective means, before
calculating the quadratic terms of the polynomial, re-
duced the collinearity between the linear and quadratic
terms, as explained in step 1 of the polynomial re-
gression algorithm.

The eigenvectors (species scores from Eq. B.4) were
normalized to length 1 in order to represent the species
and sites as a distance biplot. The site scores which
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FIG. 3. Two examples of quadratic relationships of spider
species from Table 1, after log e(y 1 1) transformation. For
the upper panel the regression equation for uncentered var-
iables (R2 5 0.8440) is ln(Sp. 3 1 1) 5 3.4984 2 0.3364 3
(Water) 1 0.0077(Water)2, and the regression equation for
centered variables (R2 5 0.8440) is ln(Sp. 3 1 1) 5 20.6198
2 0.1027(Water) 1 0.0077(Water)2. For the lower panel the
regression equation for uncentered variables (R2 5 0.4873)
is ln(Sp. 8 1 1) 5 0.5366 2 0.1368(Reflection) 1 0.0019 3
(Reflection)2 and the regression equation for centered vari-
ables (R2 5 0.4873) is ln(Sp. 8 1 1) 5 0.9477 2 0.0475 3
(Reflection) 1 0.0019(Reflection)2. Sp. 3 is shown as a func-
tion of water content whereas Sp. 8 is shown with respect to
reflection of soil surface. The standard partial regression co-
efficients are given in Table 2. The R2 coefficient is the same
for noncentered and centered data although the equations dif-
fer.

→

FIG. 4. RDA distance biplots of the spider species data of Table 1: results of (a) linear and (b) polynomial RDA. The
numerical results of the polynomial RDA are in Table 4. The sites scores are linear combinations of the environmental
variables. Dots are the sampling sites (with site numbers). Full lines without arrowheads represent the species. Full arrows
represent the biplot scores of environmental variables for the individual terms of the polynomial; dashed arrows represent
the biplot scores of environmental variables based upon the multiple correlations of (Water, [Water]2) and (Reflection,
[Reflection]2) with the axes (Eqs. 12 and 13). The lengths of all species lines and environmental variable arrows have been
multiplied by 10 for clarity; this does not change the interpretation of the biplots.

are combinations of the environmental variables X
were obtained from Eq. 6. Biplot scores for the two
environmental variables, in polynomial form, were ob-
tained from Eq. 12 using multiple linear correlations.
In addition, simple linear correlations were computed
for the individual terms of the quadratic polynomial.
The correlations were scaled using Eq. B.7 for repre-
sentation in the biplot. A linear RDA was also com-
puted for comparison (Table 3).

Permutation tests were performed for linear and
polynomial RDA to assess the significance of the two
models. In both cases, the P value was 0.001 after 999

permutations; the two models were highly significant.
The significance of the difference in explained varia-
tion between the two models was assessed using the
test described in the section Tests of significance in
polynomial RDA and CCA; the P value was 0.002 after
999 permutations. So the polynomial model seems
more appropriate than the linear model to describe the
relationships between Y and X. Detailed results of the
polynomial RDA are presented in Table 4.

After hypothesis testing, one may be interested in
looking at the species–environment relationships in
some detail. Consider the first species (Sp. 1, Al. ac-
centuata) of Table 1, for example. The polynomial re-
gression algorithm provided the following quadratic
equation to approximate the abundances (log-trans-
formed) at the various sites i:

ŷ (Sp. 1) 5 0.3585 2 0.0528x 1 0.0392xi i1 i2

2 21 0.0022x 1 0.0006x x 2 0.0009xi1 i1 i2 i2

where x1 is Water and x2 is Reflection. With only two
explanatory variables, as in the present example, our
polynomial regression algorithm makes no selection
among the five terms of the quadratic polynomial equa-
tion. Because there are only two explanatory variables
in the analysis, the same equation would have been
obtained using the linear and quadratic variables as
explanatory variables in a regular multiple regression.
With more variables, our polynomial regression algo-
rithm does not guarantee that the terms selected in the
equation always represent the most optimal combina-
tion; this is the case for any step-by-step variable re-
duction procedure.

To appreciate the advantages of polynomial RDA,
compare the biplots obtained from the linear and poly-
nomial analyses (Fig. 4). Biplot 4a is from the linear
RDA. Biplot 4b corresponds to polynomial RDA. The
sites are positioned in terms of their responses to the
explanatory variables in the biplot (Eqs. B.6 and 6)
because the site scores are linear combinations of the
environmental variables.

1) Polynomial RDA produced five canonical axes
(Table 4) explaining 57.6% of the variation of Y. A
large portion of the variance (53.7%) is accounted for
by the first two canonical axes. This is considerably
more than the 35.4% of the variation of Y accounted
for by linear RDA on two canonical axes. The differ-
ence is due to the fact, shown in Table 2 (see also Fig.
4b), that most species (all except Sp. 4, 9, and 12) are
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TABLE 3. Canonical eigenvalues and related data obtained
using linear RDA for the spider species data.

Canonical axes

I II

Eigenvalues (with respect to total variance in Y 5 20.36706)

6.04197 1.16368

Fraction of total variance in Y

29.66540 5.71352

Cumulative fraction of total variance in Y accounted for by
axes I and II

29.66540 35.37892

related significantly to the quadratic terms of the poly-
nomial of the explanatory variables: (Water)2, Water 3
Reflection, and (Reflection)2.

2) The positions of the species with respect to the
environmental variables Water and Reflection are most-
ly the same in the linear and polynomial biplots, except
for species 5. One diagram is simply rotated by ;208
with respect to the other. The angular order of the spe-
cies around the biplot is almost identical to that in the
PCA species diagram presented in Fig. 3 of van der
Aart and Smeenk-Enserink (1975). So this is not where
we should look for differences between the linear and
polynomial solutions.

3) As mentioned above, the PCA solution published
by van der Aart and Smeenk-Enserink (1975: Fig. 4)
had the shape of a horseshoe; in PCA ordination, when
there is replacement of the species along a single gra-
dient, the ordination of the sites has a horseshoe shape
in two dimensions. In the linear RDA biplot (Fig. 4a),
the sites are shrunk into a crescent because the analysis
is trying, with little success, to model their positions
as linear responses to the two environmental variables;
the linear analysis is not very successful at recon-
structing the gradient. In the polynomial RDA biplot
on the contrary (Fig. 4b), the sites are distributed in
the same horseshoe fashion as in the PCA ordination.
The species–environment correlation of polynomial
RDA are 83% and 82%, respectively, for canonical
axes 1 and 2. For linear RDA using Water and Reflec-
tion, these correlations were 80% and 43%, respec-
tively, for axes 1 and 2. Thus polynomial RDA has
produced an important gain in accuracy of the repre-
sentation of the sites, compared to linear RDA. The
good reconstruction of the sites in biplot 4b is due to
the presence of the quadratic terms of the environ-
mental variables; they are needed to correctly model
the species (Table 2) and obtain a horseshoe-like dis-
tribution of the sites.

4) In RDA biplots, projecting a site at right angle
on a species approximates the value of the site along
that species axis. It is easy to check, in Table 1, that
the sites found in quadrant III of the biplot (Fig. 4b)
have the highest frequencies of occurrence of the spe-

cies found in that quadrant (species 2, 4, 6, 8, 9 and
10). The reconstructed site scores in the linear biplot
(Fig. 4a) do not position these sites correctly with re-
spect to those species.

5) In RDA biplots, the angles between the species
and the environmental variables reflect their correla-
tions. Indeed, the variable Water 3 Reflection has
strong positive correlations with species 2, 6, 9, 10,
11, and 12 and a strong negative correlation with spe-
cies 5. (Reflection)2 is strongly positively correlated
only to species 5; (Water)2 has strong positive corre-
lations only with species 3 and 5.

Example two: polynomial canonical correspondence
analysis (CCA)

For CCA, matrix Y contained the same 12 species
of spiders. The data were not log transformed because
CA and CCA are designed to analyze frequency data
directly. Y was transformed into matrix Q̄ of contri-
butions to chi-square. The matrix of explanatory var-
iables X contained all four environmental variables of
Table 1. CCA based on polynomial regression was
computed for these data. The results of the analysis
were compared with those of classical linear CCA (Ta-
ble 5). For the biplot, only the positions of the first-
degree terms, their squares and the simple products
were computed. The correlations of more complex
terms with the ordination vectors (Eq. C.10 or C.11)
could easily be computed, but their interpretation
would be difficult.

Permutation tests were performed for linear and
polynomial CCA to assess the significance of the two
models; the rows of matrix Q̄ were randomized with
respect to matrix X of the explanatory variables. In
both cases, the P value was 0.001 after 999 permuta-
tions; so, the two models were highly significant. The
significance of the difference in variance accounted for
by the two models was assessed using a permutation
test. The P value was 0.001 after 999 permutations;
this strongly suggests that the polynomial model is
more appropriate than the linear in this example. De-
tailed results of the analysis are the following:

1) The analysis produced 12 canonical axes. The
corresponding canonical eigenvectors accounted to-
gether for 80.3% of the variation of Q̄. The first six
axes are shown in Appendix E; they account together
for 78.2% of the variation of Q̄. This is noticeably
larger than the 43.8% of the variation of Q̄ accounted
for on four canonical axes by CCA based on weighted
linear regression. The first two canonical axes explain
52.2% of the variation and the first three 64.9%. There-
fore, two or three dimensions would form interesting
ordination spaces for biplots since these axes account
for a great deal of the variation of Q̄. The higher frac-
tion of explained variation obtained by polynomial
CCA is the result of (1) the higher number of con-
strained ordination axes and (2) the inclusion of sec-
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TABLE 4. Results of polynomial RDA of the spider species data (selected output).

Canonical axes

I II III IV V

Eigenvalues (with respect to total variance in Y 5 20.36706)
7.51597 3.42170 0.33258 0.31649 0.14770

Fraction of total variance in Y
36.90258 16.80017 1.63295 1.55395 0.72518

Cumulative fraction of total variance in Y accounted for by axes I–V
36.90258 53.70275 55.33570 56.88965 57.61483

Species scores (normalized eigenvectors, matrix U)
Al. accentuata
Al. cuneata
Al. fabrilis
Ar. lutetiana
Ar. perita
Au. albimana

0.26607
20.27671

0.34661
20.09945

0.24240
20.23744

20.46920
20.21817
20.13584
20.03477

0.00115
20.13512

20.22110
20.16059
20.02597

0.36491
0.44307

20.12822

0.13133
0.25158
0.61271
0.06704
0.23270
0.27683

20.00433
0.41811

20.15820
20.28261

0.67117
0.09486

Pa. lugubris
Pa. monticola
Pa. nigriceps
Pa. pullata
Tr. terricola
Zo. spinimana

20.15772
20.06342
20.33866
20.38561
20.47841
20.29378

0.35779
20.62076
20.17318
20.34346

0.12382
0.13298

20.56306
20.29975

0.03770
0.39806

20.02433
0.10671

0.06533
20.20388

0.31161
20.22958

0.02489
0.46097

0.31349
20.09266
20.02935

0.16962
0.00236

20.35256

Site scores from Eq. B.5, vector cord
Site 1
Site 2
Site 3
Site 4
Site 5

22.35239
23.44760
22.54619
24.47463
24.99663

23.76678
0.30630

23.44231
21.51194
21.07440

20.18112
1.15077

20.15865
1.12045
1.52590

20.30880
0.61495
0.61822
1.10953
1.65727

0.26217
0.15753
0.71142

20.03697
0.36330

Site 6
Site 7
Site 8
Site 9
Site 10

23.90795
25.13140
21.72782

1.60351
2.92617

20.89575
22.64051

2.21318
20.64764
20.50835

1.75764
1.45755

22.21051
20.30795
20.61202

0.98327
1.01480
0.43691

22.03296
21.72588

21.09182
20.53534

1.48668
20.43313
20.91893

Site 11
Site 12
Site 13
Site 14
Site 15

2.28290
0.23639

24.83237
24.09718

0.57466

22.47035
23.19603
22.83936
20.49444

3.38082

21.30393
20.91572

0.48656
1.02181

20.35775

21.35677
21.83007

1.94347
0.20035

20.86334

20.64618
0.51147
0.35610

20.49018
20.38539

Site 16
Site 17
Site 18
Site 19

20.29880
0.83111
0.81444
0.10914

2.93130
3.02950
2.99010
3.31586

20.51779
0.09058

20.53020
20.78850

20.06665
21.05330
21.33807
20.43557

0.08358
20.54977

0.34486
0.07786

Site 20
Site 21
Site 22
Site 23
Site 24

0.30451
0.16624
4.37169
4.45336
4.91037

3.33570
2.80162
0.14199

20.36262
20.34115

20.95217
20.92359

0.50280
20.33924

0.41907

20.67733
21.07187

0.46620
0.54394
0.61543

0.39239
0.33662
0.00844
0.59587
0.06733

Site 25
Site 26
Site 27
Site 28

0.95260
4.27300
4.95996
4.04290

20.61796
1.27126

20.26499
20.64305

21.07489
1.59992
0.35801

20.31703

1.59368
0.36615
0.49178
0.10466

21.24402
1.14963
0.09376

20.66730

Biplot scores of environmental variables (from Eq. 12)
Water
Reflection

20.55831
0.42253

0.13356
20.37818

0.08258
0.04846

0.09274
0.01118

20.02380
0.06100

Biplot scores of environmental variables (from Eq. B.7)
Water
Reflection
(Water)2

Water 3 Reflection
(Reflection)2

20.52272
0.40913
0.11014

20.37820
0.30721

0.12139
20.24304
20.03559
20.12150

0.11586

0.04417
0.02803
0.07593

20.08382
0.04838

0.01535
0.00474
0.09274
0.01591
0.01109

20.01643
0.03246

20.01962
20.02378

0.06100

Notes: Matrix Y: hunting spider species 1–12. Matrix X: water content, reflection of soil surface. Either set of biplot scores
can be used to represent the environmental variables in biplots. Users of the program may also request the matrix of regression
coefficients B of the multiple linear regressions of Y on X (if classical linear RDA or CCA is computed) or the polynomial
coefficients for each response variable y of Y (if polynomial RDA or CCA is used). The program may also carry out
permutation tests of the significance of the linear and polynomial models, as well as the significance of the difference in
variance accounted for between the two models.
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ond-order terms which allow full recovery of the CA
arch.

2) The linear CCA solution produced quite a bit of
distortion to the arch representing the gradient in the
CA biplot, because it imposed the constraint that the
ordination axes be linearly related to the environmental
variables. The linear CCA ordination is not shown here;
the positions of the points are similar to the CCA results
presented in Fig. 1 of ter Braak (1986) with some dif-
ferences due to the fact that only two of the environ-
mental variables (water content and reflection of soil
suface) were the same in the two analyses. The poly-
nomial CCA solution (Fig. 5) is more successful at
recovering the arch because it incorporates quadratic
environmental terms in the explanatory equations of
the species. As a result, the ordination of the sites in
Fig. 5 is very similar to that of the CA biplot. The
biplot is dominated by the opposition between two pairs
of environmental variables in linear and quadratic
forms: on the one hand, water content and cover by
the grass Calamagrostis epigejos indicate wet sites,
which are found in quadrant II of Fig. 5. On the other
hand, reflection of soil surface and cover by the grass
Corynephorus canescens indicate dry sites; abundance
of Corynephorus was highly correlated with the per-
centage of bare sand in van der Aart and Smeek-En-
serink (1975). In the linear CCA biplot (not shown),
which does not display the arch properly, Calama-
grostis is not associated with water content, and Cor-
ynephorus is not associated with reflection of the soil
surface.

3) The sites form three main groups, more densely
clustered than in the RDA ordination (Fig. 4): the driest
sites 22 to 28, found in quadrant I of Fig. 5, are as-
sociated with high frequencies of species 3 and 5; the
more humid sites 2, 4 to 8, and 13 to 21 (in the insert
of Fig. 5) are associated with high frequencies of spe-
cies 4, 6, 7, and 9 to 12; sites 1, 3, and 9 to 12, with
intermediate humidity, are associated with high values
of species 8.

4) Projecting the species at right angles on the water
content variable, for example, provides an ordination
of the species of spiders along this variable. Sp. 5 has
the lowest weighted average with respect to water con-
tent, followed by Sp. 3, Sp. 1, and Sp. 8; all the other
species (except Sp. 2), found in quadrant II of the bi-
plot, occupy approximately the same position on the
positive side of this variable. When projecting the spi-
der species onto the Corynephorus percent cover, they
clearly fall into two groups; species 1, 3, 5, and 8,
mentioned in the previous sentence, occupy nearly the
same position along this variable.

5) The environmental variables were centered before
the other terms of the polynomial expression were com-
puted. In CCA, the centering involves the row weights
pi1 of the species data table. This means, for instance,
that high values of the Water 3 Reflection variable
would correspond to sites having high (or low) values

for both variables; no such site is found in the data set,
with the consequence that none occupies quadrant III
where this variable is pointing, except site 3 which lies
near the origin. Sites 22 to 28 have, however, high
negative values for this product variable, due to the
very low water content combined with high values of
reflection of the soil; so they are found in quadrant I,
which is opposite to the arrow representing this product
variable. Sites 22 to 28 also have high values of
(Water)2 (because they have the most extreme values
of the centered variable Water, on the negative side)
and (Reflection)2 (because they have among the highest
values of centered Reflection, on the positive side).
Calamagrostis and Corynephorus are both absent from
sites 15 to 21, found high in the insert of Fig. 5; as a
consequence, these sites have the highest negative val-
ues on both of these centered variables, which gives
them the highest positive values for the product vari-
able Calamagrostis 3 Corynephorus. There are no sites
where both of these plant species are found together
in any abundance. The role of the other product vari-
ables in the analysis can be interpreted in the same
way.

In this biplot, the individual terms of the polynomial
as well as the combined terms have been drawn in order
to show how polynomial CCA allowed the full rep-
resentation of the arch. In an actual application of the
method, a simpler diagram showing only the arrows
for the multiple correlation biplot scores (Water and
[Water]2 combined, etc.) would be sufficient to describe
the main environmental axes of variation of the data.

The equations generated by the polynomial regres-
sion algorithm to approximate the q̄ values of the first
species (Sp. 1: Al. accentuata) are the following:

x 5 20.4167 2 0.0464x 2 0.0708xi14 i1 i4

21 0.000241x 2 0.007547x xi1 i1 i4

22 0.000091xi4

x 5 0.1440 2 0.0030x 1 0.0075xi23 i2 i3

22 0.000034x 2 0.000071x xi2 i2 i3

22 0.000390xi3

q̂ (Sp. 1) 5 xi i,1423

5 20.0101 1 1.0157x 1 0.9915xi14 i,23

1 0.508529x xi14 i23

where x1 is water content, x2 is reflection of the soil
surface, x3 is percent cover by Calamagrostis, and x4

is percent cover by Corynephorus. The three equations
above illustrate the approximation process for the first
species: in the first iteration, the explanatory variables
x1 and x4 were combined to form a new variable x14

(first equation), x2 and x3 in the second iteration to form
x23 (second equation), the new combined variables x14



April 2002 1159POLYNOMIAL RDA AND CCA

FIG. 5. Polynomial CCA biplot (scaling type 2) for the spider species data presented in Table 1; the numerical results of
the analysis are in Appendix E. Dots are the sampling sites (sites scores are from matrix V̂, Eq. C.7 [see Appendix C]);
numbers are the site numbers. Full lines without arrowheads represent the species (species scores are from matrix F̂, Eq.
C.9). Full arrows represent the biplot scores of environmental variables for the individual terms of the polynomial (Eq. C.12);
dashed arrows represent the biplot scores of environmental variables based upon the multiple correlations of the linear and
quadratic terms with the axes (Eqs. 12 and 13). The lengths of the environmental variable arrows have been multiplied by
five for clarity; this does not change the interpretation of the diagram. The insert shows details of the ordination of the species
and sites in quadrant II.

TABLE 5. Canonical eigenvalues obtained using linear CCA
for the data in Table 1.

Canonical axes

I II III IV

Eigenvalues (with respect to total variance in Q̄ 5 1.92296)

0.54518 0.17247 0.09789 0.02682

Fraction of total variance in Q̄

28.35114 8.96922 5.09045 1.39477

Cumulative fraction of total variance in Q̄ accounted for by
axes I–IV

28.35114 37.32036 42.41081 43.80558

and x23 were joined in the third iteration to form x1423

(third equation), which is equal to the estimated value
of the response variable q̄. The development of this
regression procedure is depicted in Fig. 2.

The polynomial model does not necessarily provide
such good results for all data sets; there are indeed

cases where the response variables in Y are only lin-
early related to the explanatory variables. Using the
principle of parsimony of the 14th century logician and
philosopher William Ockham, ‘‘pluralites non est po-
nenda sine necessitate,’’ the linear model must be seen
as the best representation of the data, in such cases,
because it contains fewer parameters. Our test of sig-
nificance of the difference between the two models
points users towards the most appropriate one.

DISCUSSION

Researchers often want to test hypotheses relating
response (e.g., species data) to explanatory (e.g., en-
vironmental) variables; canonical analysis is appropri-
ate in such studies. In many instances, the hypotheses
do not specify that the relationships between the two
data sets are linear; they are not, in most cases, when
analyzing species composition data. We have described
how redundancy analysis (RDA) and canonical cor-
respondence analysis (CCA) can be modified to express
polynomial relationships between the response (Y) and
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explanatory variables (X), instead of linear relation-
ships as in classical RDA and CCA.

An empirical polynomial regression algorithm was
developed to do so. Consider a canonical analysis prob-
lem with a fairly small number of environmental var-
iables, e.g., 10. The number of combination terms con-
taining these variables in the first and second degree
is very large. It may often be greater than the number
of observations; this, in turn, would jeopardize the in-
version [X9X]21 required to estimate the regression co-
efficients. Methods of selection of the most important
terms of the polynomial equation are required to avoid
overfitting. The problem can be approached from two
angles. (1) The first angle is to reduce the number of
variables in the model. Users of the method who are
considering many explanatory variables may compute
polynomial RDA or CCA with different combinations
of explanatory variables to discover the combination
providing the most significant polynomial model. In
fact, some data may be better explained by including
linear and quadratic contributions of some variables
and only linear contributions of the others. Further-
more, when working with m explanatory variables, at
any iteration number k (1 # k , m 2 1), one could
check the level of significance of the intermediate lin-
ear regression of y on the reduced matrix X comprised
of m 2 k columns. Such a strategy would allow users
to select an intermediate regression model which would
be neither a classical linear model nor a complete qua-
dratic polynomial. Our polynomial regression algo-
rithm could easily be adapted to accommodate these
modifications. (2) When the variables to include in the
model have been selected, the second angle is to reduce
the number of terms (combinations of the original var-
iables) in the model. This could be done in a variety
of ways, all of which would be heuristic. Our method
contains a heuristic selection strategy meant to opti-
mize the least-squares loss function, at each step and
also in general. Actually, the algorithm performs a
number of linear multiple regressions one after the oth-
er. The loss function minimized by the method is the
same as in classical multiple regression. In our algo-
rithm, each variable is limited to a power of two in any
term of the polynomial equation. Like any heuristic
procedure, this one may find a local minimum instead
of the global one; its main advantage is that it runs in
polynomial time with respect to the size of the data
matrices, whereas a procedure that would try in turn
all possible subsets of the full polynomial model would
be running in exponential time and would thus be in-
applicable to real data sets. Our recommendation to
users is to use polynomial RDA or CCA on data sets
containing more than (3m 2 1) observations.

Polynomial regression does not guarantee to always
produce a model with greater significance than the lin-
ear model. If both the linear and polynomial models
prove to be significant, a permutation test may be used
to assess the difference in variance accounted for by

the two models and determine which is the most ap-
propriate one to describe the data. In the real-data ex-
amples reported in this paper, the polynomial models
of the explanatory variables fitted to the data were de-
monstrably better than the linear models. From the eco-
logical point of view, they fitted the horseshoe or arch
representing the gradient present in the data much more
efficiently than the linear forms of analysis. From the
statistical point of view, they accounted for greater per-
centages of the total variance of the response variables
than classical RDA and CCA based upon linear re-
gression, and explained a significant part of the vari-
ation which had remained unexplained by the linear
models. On the other hand, simulations have shown
that if the response variables are linearly related to the
explanatory variables, the test of significance of the
difference in explained variation will point to the linear
canonical model as being the most appropriate; if the
response-to-explanatory relationships are polynomial,
the test will point to the polynomial model as the most
appropriate one.
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140.

ter Braak, C. J. F., and P. Smilauer. 1998. CANOCO reference
manual and user’s guide to CANOCO for Windows: soft-
ware for canonical community ordination. Version 4. Mi-
crocomputer Power, Ithaca, New York, USA.

van der Aart, P. J. M., and N. Smeenk-Enserink. 1975. Cor-
relations between distributions of hunting spiders (Lycos-
idae, Ctenidae) and environmental characteristics in a dune
area. Netherlands Journal of Zoology 25:1–45.

van der Burg, E., and J. de Leeuw. 1983. Non-linear canon-
ical correlation. British Journal of Mathematical and Sta-
tistical Psychology 36:54–80.

APPENDIX A

A more detailed consideration of the issues of the number of degrees of freedom and the number of independent parameters
involved in the computation of the polynomial regression procedure is available online in ESA’s Electronic Data Archive:
Ecological Archives E083-018-A1.

APPENDIX B

A description of the direct computational approach to redundancy analysis (RDA) is available online in ESA’s Electronic
Data Archive: Ecological Archives E083-018-A2.

APPENDIX C

A description of the direct computational approach to canonical correspondence analysis (CCA) is available online in
ESA’s Electronic Data Archive: Ecological Archives E083-018-A3.

APPENDIX D

A description of the permutational methods used in polynomial RDA and CCA to test the significance of the relationships
between the response and explanatory data matrices, and to assess the difference in variance accounted for between the
polynomial model and the linear model nested into it, is available online in ESA’s Electronic Data Archive: Ecological
Archives E083-018-A4. The appendix also reports the results of simulations showing that the tests have correct type I error.

APPENDIX E

A table of results of polynomial CCA of the spider data (selected output) is available online in ESA’s Electronic Data
Archive: Ecological Archives E083-018-A5.

SUPPLEMENT

Software to compute nonlinear canonical analysis (program POLYNOMIAL RDACCA: source code, compiled versions for
Macintosh and Windows, program documentation, and example data files) is available online in ESA’s Electronic Data Archive:
Ecological Archives E083-018-S1. Also available on the WWWeb site <http://www.fas.umontreal.ca/biol/legendre/>.
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APPENDIX A

ECOLOGICAL ARCHIVES E083-018-A1

NUMBER OF INDEPENDENT PARAMETERS ESTIMATED BY THE POLYNOMIAL REGRESSION PROCEDURE

This Appendix will consider in more detail the issues of the number of degrees of
freedom and the number of independent parameters involved in the computation. Since the
new polynomial algorithm goes through a number of complex steps, this issue may be a
source of confusion for non-statistically-oriented readers who may be afraid of overfitting the
data. The large number of terms which can be obtained in the complete polynomial form does
not reflect the number of independent parameters estimated by the polynomial algorithm.
Consider the four (m) environmental variables and the first response variable (species 1) in
Table 3 of the main paper, used to illustrate polynomial CCA in the second numerical example
of the paper; n = 28.

• During the first iteration, in the first step of multiple linear regression (Eq. 1 of the main
paper), m = 4 parameters were estimated (plus the intercept, which will not be mentioned
again), one for each of the variables x1, x2, x3 and x4.

• During step 3 of the algorithm, 5 parameters were estimated using Eq. 3; they pertain to x1,

x4, x1
2 , x1x4, and x4

2 . Two of these parameters refer to variables x1 and x4. Since we already
had initial estimates for these 2 parameters (from Eq. 1, previous paragraph), they were
combined with the new estimates of these parameters obtained from Eq. 3. This provided the
vector of fitted values called x14 (Eq. 4) which was calculated using a total of 5 parameters.

Considering the parameters estimated above for x2 and x3, our total up to now is 7 parameters.
The 5 parameter estimated during step 3 are dependent upon the estimates initially obtained
for parameters x1, x2, x3 and x4. Non-independent parameter estimates are discussed further
below.

• During the second iteration, 5 parameters again were estimated to provide the vector of fitted

values denoted x23; they belong to x2, x3, x2
2 , x3

2 , and x2x3. Two of these pertain to x2 and x3
for which we already had initial estimates, with which they were combined using Eq. 4. Our
total up to now is 10 parameters, but again, the group of 5 parameter estimates are dependent
upon the parameters previously estimated for x1, x4, and x14.

• During the third and final iteration of the algorithm, 3 parameters were estimated during step
3 (x14  x23 and x14x23), but only one of them, for the cross-product x14x23, was a new

parameter. The parameters involved in the construction of  x14 and x23, in the previous 2
paragraphs, were not re-estimated during the last computation step.

The total number of parameters is 11 in this example. They include the 4 independent
parameters initially computed for the linear terms, plus all the other parameters estimated
during the following steps, that depended partly upon them. So, the number of degrees of
freedom used by the equation to estimate the fitted values ˆ q i (Sp. 1) is a fractional number
between 4 and 11 in this example.
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In our polynomial regression procedure, for a matrix of environmental variables with
m columns, the actual number of estimated parameters is 3m–1; they are not all estimated
independently of one another, however. Independent estimates are obtained when parameters
are estimated simultaneously, as part of the same estimation process (e.g., when they pertain to
the same regression equation). Each parameter estimate is a partial estimate which takes into
account the values of all the other parameters present in the equation. The number of degrees
of freedom used by the estimation process is given by the number of independent parameter
estimates. This number can be fractional. When parameters are estimated from residuals of a
model, the new estimates are not independent of the model parmeters used to compute these
residuals. (Fractional numbers of degrees of freedom are found in other methods of data
analysis used by ecologists, for instance in tests of significance for spatially autocorrelated
data.) In our algorithm for polynomial regression, estimating some parameters in a non-
independent way reduces the fit of the model to the data by some small amount, but it
increases the power of the tests of significance. Some authors might prefer to use the opposite
strategy, sacrificing power to precision; the problem is, however, that the polynomial
regression procedure would be computationally much slower on presently available hardware,
impairing the permutation tests described in the section “Tests of significance in polynomial
RDA and CCA” even for fairly small data sets.

The actual number of degrees of freedom left for statistical testing is (n–1) minus the
number of independent parameters. The number of independent parameters is a number larger
than m and smaller than or equal to (3m–1); m is the number of independent parameters
estimated during the first iteration of the algorithm; (3m–1) is the total number of parameters
estimated during all cycles of the algorithm, including the independent and dependent
parameters.

The maximum number of non-zero canonical eigenvalues and corresponding canonical
axes that can be obtained in polynomial RDA and CCA is min[p,(n–1)]. Our recommendation
to preserve good power in statistical tests is to only use polynomial RDA or CCA on data sets
containing more than (3m–1) observations.
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APPENDIX B

ECOLOGICAL ARCHIVES E083-018-A2

OUTLINE OF CLASSICAL REDUNDANCY ANALYSIS (RDA)

The direct computational approach to redundancy analysis proceeds as follows
(Legendre and Legendre 1998). The mathematics behind RDA is summarized here to make it
easier for readers to understand the modifications required by polynomial RDA. Matrices Y
and X have been described in the section “Redundancy Analysis and its Polynomial
Generalization”.

1) Data preparation and multiple regression. For convenience, the variables in Y and X are
centered on their respective means. The first step consists of carrying out multiple linear
regressions for each variable in Y on all variables in X and computing the fitted values. The
matrix of fitted values ˆ Y  used in the following steps is obtained from the equation:

ˆ Y  = XB  = X[X'X ] 1X'Y (B.1)

where B is the matrix of regression coefficients of the response variables Y on the regressors
X. An extra column with 1’s should be added to matrix X, before the multiple regression, to
allow estimation of the intercepts. (In linear RDA, centering the variables in Y and X
eliminates the intercepts; this is not necessarily the case in polynomial RDA. Centering X
offers the additional advantage of reducing the collinearity between the linear and quadratic
terms of the polynomial, as explained in step 1 of the polynomial regression algorithm.)

2) The covariance matrix S of the matrix of fitted values ˆ Y is computed as follows:

S = [1/(n–1)] ˆ Y ' ˆ Y (B.2)

or, incorporating the development from Eq. B.1:

S = [1/(n–1)] Y'X[X'X ] 1X'Y (B.3)

3) Principal components of the table of fitted values ˆ Y  are computed to reduce the
dimensionality of the solution. This corresponds to solving the eigenvalue problem:

(S – λkI)uk = 0 (B.4)

where λk  denotes the k-th eigenvalue and uk the associated eigenvector. The matrix containing
the normalized canonical eigenvectors is called U. The eigenvectors give the contributions of
the descriptors Y to the canonical axes. In linear RDA, matrix U is of size
(p×min[p, m, n – 1]) because the number of canonical eigenvectors cannot exceed the
minimum of p, m and (n – 1).

4) The canonical ordination of the objects (rows of Y) in the space of the response variables Y
is obtained directly from the centered matrix Y, using the standard equation for principal
components and eigenvectors uk of Eq. B.4:

cord(space of response variable Y)k  = Yuk (B.5)

The ordination vectors defined in this equations are called the vectors of “site scores”;
Palmer (1993) calls them the “minimally constrained scores”. These vectors have variances
that are close but not equal to the corresponding eigenvalues.
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Likewise, the canonical ordination of objects in the space of the explanatory variables
X is obtained from the following formula:

cord(space of explanatory variables X)k = ˆ Y uk = XBuk (B.6)

In this case the ordination vectors are constrained linear combinations of the explanatory
variables X. This is the reason why these constrained ordination vectors are also called “fitted
site scores”; Palmer (1993) calls them the “maximally constrained scores”. They have
variances equal to the corresponding eigenvalues.

The “site scores” of Eq. B.5 are obtained by projecting the original data of matrix Y
onto axis k; they approximate the observed data containing residuals (Y = ˆ Y  + Yres). On the
other hand, the “fitted site scores” of Eq. B.6 correspond to projecting the fitted values of
matrix ˆ Y  onto axis k; they approximate the fitted data. Both sets can be used in biplots, as in
Fig. 5 of the main paper.

5) The other important information needed for interpreting the relationships between the
variables in X and Y is the contribution of the explanatory variables to the canonical axes. To
assess this contribution, correlations are computed between the variables in X, on the one
hand, and the canonical ordination axes in either space Y (Eq. B.5) or space X (Eq. B.6) on
the other. The correlations between the variables in X and the canonical ordination axes in
space X can be used to represent the explanatory variables in biplots.

6) In RDA, biplot diagrams can be drawn that contain three sets of data points: the site scores
(from Eq. B.5 or B.6), the response variables from Y, and the explanatory variables from X.
Each pair of sets of points forms a biplot. Biplots primarily serve to interpret the relationships
between sites in terms of the Y and/or X variables. If there are too many sites or too many
variables in X or Y, separate diagrams can be drawn and presented side by side. Two main
types of scaling can be used in RDA biplots; for details on their properties and interpretation
see ter Braak (1994) or Legendre and Legendre (1998). The biplot produced by type 1
scaling, called distance biplot, preserves the distances among sites. The biplot produced by
type 2 scaling, called correlation biplot, focuses on the correlations among the response
variables.

In RDA scaling of type 1, used in the “Numerical examples” section, the eigenvectors
in matrix U, representing the response variable scores, are scaled to lengths 1. The fitted site
scores from Eq. B.6 have variances equal to λk whereas the site scores from Eq. B.5 have

variances which are usually slightly larger than λk. Each explanatory variable x can be
represented in the biplot by means of the correlations of x with the fitted site scores. These
correlations have to be multiplied by a coefficient ck:

ck = kλ / Total variance in Y (B.7)

where λk is the eigenvalue corresponding to axis k; this correction accounts for the fact that, in
this scaling, the variances of the site scores differ among axes.
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APPENDIX C

ECOLOGICAL ARCHIVES E083-018-A3

OUTLINE OF CLASSICAL CANONICAL CORRESPONDENCE ANALYSIS (CCA)

The direct computational approach to canonical correspondence analysis proceeds as
follows (Legendre and Legendre 1998). The mathematics behind CCA is summarized here to
make it easier for readers to understand the modifications required by polynomial CCA.
Matrices Y and X have been described in the section “Canonical Correspondence Analysis
and its Polynomial Generalization”.

1) Data preparation and multiple regression. Absolute frequencies (i.e., the individual species
abundances in matrix Y) are represented by yij whereas relative frequencies (also called

probabilities or proportions) by pij; pij is the frequency yij in cell ij divided by the sum y++ of

the yij’s over the whole frequency table. Row weight pi+ is equal to yi+/y++ where yi+ is the

sum of values in row i. Likewise, column weight p+j is equal to y+j/y++ where y+j is the sum
of values in column j. CCA is computed from a matrix denoted Q (n×p):

Q  = [q ij] = 
pij − pi +p+ j

pi +p+ j

 

 
 

 

 
 (C.1)

The values q ij only differ by a constant from the contributions to chi-square (χ ij ) computed

in cell ij of a contingency table during two-way contingency table analysis: q ij = χ ij / y .

This causes all the eigenvalues of Q  to be smaller than or equal to 1, as shown by Legendre

and Legendre (1998, section 9.4). Values q ij may be calculated directly from the yij’s:

q ij = 
y ijy++ − yi +y+ j

y++ yi +y+ j

(C.2)

The variables in X are centered on their respective means, as in step 1 of RDA and for
the same reason, except that the means used to center X are computed here as the sums of the
columns of D(pi+)X, where D(pi+) is a diagonal matrix containing the row weights pi+.

As in RDA, multiple linear regression of Q  on the matrix of explanatory variables X
is computed. Matrix X is weighted during this regression; the weights for the explanatory

variables are given by a diagonal matrix, D(pi )1/ 2 , of the square roots of the rows weights of

Y. The weighted matrix of explanatory variables, wX , is thus:

wX = D(pi )1/ 2 X (C.3)

The equation for the matrix of fitted values ˆ Q  is the following:

ˆ Q  = wX B = wX  [ w
'X wX ]

–1
w
'X Q (C.4)

This is also equal to:

ˆ Q  = D(pi )1/ 2 XB  = D(pi )1/ 2 X  [X' D(pi ) X ]
–1

X' D(pi )1/ 2 Q (C.5)



6

2) - 3) As in step 2 of RDA, the covariance matrix S = ˆ Q ' ˆ Q  is computed (there is no division
by degrees of freedom in CA and CCA), followed by eigenvalue decomposition (referred to as
principal component analysis in step 3 of RDA) to reduce the dimensionality of the solution.
CCA is thus a weighted form of RDA, approximating chi-square distances among the rows
(sites) of matrix Y, subject to the constraint that the canonical axes are weighted linear
combinations of the explanatory variables. In CCA, the number of canonical eigenvectors
cannot exceed the minimum of p – 1, m, and n – 1.

4) - 5) - 6) Two main types of scaling, which may be applied to matrix U of the eigenvectors
of S, are commonly used by biologists to draw biplot ordination diagrams when analyzing
species presence-absence or abundance data. Other types of scaling are described by ter
Braak (1987, 1990), ter Braak and Smilauer (1998) and Legendre and Legendre (1998).

• Scaling type 1 — Assuming that sites are rows and species are columns in Y, this scaling is
the most appropriate if one is primarily interested in the ordination of sites: the sites (whose
coordinates are found in matrix F, below) are plotted at the centroids of the species (whose
coordinates are found in matrix V, below). In full-dimensional matrix F, distances among the
sites are equal to the chi-square distances among the rows of matrix Y.

• Scaling type 2 — Assuming that sites are rows and species are columns in Y, this is the
most appropriate scaling if one is primarily interested in the relationships among species: the
species (whose coordinates are found in matrix ˆ F , below) are plotted at the centroids of the
sites (whose coordinates are found in matrix ˆ V , below). In full-dimensional matrix ˆ F ,
distances among the species are equal to the chi-square distances among the columns of
matrix Y.

The construction and interpretation of CCA biplots is discussed in more detail by ter Braak
and Verdonschot (1995, Table 2), ter Braak and Smilauer (1998) and Legendre and Legendre
(1998).

Matrix V of species scores (for scaling type 1) and matrix ˆ V  of site scores (for
scaling type 2) are obtained from U using the weighs given by the diagonal matrices

D(p j ) 1/2  and D(pi+ ) 1/2  containing inverses of the square roots of the column and row
weights of Y, respectively:

V = D(p j ) 1/ 2 U (C.6)

ˆ V  = D(pi ) 1 /2 Q U
–1/2

(C.7)

where 
–1/2

 is a diagonal matrix containing inverses of the square roots of the eigenvalues of
S. Matrices F (site scores for scaling type 1) and ˆ F  (species scores for scaling type 2) are
found using:

F = ˆ V 
1/2

(C.8)

ˆ F  = V
1/2

(C.9)

The site scores which are weighted linear combinations of the explanatory variables,
corresponding to Eq. B.6 of RDA (Appendix B), are derived from ˆ Q  as follows:

For scaling type 1:  cord(space of explanatory variables X) =D(pi ) 1 /2 ˆ Q U (C.10)

For scaling type 2:  cord(space of explanatory variables X) =D(pi ) 1 /2 ˆ Q U
–1/2

 (C.11)
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Weighted linear correlations between variables x of X and constrained ordination axes
cord in space X (from Eq. C.10 or C.11) are used for representing the explanatory variables
in biplots; the weight wi associated with each row i of cord and x is pi+. The weighted linear
correlation cord,xR  is calculated as follows:

cord,xR =
( wicordi

i=1

n

∑ xi −(( wixi )( wicordi)/( wi
i=1

n
∑ )))

i =1

n

∑
i =1

n

∑

(( wix i
2 ) − (( wix i)

2 /( wi
i =1

n

∑ )))(( wicordi
2 ) − (( wicordi)

2 /( wi
i =1

n

∑ )))
i =1

n

∑
i =1

n

∑
i=1

n

∑
i =1

n

∑
(C.12)

With scaling type 2, the correlations are used directly as biplot scores for the environmental
variables. With scaling 1, the correlations have to be weighted using Eq. B.7 before they are
used as biplot scores.
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APPENDIX D

ECOLOGICAL ARCHIVES E083-018-A4

TESTS OF SIGNIFICANCE IN POLYNOMIAL RDA AND CCA

Description of the permutation testing procedure

Permutation tests can be carried out in linear or polynomial RDA or CCA. The most
general null hypothesis states that there is no special relationship between the response and
explanatory variables (independence of Y and X), or that the model is not a significant
representation of the response data. (Tests of significance for individual canonical eigenvalues
are not discussed here; they are described in ter Braak and Smilauer [1998] and in Legendre
and Legendre [1998]). RDA or CCA is computed as described in Fig. 1 of the main paper
and the following pseudo-F statistic is computed for the unpermuted data:

 pseudo- F
variance of ˆ Y  (or ˆ Q )

Total variance of Y (or Q )   variance of ˆ Y  (or ˆ Q )
 (D.1)

We call this statistic a “pseudo-F” because the degrees of freedom are not included in the
numerator and denominator. The full F-statistic customarily used in canonical analysis, which
is also sometimes called “pseudo-F”  but with a different meaning, contains degrees of
freedom; it is described in the above-mentioned books. Degrees of freedom are multiplicative
constants through the permutations; thus, including them, or not, does not change the outcome
of the tests. They are not included here because the number of parameters in the polynomial
model may change from permutation to permutation; this number is used in the formula for
computing the degrees of freedom of a regular F-statistic. Simulations, reported in the next
section, show that a permutation test of significance based upon the pseudo-F statistic
described in Eq. D.1 has correct type I error.

RDA: permute the rows of Y to obtain Yperm

CCA: permute the rows of Q to obtain Qperm

Compute RDA or CCA as in Fig. 1
Calculate the pseudo-F statistic
for the real (i.e., unpermuted) data

Linear or polynomial regression to
obtain fitted values (matrix Yperm or Qperm)^ ^

Calculate the pseudo-Fperm statistic
Is pseudo-F ≥ pseudo-Fperm?

Calculate the P-value

FIG. D.1. Permutation tests in linear and polynomial RDA and CCA.
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To generate the null distribution (Fig. D.1), the rows of Y (or Q ) are permuted at
random to obtain the matrix Yperm  (or Q perm ). Linear or polynomial regression is
computed using the (unpermuted) matrix of explanatory variables X to obtain a matrix of
fitted values ˆ Y perm  (or ˆ Q perm). The pseudo-Fperm statistic can be directly estimated for the

permuted data from the variances in Yperm  (or Q perm ) and in ˆ Y perm  (or ˆ Q perm) using
Eq. D.1. After repeating the permutation and calculation of the pseudo-Fperm statistic a large
number of times, the probability (P-value) of the data under the null hypothesis is computed
as the proportion of pseudo-Fperm values that are larger than or equal to pseudo-F. Following
Hope (1968), the pseudo-F value obtained for the unpermuted data is included in the null
distribution of pseudo-Fperm values. Generally, analyses providing P-values smaller than or
equal to 0.05 are considered significant. A lower significance level should be used for many
ecological problems in view of the fact that spatial autocorrelation is present most field
ecological data sets (Legendre 1993).

Which model is the most appropriate to describe the data if the linear and polynomial
models are both significant? To answer this question, we used a permutation procedure to
assess the difference in variance accounted for between the polynomial model and the linear
model nested into it. Essentially, the procedure is the following:

1) Polynomial RDA (or CCA) is used to find the variance of Y (or Q ) accounted for by the
polynomial model, Varpolynomial.

2) Linear RDA (or CCA) is used to find the variance of Y (or Q ) accounted for by the linear
model, Varlinear.

3) The variance of the difference between the two models is obtained by subtraction:
Varpolynomial – Varlinear. Calculate the pseudo-F statistic for this difference, using Eq. D.2:

pseudo- F
Varpolynomial  Varlinear

Total variance of Y(or Q )  Varpolynomial
 (D.2)

This equation is constructed in the same way as that of an F-statistic for testing the
significance of additional explanatory variables in nested regression models. Simulation,
reported in the next section, show that a test of significance for the difference in explained
variation between nested models, based upon this statistic, has correct type I error.

4) Permute matrix Y (or Q ), to obtain matrix Yperm, (or Q perm,). Repeat the calculations for the
permuted matrix Yperm, (or Q perm,), from which a pseudo-Fperm statistic is obtained. Repeat this
step a large number of times.

5) Test the significance of the pseudo-F statistic against the distribution of the pseudo-Fperm, as
above, after incorporating the pseudo-F value into the distribution. The smaller the P-value for
the difference between the two models, the more appropriate is the polynomial model.

Permutation of the rows of matrix Y (or Q ), as performed here, is adequate in all
instances where there are no covariables. For the test of the difference between the two
models, an alternative would be to implement a procedure based upon permutation of the
residuals of a reduced or a full regression model, as described in ter Braak and Smilauer
(1998) and Legendre and Legendre (1998). These methods would procure an improvement in
type I error, over the permutation of the rows of matrix Y, only in cases where the covariable
matrix contains extreme outliers (Anderson and Legendre 1999).
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Do the Permutation Tests Have Correct Type I Error and Good Power?

This section aims at establishing that the probabilities obtained from the permutation
tests described in the previous section have correct type I error (and thus provide valid tests of
significance), and that they have good power, allowing to discriminate between the linear and
polynomial relationships. To accomplish this, we ran a large number of numerical simulations
using computer-generated data sets whose properties were known. Simulations are a standard
approach in statistics because they allow verification of the properties of statistical procedures
in situations where the answer is known (see, e.g., Milligan 1996).

First, we generated many data tables Y (response) and X (explanatory) containing
random numbers. They represented situations where the null hypothesis of the test was true.
So, a canonical analysis should not find these data sets to be related, except by chance; finding
unrelated data sets to be significantly related is referred to as type I error. A test of
significance is said to have correct rejection rate at significance level α (decided a priori by the
user) if the null hypothesis is rejected in a proportion of the cases approximately equal to α,
when using data generated to correspond to the null hypothesis. The test is said to be valid if
the rejection rate is not larger than the significance level α, for any value of α, when the null
hypothesis is true (Edgington 1995).

Two series of simulations were carried out, corresponding to two standard applications
of RDA. In the first series of 1000 simulations, the data in Y were random numbers drawn
from a multivariate normal distribution with variances of 1 and covariances of 0; in this series,
Y simulated a matrix of standardized physical variables. In the second series of 1000
simulations, the data in Y were drawn at random from a standard lognormal distribution, to
simulate species abundance data. In both series, the data in X, representing the explanatory
variables, were multivariate random normal.

Matrices X and Y had the following parameters: n, the number of rows in Y and X,
was 10; p, the number of columns in Y, was 5; m, the number of columns in X, was 5. For
each data set, 499 random permutations of the rows of Y were done. We tallied the rates of
rejection of the null hypothesis for 20 different values of α for standard linear RDA (using
linear multiple regression), for polynomial RDA, and for the difference between the
polynomial and linear solutions. We also computed confidence intervals for two commonly
used values of significance level: α = 0.05 and α = 0.10.

Results of this study are presented in Tables D.1 and D.2. They show that in all cases,
the null hypothesis (H0) was rejected with frequencies very close to α; the 95% confidence
intervals of the rejection rates always included the corresponding α values. We repeated the
simulations with different values of matrix parameters n, p and m (n varying from 5 to 25, p
from 5 to 15, and m from 5 to 10). The results, not reported in detail here, are very similar to
those found in Tables 1 and 2. The simulation results confirm that the permutation tests
described in the previous section have correct α-significance level. In other words, if no
relationship exists between Y and X, the tests make type I errors at the rate predicted by the α-
significance level.

Secondly, we designed and ran simulations for type II error, to determine if the test of
significance for the difference between the two models (Eq. D.2) led to correct decisions.

1) We generated data sets where each of the Y variables (n = 10, p = 5, m = 3) was an
independently-constructed linear function of the 3 variables in X, plus error. With normal
error (results are not presented in detail here), the linear and polynomial RDA models were
both significant, but the difference in explained variation between the polynomial and linear
models was nearly never significant, as expected, when testing at α = 0.05 or α = 0.10. The
few instances of significant differences represent type I error for the test of difference between
the two models (Eq. D.2); since the null hypothesis of no difference was true in these
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simulations, the test was expected to reject the null hypothesis in a fraction α of the simulated
data sets. Similar results were obtained when using log-normal error.

2) We also generated data sets where each of the Y variables (n = 25, p = 10, m = 3) was an
independently-constructed polynomial function of the 3 variables in X, plus error. The results
were the opposite: the polynomial model was always significant; so was the difference
between the polynomial and linear models, even when the linear model was also significant.

We conclude that the test of significance for the difference between the two models led
to the correct decision in nearly all cases, finding the linear model to be the most appropriate
when matrices X and Y had been generated to be linearly related, and the polynomial model to
be the most appropriate when a polynomial relationship had been built between the two
matrices.
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TABLE D.1. First set of simulations: random normal data in Y and random normal data in X.
The upper portion of the table reports rejection rates of the null hypothesis at the significance
levels found in the left column, after studying 1000 pairs of random data sets; 499
permutations were used for each test. The lower portion reports 95% confidence intervals of
the rejection rates for two widely used significance levels, α = 0.05 and α = 0.10.

Rate of rejection of H0 for
________________________________________________________

Significance Linear regression Polynomial regression Difference in explained
variance between polynomial

level α (L) (P) and linear models (P-L)

0.05 0.050 0.047 0.046
0.10 0.098 0.086 0.098
0.15 0.149 0.156 0.146
0.20 0.196 0.195 0.197
0.25 0.246 0.247 0.250
0.30 0.306 0.295 0.294
0.35 0.349 0.335 0.349
0.40 0.401 0.383 0.401
0.45 0.450 0.441 0.449
0.50 0.502 0.491 0.493
0.55 0.553 0.546 0.546
0.60 0.601 0.594 0.594
0.65 0.637 0.641 0.646
0.70 0.692 0.702 0.697
0.75 0.731 0.754 0.747
0.80 0.767 0.803 0.795
0.85 0.826 0.851 0.853
0.90 0.884 0.905 0.903
0.95 0.949 0.951 0.953
1.00 1.000 1.000 1.000

Significance Linear regression Polynomial regression  Difference P-L
level α C1 C2 C1 C2 C1 C2

0.05 0.0365 0.0635 0.0339 0.0601 0.0330 0.0590

0.10 0.0825 0.1135 0.0714 0.1006 0.0825 0.1135

Abbreviations: C1 and C2 are the limits of the 95% confidence intervals, for α = 0.05 and
0.10, computed for the rejection rates found after analyzing 1000 random data sets. Type 1
error of a test is correct if the confidence interval of the empirical rejection rate includes α.
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TABLE D.2. Second set of simulations: random lognormal data in Y and random normal data
in X. The upper portion of the table reports rejection rates of the null hypothesis at the
significance levels found in the left column, after studying 1000 pairs of random data sets;
499 permutations were used for each test. The lower portion reports 95% confidence intervals
of the rejection rates for two widely used significance levels, α = 0.05 and α = 0.10.
Abbreviations as in Table D.1.

Rate of rejection of H0 for
________________________________________________________

Significance Linear regression Polynomial regression Difference in explained
variance between polynomial

level α (L) (P) and linear models (P-L)

0.05 0.045 0.044 0.039
0.10 0.088 0.092 0.091
0.15 0.136 0.137 0.135
0.20 0.195 0.188 0.188
0.25 0.237 0.231 0.251
0.30 0.279 0.269 0.306
0.35 0.326 0.332 0.356
0.40 0.360 0.393 0.396
0.45 0.408 0.442 0.453
0.50 0.445 0.496 0.500
0.55 0.511 0.543 0.543
0.60 0.566 0.592 0.604
0.65 0.623 0.647 0.650
0.70 0.690 0.697 0.698
0.75 0.738 0.746 0.749
0.80 0.782 0.794 0.798
0.85 0.840 0.847 0.853
0.90 0.885 0.895 0.908
0.95 0.953 0.950 0.962
1.00 1.000 1.000 1.000

Significance Linear regression Polynomial regression  Difference P-L
level α C1 C2 C1 C2 C1 C2

0.05 0.0321 0.0579 0.0313 0.0567 0.0270 0.0510

0.10 0.0733 0.1028 0.0770 0.1071 0.0760 0.1060
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APPENDIX E

ECOLOGICAL ARCHIVES E083-018-A5

RESULTS OF POLYNOMIAL CCA OF THE SPIDER SPECIES DATA (SELECTED OUTPUT)

Canonical axes

Data type I II III IV V VI

Eigenvalues (with respect to total variance in Q  = 1.92296)

 0.62894 0.37511 0.24337 0.17653 0.04974 0.02939

Fraction of total variance in Q 

32.70698 19.50712 12.65596 9.17995 2.58668 1.52812

Cumulative fraction of total variance in Q  accounted for by axes I to VI

32.70698 52.21410 64.87006 74.05001 76.63669 78.16481

Species scores from Eq. C.9, matrix ˆ F  (scaling type 2)

Al. accentuata 1.55036 –0.14821 0.26633 0.81398 0.40180 –0.30755
Al. cuneata –0.17992 –0.19077 –0.00205 –0.12488 0.14257 –0.40530
Al. fabrilis 2.52533 0.95247 0.21864 1.05935 –0.42174 0.37730
Ar. lutetiana –0.53087 0.25503 –0.44826 0.10140 –0.33373 0.19051
Ar. perita 3.91140 2.10706 –1.24542 –2.67197 0.11346 –0.11043
Au. albimana –0.38288 0.14117 –0.41733 0.12523 0.20572 0.16340
Pa. lugubris –0.32128 0.61698 2.00915 –0.52270 0.39451 0.25796
Pa. monticola 0.53335 –1.36366 0.05890 –0.28172 –0.08014 0.10428
Pa. nigriceps –0.45556 0.20890 –0.45936 0.09609 0.16259 0.19589
Pa. pullata –0.36954 0.11816 –0.37024 0.07745 0.13450 0.02186
Tr. terricola –0.31803 0.22305 0.15007 –0.05952 –0.14189 –0.08913
Zo. spinimana –0.41098 0.32522 0.16851 0.06653 –0.49435 –0.08025

Site scores from Eq. C.7, matrix ˆ V  (scaling type 2)

Site 1 0.19190 –0.83192 –0.09555 0.13373 0.48920 –1.22681
Site 2 –0.55696 0.43411 –0.51925 0.15622 0.05135 0.21341
Site 3 –0.07859 –0.25295 –0.23664 0.18236 0.60622 –1.50035
Site 4 –0.51493 0.33292 –0.58710 0.19071 –0.09421 –0.13048
Site 5 –0.58522 0.40912 –0.89278 0.23397 0.86853 1.06013
Site 6 –0.49729 0.26545 –0.25896 0.03908 –2.16265 –0.47017
Site 7 –0.47088 0.14143 –0.70784 0.10572 0.13999 0.95180
Site 8 –0.47263 0.88678 4.11220 –1.56466 3.47613 2.48576
Site 9 0.68911 –2.95056 0.15118 –1.14120 –0.97201 2.02230
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Site 10 1.09945 –2.92298 0.36349 –0.55441 –0.84824 1.94692
Site 11 1.03033 –2.92079 0.32830 –0.57574 –0.43813 1.41973
Site 12 0.71979 –2.42159 0.22390 –0.58130 –0.01566 –0.36876
Site 13  –0.40555 0.05911 –0.46141 0.01814 0.11136 –1.19280
Site 14  –0.48114 0.26181 –0.17299 –0.01462 –1.38733 –0.74329
Site 15  –0.51500 0.77094 1.95994 –0.71338 –1.58809 –1.06710
Site 16  –0.51036 0.65473 1.51807 –0.59788 –1.33662 –1.80145
Site 17  –0.51238 0.65955 1.17666 –0.45481 –2.59198 –2.28087
Site 18  –0.49480 0.69538 1.81713 –0.74849 –0.94208 –1.62016
Site 19  –0.51398 0.87640 2.88123 –1.05265 0.21075 0.45227
Site 20  –0.49909 0.86903 3.12334 –1.17034 0.65863 0.22280
Site 21  –0.47251 0.86246 3.66255 –1.37506 1.51583 1.67290
Site 22 3.59010 1.75540 0.07743 2.16450 –2.54873 3.89519
Site 23 3.11351 1.06618 0.29769 0.99498 0.60038 0.35883
Site 24 3.62149 1.59815 0.12049 2.33853 –1.91440 3.27871
Site 25 0.81245 –0.04527 0.44939 1.26706 –1.45461 0.53678
Site 26 5.10899 4.10097 –2.96940 –7.93872 0.39989 –1.03919
Site 27 3.14631 0.75153 0.46391 3.08143 3.28692 –4.00636
Site 28 2.72787 0.35159 0.68754 3.38685 –0.29284 0.75589

Biplot scores of environmental variables, from Eq. 12

Water –0.92432 0.18650 –0.23523 –0.18804 –0.37686 –0.31522
Reflection 0.84674 –0.60030 –0.32579 –0.53371 0.21990 –0.28005
Calamagrostis –0.52146 0.22616 –0.70727 0.14786 0.30211 0.52232
Coryneporus 0.78682 –0.68336 0.08988 –0.17240 0.05986 0.17525

Biplot scores of environmental variables: weighted correlations

Water –0.66479 0.17312 –0.23287 –0.04559 –0.33191 –0.19449
Reflection 0.76280 –0.28002 –0.28547 –0.03780 0.14508 –0.27962
Calamagrostis –0.49123 0.22202 –0.69103 0.14315 0.28329 0.16033
Corynephorus 0.56135 –0.66456 0.08976 –0.00597 0.04519 0.04974
Water2 0.60755 0.07809 –0.04507 0.17987 –0.19515 –0.25764
Reflection2 0.73372 0.28057 –0.03136 –0.46095 –0.05465 –0.14486
Calamagrostis2 0.18803 0.03716 0.16909 0.03316 –0.11249 0.49264
Corynephorus2 0.32062 –0.67672 0.08182 –0.06862 0.02769 –0.01521
Water x Refl. –0.79020 –0.10389 0.14754 0.10273 0.22799 0.03177
Water x Calam. 0.60467 –0.16110 –0.04745 0.05545 0.42990 0.10455
Water x Corynep. –0.54738 0.52220 –0.02685 –0.12139 0.01754 0.06717
Refl. x Calam. –0.65178 0.14440 0.52247 –0.00110 –0.31599 –0.29830
Refl. x Corynep. 0.50857 –0.46226 0.17410 –0.05155 –0.00590 0.17733
Calam. x Corynep. –0.45070 0.66288 0.15644 –0.04998 –0.15946 –0.11593

Notes: Matrix Y: hunting spider species 1 to 12. Matrix X: water content, reflection of soil
surface, percent cover by Calamagrostis epigejos, percent cover by Corynephorus canescens.
Either set of biplot scores can be used to represent the environmental variables in biplots.
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Page 1158 column 2: the equation for  should readxi23

xi23 0.1440 0.0030xi3 0.0075xi2+–= 0.000034xi3
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