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Abstract. High-throughput screening (HTS) remains a very costly process 
notwithstanding many recent technological advances in the field of biotechnology. In this 
study we consider the application of machine learning methods for predicting 
experimental HTS measurements. Such a virtual HTS analysis can be based on the results 
of real HTS campaigns carried out with similar compounds libraries and similar drug 
targets. In this way, we analyzed Test assay from McMaster University Data Mining and 
Docking Competition [1] using binary decision trees, neural networks, support vector 
machines (SVM), linear discriminant analysis, k-nearest neighbors and partial least 
squares. First, we studied separately the sets of molecular and atomic descriptors in order 
to establish which of them provides a better prediction. Then, the comparison of the six 
considered machine learning methods was made in terms of false positives and false 
negatives, method’s sensitivity and enrichment factor. Finally, a variable selection 
procedure allowing one to improve the method’s sensitivity was implemented and 
applied in the framework of polynomial SVM.  
 
Key words: CART, decision trees, drug target, hit, k-nearest neighbors (kNN), linear 
discriminant analysis (LDA), neural networks (NN), partial least squares (PLS), ROC 
curve, sampling, support vector machines (SVM), virtual high-throughput screening. 
 
 
1 Introduction 
 
High-throughput screening (HTS) is an efficient but still very expensive technology 
intended to automate and accelerate the discovery of pharmacologically active 
compounds (i.e., potential drug candidates). A typical HTS campaign involves testing a 
large number of chemical compounds in order to generate in vivo primary hits, which 
may be promoted to secondary hits, and then to leads, after additional experiments. 
Several data correction procedures have been recently proposed to address the needs of 
experimental HTS campaigns [2-5]. But, the field of HTS is also very suitable for 
applying machine learning methods, and the development of an accurate procedure 
allowing one to predict in silico the compound’s activity would be of great benefit for the 
pharmaceutical industry. 

A number of recent studies have discussed the application of machine learning 
methods in HTS. Thus, Briem and Günther [6] carried out the support vector machines 
(SVM), artificial neural networks (NN) and k-nearest neighbors (kNN) methods with a 
genetic algorithm-based variable selection and recursive partitioning in order to 
distinguish between kinase inhibitors and other molecules with no reported activity on 
any protein kinase. Using the majority vote for all tested techniques, the latter authors 
concluded that NN provided the best prediction of experimental results, followed by 
SVM. On the other hand, Müller et al. [7] described an application of SVM to the 
problem of assessing the “drug-likeness” of a compound based on a given set of 
molecular descriptors. The authors concluded that in the drug-likeness analysis a 
polynomial SVM with a high polynomial degree (d = 11) allows for a very complex 
decision surface which could be used for prediction. Burton et al. [8] applied recursive 
partitioning based on decision trees, for predicting the CYP1A2 and CYP2D6 inhibition. 
The latter authors noticed that with a set of mixed 2D and 3D descriptors, the trees gained 
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2 to 5% on each accuracy parameter compared to the 3D descriptors used alone. Harper 
and Pickett [9] reviewed recent literature dealing with the application of data mining 
techniques in the field of HTS. Plewczynski et al. [10] showed that an SVM model can 
sometimes achieve classification rates up to 100% in evaluating the activity of 
compounds with respect to specific targets. The latter authors concluded that the obtained 
sensitivities for all considered protein targets exceeded 80%, and the classification 
performance reached 100% for the selected targets. Simmons et al. [11] conducted a 
study in which 10 machine learning methods were used to develop classifiers on a data 
set derived from an experimental HTS campaign, and compared the method predictive 
performances in terms of false negative and false positive error profiles. The set of 
descriptors considered by Simmons et al. [11] consisted of 825 numerical values, 
representing 55 possible atom-type pairs mapped to 15 distance ranges. Alternatively, 
Simmons et al. [12] described an ensemble-based decision tree model to virtually screen 
and prioritize compounds for acquisition. Butkiewicz et al. [13] compared NN, SVM and 
decision trees in a specific QSAR approach. The latter authors applied the three above-
mentioned machine learning methods for screening in silico potentiators of metabotropic 
glutamate receptor subtype 5 (mGluR5). Butkiewicz et al. [13] concluded that SVM 
performed slightly better than NN, which had in turn an advantage over decision trees. 
Fang et al. [14] presented an effective application of SVM in mining HTS data in a type I 
methionine aminopeptidases (MetAPs) inhibition study. SVM was applied on a 
compound library of 43,736 small organic molecules. Fang et al. [14] discovered that 
50% of the active molecules could be recovered by screening just 7% of compounds of 
the test set. Each of these studies was conducted in particular statistical (e.g., sampling 
strategies) and HTS (e.g., kind of HTS data, proportions of hits in the data and available 
descriptors) contexts, making the comparison of the obtained results a very difficult task. 

In this article we examine an experimental HTS assay from the McMaster University 
Data Mining and Docking Competition [1] by means of the following machine learning 
methods: binary decision trees (CART), Neural Networks (NN), Support Vector 
Machines (SVM), Linear Discriminant Analysis (LDA), Partial Least Squares (PLS) and 
k-nearest neighbors (kNN). After the description of the considered McMaster assay, we 
will test separately the sets of molecular and atomic descriptors characterizing the 
selected compounds in order to determine which of them provides a better prediction. 
The proportion of false positive and false negative hits in the test sets and the sensitivity 
performances of each considered machine learning method will be assessed and 
discussed in detail. The competing machine learning methods will be also compared in 
terms of identification of hits (i.e., the set of 96 average hits disclosed by the competition 
organizers; for more details see Elowe et al. [1]) and enrichment factor. Finally, we will 
describe a stepwise procedure for adding and removing explanatory variables (i.e., 
descriptors) from the set of considered descriptors in order to improve the prediction 
performance. 
 
 
2 Data description 
 
In this study, Test assay of the McMaster Data Mining and Docking Competition [1] 
(http://hts.mcmaster.ca/Downloads) was considered. This Test assay consisted of a screen 
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of compounds intended to inhibit the Escherichia coli dihydrofolate reductase (DHFR). 
Each compound of the assay was screened twice: two copies of 625 plates were run 
through the screening machine. The screen performed at the McMaster HTS Laboratory 
was carried out in duplicate using the Beckman-Coulter Integrated Robotic System (using 
96-well polystyrene, clear, flat bottom, non-treated, non-sterile plates). The compounds 
were located on rectangular plates with 12 columns and 8 rows (Fig. 1). Three different 
types of controls: high, low and reference controls, were used in the screen (Fig. 1) in 
order to normalize the raw HTS measurements on a plate-by-plate basis [1]. The values 
of the first and last column (the columns 1 and 12) containing the control compounds 
were not considered any longer after the normalization of the raw data was performed. 
 

 
Fig. (1). Plate layout of the McMaster Test assay (according to the technical documentation of the 
McMaster University HTS laboratory). 
 

A compound was declared as an average hit if it reduced the average percent residual 
activity of DHFR below the cut-off value of 75% of the average residual enzymatic 
activity of the high controls. Of the 50,000 screened compounds, a total number of 96 
average hits were identified [1]. The first set of screened data with the corresponding 
experimental results was publicly released and called Training data set. Then, 
computational chemists and data analysts were challenged to predict the compounds 
activity in the second data set called Test set. 

Molecular descriptors are numerical values that describe the structure and shape of 
molecules (i.e., compounds), helping predict their activity and properties in complex 
experiments. Each molecular descriptor takes into account one part of the whole chemical 
information contained into the real molecule [15]. Atomic descriptors are 3D motifs 
produced from atoms belonging to relevant cavity surfaces [16]. As examples of atomic 
and molecular descriptors included in the combined set of descriptors examined in this 
study, mention: molecular weight, number of H-accepting and H-donating atoms, number 
of rotatable bonds, topologic polar surface area and two flavors of log of the 
octanol/water partition coefficient (ClogP and SlogP). In this study, we originally 
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considered 209 molecular descriptors and 825 atomic descriptors whose values were 
calculated for all the compounds of McMaster Test data set. The molecular descriptors 
were calculated using the MOE package [17] developed by Chemical Computing Group 
and the atomic descriptors were obtained using the software written by Dr. Kirk Simmons 
(see Simmons et al. [11]). Then, we selected the 209 atomic descriptors, among the 825 
originally considered, whose values provided the highest correlation with the normalized 
average biological activity of the library compounds in order to compare them to the 209 
molecular descriptors calculated by MOE [17]. Afterwards, we carried out the stepwise 
variable selection procedure [18] based on the linear regression, and including both 
forward and backward variable selection, using the MATLAB package (Version R2008a) 
in order to select the best atomic and molecular descriptors to be included in the 
combined data set of explanatory variables. 

In McMaster Test data set, we have only 96 active compounds (i.e., 96 primary hits). 
We increased the original cut-off value of 75% to 81.811% in order to obtain exactly 1% 
of hits (i.e., 500 hits) in our data (i.e., we considered as hits all the compounds that 
reduced the average residual enzymatic activity of DHFR below the new cut-off value of 
81.811%). If only the 96 average hits were considered, the proportion of the active 
compounds in the whole data set would be very marginal (0.192% of the total number of 
compounds), leading to a very unbalanced data set. It is worth noting that unbalanced 
data sets are one the biggest hurdles to overcome in the field of HTS. An alternative to 
this approach would be shrinking the set of inactive compounds to insure a better hit/no 
hit balance but we did not consider this possibility. Thus, 500 active compounds, 
including 96 average hits and 404 additional active compounds, and 49,500 inactive 
compounds from McMaster Test data set were examined in our simulations. 
 
 
3 Sampling strategy 
 
In modeling unbalanced data sets, typical in HTS, the classifiers (e.g., machine learning 
methods) tend to predict that all the experiments have the outcome of the majority class 
(i.e., all the compounds are inactive) and miss entirely the minority class (i.e., active 
compounds). An appropriate sampling strategy is very important for such kind of data. In 
this way, it is desirable to reduce the amount of data presented to the data mining 
techniques.  

As the inactive compounds are dominant in our data (49,500 inactive compounds 
versus 500 active compounds), we always consider all the active compounds and 
randomly sample the inactive ones. We considered the three following ratios for the 
training and test sets used in machine learning (each sample was divided into two 
independent parts: the training set to build the model and the test set to evaluate the 
model’s performance): 

- Ratio 1: 85% for the training set and 15% for the test set (these percentages were 
applied to the inactive compounds, average hits and additional active compounds). For 
the whole dataset, we obtained the following training set and test set proportions: 
Training set: 42,075 inactive compounds (i.e., 85% of 49,500 inactive compounds), 425 
active compounds, including 81 average hits (i.e., 85% of 96 average hits), and 344 
additional active compounds (i.e., 85% of 404 additional active compounds). 
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Test set: 7,425 inactive compounds (i.e., 15% of 49,500 inactive compounds), 75 active 
compounds, including 15 average hits (i.e., ~15% of 96 average hits), and 60 additional 
active compounds (i.e., ~15% of 404 additional active compounds). 

- Ratio 2: 70% for the training set and 30% for the test set.  
Training set: 34,650 inactive compounds, 350 active compounds, including 66 average 
hits, and 284 additional active compounds. 
Test set: 14,850 inactive compounds, 150 active compounds, including 30 average hits 
and 120 additional active compounds. 

- Ratio 3: 50% for the training set and 50% for the test set.  
Training and test sets: 24,750 inactive compounds, 250 active compounds, including 48 
average hits, and 202 additional active compounds. 

Each sample of the training (or test) set collection included all the active compounds and 
the randomly chosen inactive compounds. The inactive compounds were selected with 
replacement from the whole set of inactive compounds. For each selected ratio and each 
machine learning method being tested, we carried out 100 repeated calculations (each 
calculation provided a different model) and computed the average results for 100 models 
for the following statistics: false positive and false negative rates, sum of errors, and 
sensitivity and specificity of the method. 
Alternatively, the ensemble sampling approach considered in Simmons et al. [11] could 
be used to create the enriched samples, but here we did not proceed in this way. 
 
Table 1. Training set (85%) versus test set (15%). 

Hit/No hit ratio Sample size Training size Test size % of hits 
(1:1) (500:500) (425:425) (75:75) 50.00 
(1:2) (500:1000) (425:850) (75:150) 33.33 
(1:3) (500:1500) (425:1275) (75:225) 25.00 
(1:4) (500:2000) (425:1700) (75:300) 20.00 
(1:5) (500:2500) (425:2125) (75:375) 16.67 

 
Table 2. Training set (70%) versus test set (30%). 

Hit/No hit ratio Sample size Training size Test size % of hits 
(1:1) (500:500) (350:350) (150:150) 50.00 
(1:2) (500:1000) (350:700) (150:300) 33.33 
(1:3) (500:1500) (350:1050) (150:450) 25.00 
(1:4) (500:2000) (350:1400) (150:600) 20.00 
(1:5) (500:2500) (350:1750) (150:750) 16.67 

 
Table 3. Training set (50%) versus test set (50%). 

Hit/No hit ratio Sample size Training and test size (same size) % of hits 
(1:1) (500:500) (250:250) 50.00 
(1:2) (500:1000) (250:500) 33.33 
(1:3) (500:1500) (250:750) 25.00 
(1:4) (500:2000) (250:1000) 20.00 
(1:5) (500:2500) (250:1250) 16.67 
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Tables 1, 2 and 3 report the selected sample sizes and the considered proportions of 
hit/no hit compounds. The notation (n:m) indicates that, in the sample, we have n active 
and m inactive compounds. The presented ratios of the hits and no hits were adopted 
following the sampling strategy used in Simmons et al. [11].  
 
 
4 Machine learning methods 
 
The main goal of HTS is an accurate prediction of active compounds. Thus, HTS is a 
very natural field for applying machine learning methods. In this section, we outline the 
decision trees, neural networks, support vector machines, k-nearest neighbors, linear 
discriminant analysis and partial least squares methods being tested in this study. In our 
experiments, the R2008a version of the MATLAB package, including all these methods, 
was used to generate the results. 
 
Classification and Regression Trees (CART) 
Decision trees [19] are very popular in machine learning. A decision tree is a tree-like 
structure with a set of attributes to be tested in order to predict the output. In this study, 
we used the CART [19] method with the “Classregtree” function and the Gini splitting 
criterion. 
 
Artificial Neural Networks (NN) 
Artificial neural networks [20] (NN) have been widely employed in data mining as a 
supervised classification technique. The performance of an NN depends on both, the 
selected parameters and the quality of the input data. Larger numbers of neurons in the 
hidden layer give the network more flexibility. To improve the accuracy, one can also 
increase the number of epochs (i.e., number of complete passes by training data set). In 
this study, we used the backpropagation algorithm introduced by Rumelhart et al. [21]. It 
carries out learning on a multi-layer feed-forward neural network through an iterative 
process with a set of training samples. For each training sample, the weights were 
adjusted to minimize the mean squared error between the desired and obtained outputs. 
We used the MATLAB function “Traingdx” (with adaptive learning rate). The NN 
performances were assessed using the mean squared error. The number of epochs was set 
to 5,000 and the number of neurones in the hidden layer varied from 50 to 250 (with the 
step of 50), depending of the sample size. 
 
Support Vector Machines (SVM) 
Support Vector Machines (SVM) were introduced by Vapnik [22]. They have been 
extensively applied in different fields including pattern recognition. SVM classification 
proceeds by computing a separating hyperplane between two groups of data while 
maximizing the distance from this hyperplane to the closest data points. This is 
equivalent to solving a quadratic optimization problem. The “Svmtrain” function of 
MATLAB was used in this study with linear, polynomial and rbf (radial basis function) 
kernel functions to find the optimal separating hyperplane. The degree of the polynomial 
kernel was set to 4. We used the quadratic programming, as method for the linear and 
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polynomial kernels. For the Gaussian Radial Basis Function kernel, the σ scalar was set 
to 1. All the other SVM parameters were the default MATLAB parameters. 
 
k-Nearest Neighbors (kNN) 
K-nearest neighbors [23] is a supervised machine learning method where a new object is 
classified based on closest training examples in the feature space. The classification uses 
the majority vote criterion. This method carries out the neighbourhood classification as 
the prediction value for the new instance. It computes the minimum distance from the 
object to the training samples to determine the k nearest neighbors (the k closest points 
represent the voters). In the MATLAB package, this method is implemented in the 
“Knnclassify” function. Two distances, the “Euclidean” distance and the “Cityblock” 
distance (i.e., the sum of absolute differences), were tested. In our experiments, we varied 
the value of k from 1 to 4 and found that the best results were generally obtained with k = 
1 (i.e., when we increase k, the sum of errors also increases) and with the “Cityblock” 
distance. 
 
Linear Discriminant Analysis (LDA) 
Linear discriminant analysis [24] is used to determine which variables discriminate better 
between two or more groups. LDA is closely related to the analysis of variance and the 
regression analysis. This method is implemented in MATLAB R2008a in the function 
“Classify”. 
 
Partial Least Squares (PLS) regression 
Partial least squares regression [25, 26] is a statistical method used to find fundamental 
relationships between two matrices including the response and explanatory variables. The 
main goal of PLS is to find the hyperplanes of maximum variance separating these 
variables. The PLS methods are known as bilinear factor methods because both the 
response and explanatory variables are projected into a new space. A PLS method will try 
to find the best multidimensional direction in the space of explanatory variables that 
accounts for the maximum multidimensional variance direction in the response space. In 
this study, the MATLAB function “Plsregress” was used. To carry out this algorithm, we 
first normalized the data using the MATLAB function “Zscore”. For a given matrix M, 
Zscore(M) returns a centered and scaled version of M. 
 
 
5 Comparison of molecular and atomic descriptors 
 
In HTS, a large number of chemical descriptors is usually available. The goal of the 
variable selection is to identify the subset of measured variables that best characterize the 
system under study. For the considered McMaster Test data set, we computed the values 
of 209 molecular descriptors (i.e., variables) using the MOE package, while the values of 
825 atomic descriptors were calculated using a program written by Dr. Simmons [11]. 
The molecular structures were used to compute the atom-pair descriptors and all possible 
“atom type - distance - atom type” combinations were considered (for more details, see 
Simmons et al. [11]). Subsequently, we calculated the correlation coefficient between 
each of the obtained 825 atomic descriptors and the quantitative response variable (i.e., 
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normalized average compound’s activity), and 209 atomic descriptors associated with the 
highest values of the correlation coefficient were retained for further analysis. Thus, both 
molecular and atomic data sets being tested contained the same number of descriptors. 
We then transformed the quantitative response variable into a binary variable as follows: 
all the values lower than or equal to 81.811 were set to 1 (i.e., they correspond to the 
active compounds or hits), whereas all the remaining values were set to 0 (i.e., they 
correspond to the inactive compounds). Then, we tested four machine learning methods: 
Neural Networks, SVM with linear and polynomial kernels and Linear Discriminant 
Analysis. These methods were carried out separately on the sets of molecular and atomic 
descriptors in order to identify which of them provide a better prediction of the hit/ no hit 
outcomes.  
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Fig. (2). Molecular versus atomic descriptors comparison for linear and polynomial Support Vector 
Machines, Neural Networks and Linear Discriminant Analysis. Molecular descriptors are depicted by 
triangles and atomic descriptors by squares. The proportions of hits and no hits and the sizes of training and 
test samples were those reported in Table 1. The five points of the x-axis correspond, from left to right, to 
the following hit/no hit ratios: (1:5), (1:4), (1:3), (1:2) and (1:1). Positive error bars are shown for 
molecular descriptors and negative error bars for atomic descriptors. The lengths of negative error bars for 
molecular descriptors and positive error bars for atomic descriptors were very similar to the corresponding 
opposite direction bars shown in the figure. 
 

We considered the proportions of hits and no hits and the sizes of training and test 
samples reported in Table 1. For each method, the average results computed over 100 
repeated calculations were reported (Fig. 2). At each such a calculation, a different set of 
inactive compounds was selected, whereas the active compounds did not change 
throughout the process. In each experiment, we assessed the average rates of false 
positives and false negatives and calculated the specificity (Sp) and the sensitivity (Se) of 
the methods according to Equation 1: 
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Figure 2 illustrates the performances of the four competing machine learning methods 

using ROC curves [27]. Tables 4 and 5 report the 95%-confidence intervals for sensitivity 
for the molecular and atomic descriptors, respectively. While examining the curves for 
the NN and LDA methods (Fig. 2), one can notice that the atomic and molecular 
descriptors yielded very similar results in terms of predicting active compounds. But, 
with linear SVM and, in particular, with polynomial SVM which provided the best 
overall performance, the molecular descriptors usually outperformed the atomic ones. For 
instance, for the polynomial SVM method and for both molecular and atomic descriptors 
the true positive rate varied between 67 and 97%, while maintaining the false positive 
rate in the 5-17% range. These trends were also noticeable for the confidence intervals 
presented in Tables 4 and 5. For a given hit/no hit ratio, the obtained confidence intervals 
for the linear and polynomial SVMs were very similar. This was also the case of the 
confidence intervals found for the NN and LDA methods. For a given method and hit/no 
hit ratio, the confidence intervals were very similar for both molecular and atomic 
descriptors (see the columns of Tables 4 and 5). This indicates that the differences 
between the predictions provided by the molecular and atomic descriptors were not 
significant.
 
Table 4. 95%-confidence intervals for sensitivity (computed according to Equation 2) obtained with the 
linear SVM, polynomial SVM, NN and LDA methods for the molecular descriptors. 

Hit/No hit ratio Linear SVM Polynomial SVM Neural Networks LDA 
(1:5) [0.53,0.75] [0.55,0.76] [0.42,0.64] [0.37,0.59]
(1:4) [0.69,0.87] [0.71,0.88] [0.47,0.69] [0.42,0.64]
(1:3) [0.81,0.95] [0.80,0.95] [0.51,0.73] [0.48,0.70]
(1:2) [0.86,0.98] [0.84,0.97] [0.57,0.79] [0.56,0.78]
(1:1) [0.90,1.00] [0.92,1.00] [0.71,0.89] [0.71,0.89]

 
Table 5. 95%-confidence intervals for sensitivity (computed according to Equation 2) obtained with the 
linear SVM, polynomial SVM, NN and LDA methods for the atomic descriptors. 

Hit/No hit ratio Linear SVM Polynomial SVM Neural Networks LDA 
(1:5) [0.51,0.73] [0.52,0.74] [0.41,0.63] [0.36,0.58]
(1:4) [0.70,0.88] [0.67,0.87] [0.46,0.68] [0.43,0.65]
(1:3) [0.78,0.94] [0.77,0.93] [0.52,0.74] [0.49,0.71]
(1:2) [0.83,0.97] [0.82,0.96] [0.59,0.79] [0.55,0.77]
(1:1) [0.87,0.99] [0.90,1.00] [0.70,0.88] [0.69,0.87]

 10



Combinatorial Chemistry & High Throughput Screening  
 

Then, we proceeded by selecting the “best combined variables” among the molecular 
and atomic descriptors using stepwise variable selection [18]. This technique combines 
the advantages of the forward and backward selection procedures: at each step, a single 
explanatory variable may be added (forward selection) or deleted (backward elimination) 
from the data set. The program “Stepwise” of MATLAB was carried out separately for 
the sets of molecular and atomic descriptors. The variables providing the p-values lower 
than or equal to 0.001 were retained. As a result, 75 molecular and 64 atomic descriptors 
were selected. Thus, the combined data set of explanatory variables used in the following 
simulation study consisted of 139 descriptors. It is worth noting that we also carried out 
the polynomial SVM method with all available 1034 (209 molecular + 825 atom-pair) 
descriptors. However, the results obtained for such a complete set of descriptors for the 
(1:1) hit versus no hit and (85%/15%) training set versus test set ratios were much worse 
than those reported in Figure 3 (found for the combined set of 139 descriptors). For 
instance, the following results were obtained for the complete 1034-descriptor data set: 
FN = 58, what is 77.33% (58 of 75), and FP = 15, what is 20% (15 of 75), leading to the 
sum of errors of 97.33%. Such a poor result is certainly due to the presence in the 
complete data set of a large number of “noisy” variables that cannot positively contribute 
to machine learning process. 
 
 
6 Prediction of experimental HTS data 
 
The combined data set of 139 descriptors retained by stepwise selection [18] will be 
considered in this section as a basis for our simulation study intended to compare the 
performances of the CART, NN, SVM, LDA, PLS and kNN methods in the context of 
HTS. At each step, each sample was divided into the training and test subsets to build the 
model for prediction (for more details on the sample content, see Tables 1, 2 and 3 and 
Section 3). All the results presented below are the averages obtained after 100 repetitions. 
For the presentation of the six machine learning methods and their options being 
employed, the reader is referred to Section 4. The presented SVM method results were 
those obtained with the polynomial training function because the sums of errors it 
provided were usually higher compared to the linear and radial basis (rbf) functions. As 
in the simulations discussed in Section 5, the SVM polynomial order was set to 4. 
 
 
6.1 Comparison of the CART, NN, SVM, LDA, PLS and kNN methods 
 
Figures 3 to 5 illustrate the results generated by the six methods in terms of false negative 
(FN) and false positive (FP) rates, sum of errors (FN + FP) and method’s sensitivity for 
the three different sample ratios presented in Tables 1, 2 and 3. For all three considered 
sample ratios (training/test sets: 85%/15%, 70%/30% and 50%/50%, see Section 3 for 
more details), polynomial SVM clearly outperformed the five other competing methods 
(see Figures 3 to 5).  
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Fig. (3). Results obtained by the SVM, NN, CART, LDA, PLS and kNN methods in terms of false 
negatives, false positives, sum of errors and model sensitivity (ROC curve) for the proportions of the hits 
and no hits and the sizes of the training and test samples reported in Table 1. The SVM method results are 
depicted by diamonds, NN by squares, CART by triangles, LDA by crosses, PLS by asterisks and kNN by 
circles. 
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Fig. (4). Results obtained by the SVM, NN, CART, LDA, PLS and kNN methods in terms of false 
negatives, false positives, sum of errors and model sensitivity (ROC curve) for the proportions of the hits 
and no hits and the sizes of the training and test samples reported in Table 2. The SVM method results are 
depicted by diamonds, NN by squares, CART by triangles, LDA by crosses, PLS by asterisks and kNN by 
circles. 
 

 12



Combinatorial Chemistry & High Throughput Screening  
 

18
24
30
36
42
48
54

(1:1) (1:2) (1:3) (1:4) (1:5)

Active versus non active compounds

%
 F

al
se

 n
eg

at
iv

es

9

16

23

30

(1:1) (1:2) (1:3) (1:4) (1:5)

Active versus non active compounds

%
 F

al
se

 p
os

iti
ve

s

41

47

53

59

65

71

(1:1) (1:2) (1:3) (1:4) (1:5)

Active versus non active compounds 

%
(F

N 
+ 

FP
)

0.42

0.52

0.62

0.72

0.82

0.92

0.17 0.19 0.21 0.23 0.25 0.27 0.29

1 - Specificity
Se

ns
iti

vi
ty

 
Fig. (5). Results obtained by the SVM, NN, CART, LDA, PLS and kNN methods in terms of false 
negatives, false positives, sum of errors and model sensitivity (ROC curve) for the proportions of the hits 
and no hits and the sizes of the training and test samples reported in Table 3. The SVM method results are 
depicted by diamonds, NN by squares, CART by triangles, LDA by crosses, PLS by asterisks and kNN by 
circles. 
 
This tendency is observable for the three following parameters: the false negative rate, 
the sum of errors and the method’s sensitivity. In terms of false negatives, the results 
yielded by the PLS method were the worse among the six competing methods. However, 
PLS produced the best overall results in terms of false positives. The PLS performance 
gradually deteriorates, while going from the (1:1) to (1:5) hit/no hits ratio, when we 
combine the false positive and false negative rates to obtain the sum of errors. The results 
provided by CART in terms of sensitivity were among the worse, especially for the hit/no 
hit ratios reported in Table 3 (Fig. 5). It is worth noting that the NN, PLS, LDA and kNN 
methods yielded very close results in terms of sum of errors and sensitivity performance, 
especially with the hit/no hit ratios reported in Tables 1 and 2 (Fig. 3 and 4). The 
following trend is common to all six methods: the recovery of active compounds 
deteriorates as their ratio in the data set decreases. Also, if the training set used in 
machine learning is much larger than the test set (e.g., consider 85%/15% ratio and the 
corresponding Fig. 3), the SVM method becomes very efficient and thus capable of 
making accurate hit/no hit prediction. 
 
To confirm the results presented in Figure 3d, where the best overall results were 
presented, we also estimated Area Under the ROC Curves (i.e., AUC). The AUC is equal 
to the probability that a classifier will rank a randomly chosen positive instance higher 
than a randomly chosen negative one [28]. We indicated by  the coordinates of 
the ROC curve points (k = 1,…, n); here  is the false positive rate, i.e., 

),( kk yx

kx ,1 Spxk −=  
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and  is the true positive rate, i.e., ky Seyk = . It is worth noting that the AUC is closely 
related to the Gini coefficient, denoted as G and defined by the following formula [29]: 

 ,21 AUCG =+  (3) 

where: 

  (4) ).)((1 1
1

1 −
=

− +−−= ∑ kk
n

k
kk yyxxG

The AUC is defined as follows (using Equations 3 and 4): 
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=
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Table 6 reports the AUC values for the 6 machine learning methods compared in this 
study. As expected, the highest AUC value was obtained for the polynomial SVM 
method. 
 
Table 6. The AUC values for the ROC curves representing the SVM, NN, CART, LDA, PLS and kNN 
methods and depicted in Figure 3d. 

Method SVM NN CART LDA PLS kNN 
AUC 0.946 0.928 0.894 0.931 0.925 0.937 

 
 
6.2 A refined variable selection procedure in the framework of polynomial SVM 
 
In this section we show how the variable selection can be carried out in the framework of 
the polynomial SVM method after the data set was portioned into the train/test splits. 
Such a selection is based on the sensitivity of predictors. In this experiment, the 
sensitivity was calculated using polynomial SVM for the 85%/15% training versus test 
set ratio (see Table 1) and the hit/no hit ratios varying from (1:1) to (1:5). The rationale of 
this approach is as follows: a single variable (i.e., descriptor) should be added to, or 
respectively deleted from, the data set of explanatory variables if the method’s sensitivity 
increases after its addition, or respectively decreases after its deletion. The combined data 
set of 139 descriptors determined via stepwise selection [18] was used as the initial data 
set of explanatory variables. Then, in turn, the 134 remaining molecular descriptors (209 
– 75 = 134) and 145 atomic descriptors (209 – 64 = 145) were tested for the addition to a 
new “optimal set of predictors”. This operation was followed by a procedure intended to 
delete “noisy variables” from the set of optimal predictors in order to improve the 
sensitivity of the polynomial SVM method. After one run of this addition/deletion 
operation the optimal set of predictors was reduced to 88 variables. Each decision on the 
addition or deletion of a predictor was based on 100 prediction outcomes obtained for this 
predictor (i.e., 100 different training/test samples were processed to make a decision for 
each predictor).  

Figure 6 illustrates the results obtained with such a variable selection approach and 
Table 7 reports the 95%-confidence intervals for the sensitivity, computed according to 
Equation 2, for the optimal set of 88 descriptors. For the polynomial SVM method 
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applied with the initial combined data set of 139 predictors (see Fig. 3 and the results 
presented in Section 6.1), the true positive rate ranged in the interval [0.78, 0.93], while 
the false positive rate varied from 5 to 17%. On the other hand, for the new optimal set of 
88 descriptors retained by the discussed sensitivity-based variable selection approach, the 
true positive rate was in the interval [0.82, 0.94], while the false positive rate was in the 
5-11% range (see Fig. 6). An average gain provided by such a variable selection 
procedure performed in the framework of the polynomial SVM method was about 5%. 
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Fig. (6). ROC curves representing the results of the polynomial SVM method for the initial set of 139 
descriptors (depicted by open diamonds) selected using the stepwise variable selection based on the linear 
regression and the optimal set of 88 descriptors (depicted by grey diamonds) selected with respect to the 
sensitivity of polynomial SVM. The proportions of hits and no hits and the sizes of the training and test 
samples were those reported in Table 1. The 139-descriptor curve is the portion of the polynomial SVM 
ROC curve shown in Figure 3 and corresponding to the [0.05, 0.11] interval on the x-axis. Positive error 
bars are shown for the curve associated with the optimal set of 88 descriptors and negative error bars for the 
curve associated with the initial set of 139 descriptors. The lengths of negative error bars for the former 
curve and positive error bars for the latter curve were very similar to the corresponding opposite direction 
bars shown in this figure. 
 
Table 7. 95%-confidence intervals for the sensitivity (computed according to Equation 2) obtained with the 
polynomial SVM method for the optimal set of 88 predictors selected with respect to the method’s 
sensitivity. 

Hit/No hit ratio (1:5) (1:4) (1:3) (1:2) (1:1) 
Polynomial SVM  [0.73, 0.90] [0.77, 0.93] [0.80, 0.95] [0.83, 0.96] [0.83, 0.96]
 
 
6.3 Enrichment factor  
 
Conventionally, so-called “enrichment factor” is used to establish a baseline for assessing 
the quality of virtual screening methods [13, 30]. The enrichment factor depict the 
number of active compounds found by employing a virtual screening strategy, as opposed 
to the number of active compounds found using a random selection [30]. The machine 
learning methods tested in this study were evaluated by means of ROC curves. The initial 
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slope of a ROC curve relates to the enrichment [13]. Enrichment is calculated using the 
following equation: 

 ,

)(

)(

NP
P

FPTP
TP

Enrichment

+

+=  (6) 

 
where P  (respectively, N ) is the total number of the active (respectively, inactive) 
compounds in the sample, TP is the number of true positives and FP is the number of 
false positives. This value represents the factor by which the fraction of active 
compounds is increased in an in silico screened dataset. Table 8 summarizes the 
enrichment results for the test samples obtained by the six competing machine learning 
methods depending on the hit/no hit ratio. The training versus test set ratio used was 85% 
versus 15%. 
 
Table 8. Enrichment of the test samples obtained with the polynomial SVM, NN, CART, LDA, PLS and 
kNN methods depending on the hit/no hit ratio.  

 

Hit/No hit ratio Pol. SVM  NN LDA CART PLS kNN 
(1:1) 1.69 1.65 1.62 1.53 1.76 1.65 
(1:2) 2.62 2.55 2.55 2.39 2.78 2.58 
(1:3) 3.58 3.47 3.47 3.20 3.77 3.52 
(1:4) 4.54 4.41 4.43 4.09 4.80 4.49 
(1:5) 5.48 5.33 5.29 4.78 5.80 5.35 

The values of the enrichment factor varied between 1.53 for CART with the ratio (1:1) 
and 5.80 for PLS with the ratio (1:5). The lowest enrichment was observed for the CART 
method for all considered hit/no hit ratios. The PLS method always provided the best 
enrichment. This is due to the fact that the proportions of false positives for PLS were 
very low, but those of false negatives very high (i.e., and those of true positives also very 
low). The following general trend could be noticed: the smaller is the proportion of hits in 
the data set, the higher is the enrichment factor.  
 
 
6.4 Identification of average hits 
 
We also examined the methods’ performances with respect to the identification of the 
average hits from McMaster Test data set [1]. For this data set only 96 average hits were 
identified (i.e., 96 average hits, according to the terminology of the organizers of 
McMaster Data Mining and Docking Competition). Tables 9 to 11 present the 
identification rates of the average hits for the three considered training/test ratios (i.e., 
85% versus 15%, 70% versus 30% and 50% versus 50%) provided by the polynomial 
SVM, NN, CART, LDA, PLS and kNN methods. The test set of each sample comprised, 
respectively: 15 average hits (for the results reported in Table 9), 29 average hits (for the 
results reported in Table 10) and 48 average hits (for the results reported in Table 11). All 
the results in Tables 9 to 11 are the averages calculated over 100 repetitions. 
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Here again, the polynomial SVM method provided the best general performance 
offering the most accurate identification rate of the average hits. For instance, the 
identification rate for the (1:1) hit/no hit ratio reported in Table 9 exceeded 75% for 
polynomial SVM. One can notice that the machine learning methods having high false 
negative rates (such as PLS and CART, see Figures 3 to 5) are also providing the lowest 
identification rates of the average hits. On the other hand, the SVM and LDA methods 
yielded very close results in terms of identifying the average hits. The methods’ 
performances gradually decrease as the proportion of inactive compounds and the size of 
the test set increase. Thus, the results reported in Table 11, corresponding to the case 
when the test sets represented 50% of the sample and contained 48 average hits, suggest 
that the identification rates of the average hits were much lower in this case, especially 
those obtained by the PLS method.  
 
Table 9. Percentage of average hits identified by the six considered machine learning methods depending 
on the hit/no hit ratio. Here, the test set represented 15% of the sample size and contained 15 of the 96 
average hits. 
Hit/No hit ratio SVM NN CART LDA PLS kNN 

(1:1) 75.40 72.13 46.47 74.33 27.47 71.27 
(1:2) 60.20 54.60 32.13 60.40 15.80 65.13 
(1:3) 56.33 52.73 26.87 54.80 8.20 57.87 
(1:4) 47.07 47.20 25.93 41.20 5.07 50.60 
(1:5) 35.73 31.47 23.07 35.67 3.87 40.47 

 
Table 10. Percentage of average hits identified by the six considered machine learning methods depending 
on the hit/no hit ratio. Here, the test set represented 30% of the sample size and contained 30 of the 96 
average hits. 
Hit/No hit ratio SVM NN CART LDA PLS kNN 

(1:1) 59.40 50.60 29.20 55.20 19.60 57.50 
(1:2) 36.73 30.17 22.17 38.87 8.47 39.07 
(1:3) 30.87 29.27 19.63 34.83 4.37 33.60 
(1:4) 19.80 17.33 13.57 30.17 1.40 27.90 
(1:5) 14.83 10.20 7.23 20.07 0.30 24.27 

 
Table 11. Percentage of average hits identified by the six considered machine learning methods depending 
on the hit/no hit ratio. Here, the test set represented 50% of the sample size and contained 48 of the 96 
average hits. 
Hit/No hit ratio SVM NN CART LDA PLS kNN 

(1:1) 48.63 42.40 25.54 48.02 14.19 47.60 
(1:2) 37.33 32.31 20.10 35.75 7.52 32.04 
(1:3) 27.19 24.38 16.42 26.21 2.96 22.94 
(1:4) 17.60 13.54 11.21 16.31 1.42 18.15 
(1:5) 10.65 8.79 5.60 9.63 0.17 11.33 

 
7 Conclusion and future work 
 
As a traditional high-throughput screening campaign remains a very costly process, the 
development of in silico methods allowing one to predict accurately experimental HTS 
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results would be of great importance. The current study suggests that the machine 
learning methods can be successfully applied in HTS and shows the ways for improving 
their performance. It also highlights the main limitations of machine learning techniques 
in the context of HTS. In general, the results provided by the six considered machine 
learning methods, including SVM, NN, CART, LDA, PLS and kNN, in terms of 
sensitivity were very encouraging, especially those obtained by polynomial SVM, for the 
case when the training set represented 85% and the test set 15% of the sample size. 

First, we compared between them the sets of atomic and molecular descriptors 
characterizing each considered chemical compound (Fig. 2) in order to determine which 
of these types of descriptors provides a better discrimination of the hit/no hit outcomes. 
To the best of our knowledge, such a comparison, made in the context of HTS, is novel. 
We showed that the atomic and molecular descriptors had generally the same power in 
predicting the active molecules when the NN and LDA methods were applied. When the 
linear and especially polynomial SVM methods were performed, the molecular 
descriptors provided a better prediction than their atomic counterparts. However, the 
confidence intervals presented in Tables 4 and 5 suggest that the obtained prediction 
differences were not significance.  

Second, we carried out a stepwise regression to select the best descriptors in both data 
sets and create a combined set of explanatory variables. The six considered machine 
learning methods were then tested on this combined set of variables and their 
performances were evaluated in terms of false negatives, false positives, sum of errors 
and sensitivity. The methods comparison was carried out for three different training/test 
set ratios and five different hit/no hit proportions. The conducted simulations suggest that 
the polynomial SVM method outperforms NN, CART, LDA, PLS and kNN in most 
circumstances. The reported results also demonstrate that the CART and PLS methods 
are not very efficient for predicting the active molecules, especially when the ratio of the 
active compounds is very marginal compared to that of the inactive ones. The bad 
performances of the CART method can be due to the fact that the CART predictions are 
based on the mean activity of the training compounds in the final leaves of the decision 
tree. It can be also due to the enormous reduction of feature space carried out by CART. 
As to PLS, we noticed that the proportions of false positives provided by this method 
were very low, but the proportions of false negatives were very high compared to the 
other competing methods.  

We also implemented a variable selection procedure based on the sensitivity of a 
machine learning method. This procedure consists of the deletion of a variable, if the 
method’s sensitivity decreases, or of its addition, if the method’s sensitivity increases. 
Figure 6 shows the performances of this approach obtained in the framework of the 
polynomial SVM method. An average gain provided by such a refined variable selection 
procedure was about 5% (Fig. 6). 

In the future, we plan, firstly, to apply classification methods allowing one to 
eliminate the descriptors not contributing to clustering (i.e., noisy variables), secondly, to 
use information from computational and combinatorial chemistry in order to improve the 
prediction accuracy (i.e., add to the set of descriptors the docking and binding scores 
which can be computed by many cheminformatics software; e.g., see the software 
comparison article by Moitessier et al. [31]), and, finally, to deploy a 2-fold machine 
learning procedure for large HTS data sets having small percentages of hits (such a 
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procedure could consider one set of descriptors to preselect 10-15% of the best 
compounds at the first step, and then perform a second selection of the active compounds, 
using a different set of descriptors, within the preselected set of compounds). Another 
area for future investigation consists of a joint application of the most powerful machine 
learning approaches. For instance, a combined application of the polynomial SVM and 
NN methods could be explored. 
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