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Several algorithms and software have been developed for inferring phylogenetic trees. However,

there exist some biological phenomena such as hybridization, recombination, or horizontal gene

transfer which cannot be represented by a tree topology. We need to use phylogenetic networks

to adequately represent these important evolutionary mechanisms. In this article, we present a
new e±cient heuristic algorithm for inferring hybridization networks from evolutionary distance

matrices between species. The famous Neighbor-Joining concept and the least-squares criterion

are used for building networks. At each step of the algorithm, before joining two given nodes, we

check if a hybridization event could be related to one of them or to both of them. The proposed
algorithm ¯nds the exact tree solution when the considered distance matrix is a tree metric (i.e.

it is representable by a unique phylogenetic tree). It also provides very good hybrids recovery

rates for large trees (with 32 and 64 leaves in our simulations) for both distance and sequence
types of data. The results yielded by the new algorithm for real and simulated datasets are

illustrated and discussed in detail.

Keywords: Hybridization networks; Neighbor-Joining; phylogenetic trees.

1. Introduction

The evolution of species is commonly modeled by means of phylogenetic (i.e. addi-

tive) trees, in which leaves represent contemporary species, internal nodes ��� their

ancestors, branches ��� the ancestor–descendant relationships between species and

branch lengths ��� the evolutionary time. There exist many algorithms for inferring

phylogenetic trees from distance or sequence datasets. Distance-based methods take
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as input a distance matrix between species, whereas sequence-based methods take as

input some DNA or protein sequences. Distance-based methods are usually much

faster than the sequence-based methods. The most popular of these methods are

Neighbor-Joining (NJ)1 and Unweighted Pair Group Method with Arithmetic mean

(UPGMA).2 If we have to analyze datasets with relatively small number of species,

we can also use sequence-based approaches such as maximum parsimony3 and

maximum likelihood.4 More recently, several Bayesian methods5 have been devel-

oped to extend maximum-likelihood estimations to a larger number of species.

Some well-known reticulate evolution phenomena, such as horizontal (lateral)

gene transfer, hybridization, homoplasy, and genetic recombination cannot be

modeled by a tree structure.6–8 However, reticulate evolution has long been

neglected in phylogenetic analyses. The ¯rst methods for studying the mechanisms

of reticulate evolution started to appear in the mid-1970s.6,9 Several tentative

methods have been proposed for the identi¯cation of reticulate evolution in nucle-

otide sequences. They include displays of compatibility,6 tests for clustering,10 a

randomization approach,11 and an extension of the parsimony method of phyloge-

netic reconstruction that allows recombination.12 Rieseberg and More¯eld13 devel-

oped a computer program, RETICLAD, allowing one to identify hybrids based on

the expectation that they would combine the characters of their parents. However,

the latter program could only ¯nd reticulation events between terminal branches of

a tree. The popular method of split decomposition enables the representation of

data in the form of a split graph revealing con°icting signals contained in the

data.14,15 A split graph is an implicit phylogenetic network, that is used to show

con°icting placements of taxa. Bryant and Moulton16,17 introduced a network-

inferring method, NeighborNet, allowing the reconstruction of planar phylogenetic

split networks. The latter method usually provides several decompositions of the set

of species but it is very di±cult to deduce explicit reticulation events (e.g. horizontal

gene transfers with their directions) from theses decompositions. Gambette and

Huson18 have then improved the visualization of these decompositions. Huson and

Bryant have developed the SplitsTree17 software, which has become the most

commonly used tool for inferring implicit phylogenetic networks. Legendre and

Makarenkov19–21 proposed to use reticulograms for detecting reticulation events in

evolutionary data. They developed a distance-based method to infer reticulate

phylogenies. The latter method uses the topology of a phylogenetic tree as backbone

structure for building a reticulogram by adding reticulation branches to this tree

according to an optimization criterion. Hallett and Lagergren22 showed how hori-

zontal gene transfer events can be detected by evaluating topological di®erences

between species and gene trees. Makarenkov et al.,23 Boc et al.,24 and Boc and

Makarenkov25 have proposed algorithms for identifying and validating statistically

horizontal gene transfer events from species and gene trees de¯ned on the same set

of species. These methods have been implemented in the software T-REX.26,27 In

the case of a set of individuals of the same population, Bandelt et al.28 have used a

parsimony criterion to construct a network from several minimal cover trees. Doyon
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et al.29 have also proposed a parsimony method to reconcile a species tree and

several gene trees, by taking into account horizontal transfers, gene losses, and

duplications. Huson and Rupp30 and van Iersel et al.31 have used the notion of

cluster networks to reconcile several contradictory phylogenetic trees. In the case of

two contradictory trees, Albrecht et al.32 have proposed a partially parallel algo-

rithm to ¯nd a minimum hybridization network from two input trees, but this

algorithm remains very slow even when it is executed on a computer with multiple

cores.33 Wu34 and Chen and Wang35 have presented algorithms for constructing

hybridization networks from more than two input trees. Van Iersel and Kelk36 have

developed a polynomial-time algorithm for inferring a phylogenetic network from a

dense set of triplets. Some quartet-based methods have been also introduced for tree

reconstruction by Strimmer and van Harseler,37 and then implemented by Schmidt

et al.38 in the program TREE-PUZZLE. These methods have been extended to

network inference in the software QNet39 and Quartet-Net.40 Huson and

Kl€opper41,42 have designed two methods to detect recombination events from binary

sequences by using general reticulate networks and galled trees (i.e. reticulate net-

works in which all reticulations are independent from each other). Many of the

discussed techniques were tested by Woolley et al.43 Mention that all of them are

plausible only under speci¯c evolutionary constraints and assumptions. It is worth

noting that all of the existing methods for building explicit hybridization networks

take as input either a set of contradictory trees, or a set of clusters, or a set of

triplets (see Semple44 for a more detailed description of all these structures). The

main novelty of our work is that our algorithm takes as input a single distance

matrix to infer from it an explicit hybridization network using the well-known

principle of minimum evolution.1

The main goal of our article is to present a new e±cient algorithm for inferring

phylogenetic networks from a distance matrix between species. Our method can be

seen as a generalization of the very popular NJ algorithm1 to hybridization net-

works. The paper is organized as follows: In Sec. 2, we describe the phenomenon of

hybridization; in Sec. 3, we recall the main features of the NJ algorithm; in Sec. 4,

we de¯ne a hybridization network and prove some of its important general prop-

erties; in Sec. 5, we present the necessary least-squares formulas and discuss the

network building strategy. Section 6 is dedicated to our algorithm and in Sec. 7, we

provide some experimental results obtained on additive, nonadditive, and real

datasets.

2. Hybridization

Hybridization is a very common mechanism of reticulate evolution. In Fig. 1, two

lineages (Root-Species E2 and Root-Species E3) recombine to create a new species

(Species E4). If the new species have the same number of chromosomes as the parent

species, the process is called diploid hybridization. When it has the sum of the

number of its parents' chromosomes, it is called polyploid hybridization. The three
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main mechanisms of hybridization are the following:

(1) Autopolyploidization is a speciation event involving the doubling of the chro-

mosomes within a single species (intraspeci¯c hybridization). It produces a

bifurcating speciation event in a phylogenetic tree.

(2) Allopolyploidization is a type of hybridization between two species, when an

o®spring acquires the complete diploid chromosome complements of the two

parents. In this case, the parents do not need to have the same number of

chromosomes. Allopolyploidization results in instantaneous speciation because

any backcrossing to the diploid parents is likely to produce a sterile triploid

o®spring.

(3) Diploid hybrid speciation is a normal sexual event taking place between parents

from di®erent but related species. In nearly all cases, the two parents need to

have the same number of chromosomes. In this case, successful backcrossing

to the parents is possible, so the hybrids have to be isolated from the parents to

become new species.

Consider the problem of modeling reticulate evolution after diploid hybrid specia-

tion. In normal diploid organisms, each chromosome consists of a pair of homologs. In

the process of diploid hybridization, the hybrid inherits one of the two homologs for

each chromosome from each of its two parents. Since the genes from both parents

contributed to the hybrid, the evolution of genes inherited from each parent can be

represented on separate trees inside a network model. Classical phylogenetic analysis

of the four species involved in a hybrid speciation event (Fig. 1) will produce one of

the two trees in Fig. 2.

Hybridization is very common in plants. There exist more than 70,000 natural

hybrid plants,45 and some hybrid plants can be created by humans to introduce some

speci¯c characteristics into cultivated species.46 Hybridization is also very common

among ¯sh, amphibians, and reptiles,47 and is rare in other groups, particularly in

birds, mammals, and most arthropods. The latter groups are only occasionally

Fig. 1. An example of hybridization.
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a®ected by hybrid speciation. They usually produce triploids which can only

reproduce by asexual modes.

The main goal of our article is to model and infer phylogenetic networks taking

into account possible hybridization events.

3. NJ for Trees

This section starts with some basic de¯nitions concerning phylogenetic trees.48 The

distance dðx; yÞ between two vertices x and y in a phylogenetic tree T is de¯ned as

the sum of all branch lengths of the unique path connecting x and y in T .

De¯nition 1. Let X be a set of n species. A dissimilarity d on X is a nonnegative

function on X �X such that for all x; y in X:

(1) dðx; yÞ ¼ dðy;xÞ, and
(2) dðx; yÞ ¼ dðy;xÞ � dðx;xÞ ¼ 0.

De¯nition 2. A dissimilarity d on X is said to satisfy the four-point condition49

if for all x; y; z, and w in X: dðx; yÞ þ dðz;wÞ � Maxfdðx; zÞ þ dðy;wÞ; dðx;wÞþ
dðy; zÞg.
De¯nition 3. For any ¯nite setX, anX-tree is an ordered pair ðT ; �Þ consisting of a
tree T , with a set of vertices V and a relation � : X ! V , such that, for all v 2 V with

a degree at most equal to 2, v 2 �ðXÞ. An X-tree is a phylogenetic tree if � is a

bijection from X to the set of all leaves of T . It is said to be binary if each internal

vertex has a degree equal to 3.

The main theorem relating the four-point condition and phylogenetic trees is as

follows:

Theorem 1. ðZarestskii, Buneman, Patrinos, and Hakimi, DobsonÞ Any dissim-

ilarity satisfying the four-point condition can be represented as a phylogenetic tree

(a) (b)

Fig. 2. Two di®erent trees for representing the same hybridization phenomenon of Fig. 1.
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such that for all x; y in X; dðx; yÞ is equal to the length of the path connecting leaves x

and y in T .

This dissimilarity is called an additive distance, a tree distance or a tree metric.

This tree is unique.

The NJ1 algorithm is the most popular distance-based method for inferring

phylogenetic trees. Atteson50 proved that this algorithm ¯nds the correct phylogeny

if the input distances between species are su±ciently close to the real evolutionary

distances.

Throughout this article, we take as input a distance matrix D ¼
fD½i�½j�g1�i�n;1�j�n on a set of n species, and we obtain as output a network corre-

sponding to the evolutionary history of these species. Obviously, D½i�½i� ¼ 0 for all

1 � i � n, and D½i�½j� ¼ D½j�½i� for all 1 � i � n and 1 � j � n.

NJ is a clustering algorithm which starts with a bush composed of n leaves and n

branches, where n is the number of current species. This tree is gradually trans-

formed into an unrooted phylogenetic tree with the same n leaves and with 2n� 3

branches. The ith step consists in choosing two neighbors among n� iþ 1 candi-

dates. We consider all the ðn�iþ1Þðn�iÞ2 con¯gurations similar to the one represented in

Fig. 3. For each of these con¯gurations, we calculate the branch lengths which

minimize a least-squares criterion, in which we compare the input dissimilarities with

the tree metric distances.

Saitou and Nei1 showed that the sum of the branch lengths of the tree topology in

Fig. 3 is equal to:

Si;j ¼
1

2
D½i�½j� þ

P
1�k�n;k 6¼i;j½D½i�½k� þD½j�½k��

2ðn� 2Þ þ
P

1�k<l�n;k;l 6¼i;j D½k�½l�
n� 2

: ð1Þ

We connect nodes i and j that minimize the total evolution, i.e. the sum of branch

lengths Si;j. We replace the selected nodes i and j by node X (their direct common

ancestor) and obtain a distance matrix of size n� 1. We compute the new distances

from X to the remaining leaves of the tree by using the following formula:

dðX; kÞ ¼ 1

2
ðD½i�½k� þD½j�½k�Þ; k 6¼ i; j: ð2Þ

Fig. 3. Con¯guration where nodes i and j are chosen as neighbors.
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After n� 3 steps, we obtain an unrooted phylogenetic tree whose branch lengths are

calculated at each step by using the following equations:

Li ¼
1

2
D½i�½j� þ 1

2ðn� 2Þ ðP �QÞ; Lj ¼
1

2
D½i�½j� � 1

2ðn� 2Þ ðP �QÞ; ð3Þ

where

P ¼
X

1�k�n;k6¼i;j
D½i�½k�; and Q ¼

X
1�k�n;k 6¼i;j

D½j�½k�:

We adapt this algorithm to the case of hybridization networks. Note that in our

model hybridization events may occur between terminal branches such as shown in

Fig. 4 as well as between ancestral branches such as shown in Fig. 5. In both cases,

the two parent branches may (or may not) have a direct common ancestor (see the

di®erence between networks (a) and (b) in both ¯gures). In all ¯gures, hybridization

(i.e. reticulation) branches are depicted by dashed lines.

4. Some Properties of Hybridization Networks

In this section, we consider hybrids between terminal branches. We describe how

distances between species are de¯ned in such a network.

(a) (b)

Fig. 4. Hybrids between terminal branches.

(a) (b)

Fig. 5. Hybrids between ancestral branches.
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4.1. Hybrids between neighbor parents

We take the network (a) in Fig. 4 as an example where species h is the hybrid of

species i and j. We denote by X the common ancestor of species i and j (see Fig. 6).

Obviously, if we remove species h, we obtain a traditional additive tree. For hybrid

species h, we de¯ne a real value � between 0 and 1, which is the proportion of the

hybrid's genetic inheritance coming from species i (see Fig. 6). We also need to know

lengths L0
i , L

0
j , and Lh shown in Fig. 6. The dashed reticulation branches labeled �

and 1� � have branch lengths equal to 0. The distances between hybrid h and other

species in the network are de¯ned as follows:

D½i�½h� ¼ Lh þ �ðLi � L0
i Þ þ ð1� �ÞðL0

j þ LiÞ; and then

D½i�½h� ¼ Lh þ Li � �L0
i þ ð1� �ÞL0

j ;
ð4Þ

D½j�½h� ¼ Lh þ ð1� �ÞðLj � L0
j Þ þ �ðL0

i þ LjÞ; and then

D½j�½h� ¼ Lh þ Lj þ �L0
i � ð1� �ÞL0

j ;
ð5Þ

D½k�½h� ¼ Lh þ �L0
i þ ð1� �ÞL0

j þ dðX; kÞ; ð6Þ
for any species k di®erent from i, j, and h, where the distances dðX; kÞ between nodes

X and k are computed as in a traditional additive tree.

Since the only terms containing the hybridization parameter �, L0
i or L

0
j are �L

0
i

and ð1� �ÞL0
j , � is not uniquely de¯ned. We can increase � and L0

j and decrease L0
i

in such a way that we obtain exactly the same distances between species. It is no

longer the case for hybrids between non-neighbor parents.

4.2. Hybrids between non-neighbor parents

We take the network (b) in Fig. 4 as an example where h is the hybrid of species i and

j. We denote by X (respectively Y ) the closest ancestor of species i (respectively j).

We use the notation indicated in Fig. 7. Thus, the distances between hybrid h and

Fig. 6. Network con¯guration in which species h is a hybrid of two neighbor species i and j.
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other species in the network are de¯ned as follows:

D½i�½h� ¼ Lh þ �ðLi � L0
i Þ þ ð1� �ÞðL0

j þ dðY ;XÞ þ LiÞ; and then

D½i�½h� ¼ Lh þ Li � �L0
i þ ð1� �ÞðL0

j þ dðY ;XÞÞ; ð7Þ

D½j�½h� ¼ Lh þ ð1� �ÞðLj � L0
j Þ þ �ðL0

i þ dðY ;XÞ þ LjÞ; and then

D½j�½h� ¼ Lh þ Lj þ �ðL0
i þ dðY ;XÞÞ � ð1� �ÞL0

j ;
ð8Þ

D½k�½h� ¼ Lh þ �ðL0
i þ dðX; kÞÞ þ ð1� �ÞðL0

j þ dðY ; kÞÞ ð9Þ
for all species k di®erent from i; j, and h, where the distances dðX; kÞ, dðY ;XÞ, and
dðY ; kÞ are computed as in a traditional additive tree. If we set Y ¼ X in these

equations, we obtain the equations for a hybrid between neighbors. As we will show

later, if species i and j are not neighbors, � is uniquely de¯ned and can be calculated

directly from the distance matrix.

4.3. Two important properties

In this section, we will describe two very important properties of hybridization

networks that will be used in our algorithm.

Proposition 1. If species h is the hybrid of species i and j, then for all species k

di®erent from species i; j, and h:

D½i�½j� þD½k�½h� �D½i�½h� �D½k�½j� > 0;

D½i�½j� þD½k�½h� �D½j�½h� �D½k�½i� > 0:
ð10Þ

Moreover, if species i and j are neighbors, then for all species k di®erent from

species i, j, and h:

D½i�½j� þD½k�½h� �D½i�½h� �D½k�½j� ¼ 2�L0
i ;

D½i�½j� þD½k�½h� �D½j�½h� �D½k�½i� ¼ 2ð1� �ÞL0
j :

ð11Þ

Proof. Let k be a species di®erent from species i; j, and h. Using Eqs. (7) and (9), we

obtain:

D½i�½j� þD½k�½h� �D½i�½h� �D½k�½j�
¼ D½i�½j� þ Lh þ �ðL0

i þ dðX; kÞÞ þ ð1� �ÞðL0
j þ dðY ; kÞÞ

� ðLh þ Li � �L0
i þ ð1� �ÞðL0

j þ dðY ;XÞÞÞ �D½k�½j�:

Fig. 7. Network con¯guration in which species h is a hybrid of two non-neighbor species i and j.
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If we replace D½i�½j� by Li þ dðY ;XÞ þ Lj and D½k�½j� by dðY ; kÞ þ Lj, we obtain:

D½i�½j� þD½k�½h� �D½i�½h� �D½k�½j�
¼ Li þ dðY ;XÞ þ Lj þ Lh þ �ðL0

i þ dðX; kÞÞ
þ ð1� �ÞðL0

j þ dðY ; kÞÞ � ðLh þ Li � �L0
i þ ð1� �ÞðL0

j þ dðY ;XÞÞÞ
� ðdðY ; kÞ þ LjÞ ¼ �ðdðY ;XÞ þ dðX; kÞ � dðY ; kÞ þ 2L0

i Þ > 0:

Indeed, dðY ;XÞ þ dðX; kÞ � dðY ; kÞ is nonnegative according to the triangle

inequality.

In the same way, we have:

D½i�½j� þD½k�½h� �D½j�½h� �D½k�½i�
¼ ð1� �ÞðdðY ;XÞ þ dðY ; kÞ � dðX; kÞ þ 2L0

jÞ > 0:

Moreover, if species i and j are neighbors, X ¼ Y , then we ¯nd Eq. (11) by

replacing X by Y in the formulas above.

De¯nition 4. For all triplets of species i, j, and h, we de¯neMINh
i;j as the minimum

of all values D½i�½j� þD½k�½h� �D½i�½h� �D½k�½j� and D½i�½j� þD½k�½h� �D½j�½h� �
D½k�½i�, for all species k di®erent from species i, j, and h.

It is worth noting that in an additive tree (without a hybrid), for all triplets

of species i, j, h, at least one of the values D½i�½j� þD½k�½h� �D½i�½h� �D½k�½j� or
D½i�½j� þD½k�½h� �D½j�½h� �D½k�½i� is nonpositive according to the four-point con-

dition. Then all the values MINh
i;j are nonpositive.

Fig. 8. Hybrid h whose parent i1 has a direct neighbor i2.
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In the same way, we can prove the following proposition:

Proposition 2. If species h is the hybrid of species i1 and j; and if i2 6¼ j is the direct

neighbor of i1 ðsee Fig. 8Þ, then for all species k di®erent from i1; i2, h, and j:

D½i2�½h� þD½i1�½k� �D½k�½h� �D½i1�½i2� > 0;

D½i2�½h� þD½i1�½k� �D½i1�½h� �D½k�½i2� > 0
ð12Þ

and also MIN i1
i2;h

> 0.

5. Identi¯cation of Hybrids

If species h is the hybrid of species i and j in an additive network, we have the

following system of equations, where we use the length Ci (respectively Cj) between

species i and Xi (respectively j and Xj), as shown in Fig. 7:

D½i�½h� ¼ Lh þ �Ci � ð1� �ÞCj þ ð1� �ÞD½i�½j�; ð13Þ

D½j�½h� ¼ Lh � �Ci þ ð1� �ÞCj þ �D½i�½j�; ð14Þ

D½k�½h� ¼ Lh � �Ci � ð1� �ÞCj þ �D½i�½k� þ ð1� �ÞD½j�½k� ð15Þ

for all species k di®erent from i; j, and h.

In a general network, we computed the least-squares solutions to this system of

equations, and we found the following formulas:

Lh ¼
1

2
ðD½i�½h� þD½j�½h� �D½i�½j�Þ; ð16Þ

�Ci ¼ �
1

2ðn� 3Þ
X

k 0 6¼i;j;h
ðD½k 0�½h� � �D½k 0�½i� � ð1� �ÞD½k 0�½j�Þ

0
@

1
A

þ 1

2
ðD½i�½h� � ð1� �ÞD½i�½j�Þ; ð17Þ

ð1� �ÞCj ¼ �
1

2ðn� 3Þ
X

k 0 6¼i;j;h
ðD½k 0�½h� � �D½k 0�½i� � ð1� �ÞD½k 0�½j�Þ

0
@

1
A

þ 1

2
ðD½j�½h� � �D½i�½j�Þ: ð18Þ

If we set A ¼ � 1
2ðn�3Þ ð

P
k 0 6¼i;j;hðD½k 0�½h� � �D½k 0�½i� � ð1� �ÞD½k 0�½j�ÞÞ, we

obtain:

�Ci ¼ Aþ 1

2
ðD½i�½h� � ð1� �ÞD½i�½j�Þ;

ð1� �ÞCj ¼ Aþ 1

2
ðD½j�½h� � �D½i�½j�Þ:
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If we replace Lh, �Ci, and ð1� �ÞCj by these formulas in Eqs. (13)–(15), we

obtain:

D½i�½h� ¼ 1

2
ðD½i�½h� þD½j�½h� �D½i�½j�Þ

þ 1

2
ðD½i�½h� � ð1� �ÞD½i�½j� �D½j�½h� þ �D½i�½j�Þ þ ð1� �ÞD½i�½j�;

D½j�½h� ¼ 1

2
ðD½i�½h� þD½j�½h� �D½i�½j�Þ

� 1

2
ðD½i�½h� � ð1� �ÞD½i�½j� �D½j�½h� þ �D½i�½j�Þ þ �D½i�½j�;

D½k�½h� ¼ 1

2
ðD½i�½h� þD½j�½h� �D½i�½j�Þ � 2A

� 1

2
ðD½i�½h� � ð1� �ÞD½i�½j� þD½j�½h�

��D½i�½j�Þ þ �D½i�½k� þ ð1� �ÞD½j�½k�:
After simpli¯cation, we obtain twice 0 ¼ 0, and

D½k�½h� ¼ �2Aþ �D½i�½k� þ ð1� �ÞD½j�½k�:

D½k�½h� ¼ 1

n� 3

X
k 0 6¼i;j;h

ðD½k 0�½h� � �D½k 0�½i� � ð1� �ÞD½k 0�½j�Þ
 !

þ�D½i�½k� þ ð1� �ÞD½j�½k�:

D½k�½h� ¼ 1

n� 3

X
k 0 6¼i;j;h

ðD½k 0�½h� �D½k 0�½j�Þ
 !

þ �

n� 3

X
k 0 6¼i;j;h

ðD½k 0�½j� �D½k 0�½i�Þ
 !

þ�D½i�½k� þ ð1� �ÞD½j�½k�:
If we set

Sh ¼
P

k 0 6¼i;j;h D½k 0�½h�
n� 3

; Si ¼
P

k 0 6¼i;j;h D½k 0�½i�
n� 3

; Sj ¼
P

k 0 6¼i;j;h D½k 0�½j�
n� 3

; ð19Þ

we obtain:

D½k�½h� ¼ Sh � Sj þ �ðSj � SiÞ þ �D½i�½k� þ ð1� �ÞD½j�½k�; and then

D½k�½h� �D½j�½k� ¼ Sh � Sj þ �ðSj � Si þD½i�½k� �D½j�½k�Þ:
Now, we have to ¯nd an optimal value of � allowing us to minimize the following

function: X
k6¼i;j;h

ðYk � Sh þ Sj � �XkÞ2;
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where

Yk ¼ D½k�½h� �D½j�½k�; Xk ¼ Sj � Si þD½i�½k� �D½j�½k�: ð20Þ
If we di®erentiate according to �, we obtain:X

k 6¼i;j;h
XkðYk � Sh þ Sj � �XkÞ ¼ 0

and then

�� ¼
X

k 6¼i;j;hXkðYk � Sh þ SjÞX
k 6¼i;j;hXkXk

:

De¯nition 5. For all triplets of species i, j, h, we de¯ne the degree of hybridation,

�h
i;j, of h as a hybrid of i and j, by the following formula:

�h
i;j ¼

X
k 6¼i;j;hXkðYk � Sh þ SjÞX

k 6¼i;j;hXkXk

;

where Sh, Sj, Xk, and Yk are de¯ned by Eqs. (19) and (20).

If
P

k 6¼i;j;hXkXk ¼ 0 (which is the case when h is the hybrid of neighbor species i

and j in an additive network), the optimal value of � cannot be determined and we

set �h
i;j ¼ 0:5.

We also de¯ne Lh
i;j by the following formula:

Lh
i;j ¼

X
k 6¼i;j;hðYk � Sh þ Sj � �h

i;jXkÞ2
ðn� 3Þ :

Remark 1. The closer Lh
i;j is to 0, the more likely species h is the hybrid of species i

and j.

Our strategy to identify hybrids is the following. First, we determine the couple

ði1; i2Þ, which minimizes Si;j according to the NJ classical criterion.

Then, we identify the species h that is the most likely to be a hybrid between i1 or

i2 and any other species j. We notice that in an additive tree, if i1 and i2 are true

neighbors, we have the following equations:

D½i1�½i2� ¼ Li1 þ Li2 ;

D½i1�½k� �D½i2�½k� ¼ Li1 � Li2 ;

for all species k di®erent from i1 and i2. Then, we obtain the following equations:

D½i2�½k� þD½i1�½k 0� �D½i2�½k 0� �D½i1�½k� ¼ 0;

for all species k and k 0 di®erent from i1 and i2. However, if species h is the hybrid of

species i1 (respectively i2) and any species j, according to Proposition 2, we have:

D½i2�½h� þD½i1�½k 0� �D½i2�½k 0� �D½i1�½h� > 0;

ðD½i2�½h� þD½i1�½k 0� �D½i2�½k 0� �D½i1�½h� < 0; respectivelyÞ;
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for all species k 0 di®erent from i1, i2, and h. Then, we de¯ne �h
i1;i2

as follows:

�h
i1;i2
¼
X

k 6¼i1;i2ðD½i2�½h� þD½i1�½k� �D½i2�½k� �D½i1�½h�Þ
n� 2

and we choose the species hH that maximizes the absolute value of �h
i1;i2

.

If �hH
i1;i2

> 0 (�hH
i1;i2

< 0, respectively), we consider i1 (respectively i2) as one of the

two parents of hH . We set iH ¼ i1 (respectively iH ¼ i2).

Then, we need to determine the second parent of hH . We compute the smallest

value LhH
iH ;jH

, of all possible values LhH
iH ;j

for all species j such that: MINhH
iH ;j

> 0 and

�min < �hH
iH ;j

< �max, where the thresholds �min and �max (0 < �min < �max < 1) are

some parameters which can be suggested by the user.

If LhH
iH ;jH

< ð�hH
i1;i2
Þ2, then hH is identi¯ed as the hybrid of species iH and jH . The

detailed scheme of our algorithm is given below.

6. Algorithm for Inferring Hybridization Networks

In this section, we introduce a new algorithm for inferring hybridization networks

based on the NJ principle. This algorithm takes as input a distance matrix D ¼
fD½i�½j�g1�i�n;1�j�n on a set of n species and two real values �min and �max such that

0 < �min < �max < 1.

ALGORITHM

. nA ¼ n

. DA ¼ D

. While (nA > 4)

(1) We determine the couple ði1; i2Þ, that minimizes Si;j.

(2) We choose the species hH that maximizes the absolute value of �h
i1;i2

.

(3) If �hH
i1;i2

> 0, then iH ¼ i1. Else if �hH
i1;i2

< 0, then iH ¼ i2.

(4) We compute the smallest value LhH
iH ;jH

of all values LhH
iH ;j

for all species j such

that: MINhH
iH ;j

> 0 and �min < �hH
iH ;j

< �max.

(5) If (LhH
iH ;jH

� ð�hH
i1;i2
Þ2), then hH is identi¯ed as the hybrid of iH and jH . We

remove from DA the row and the column corresponding to hH . We keep in

memory the length

LH
hH
¼ 1

2
ðD½iH �½hH � þD½jH �½hH � �D½iH �½jH �Þ; ð21Þ

which can be deduced from Eq. (16).

(6) Else, species i1 and i2 are considered as neighbors. We replace rows and

columns corresponding to i1 and i2 in DA by a row and a column corre-

sponding to their ancestor X. Distances from X to remaining leaves are cal-

culated using Eq. (2). We keep in memory the lengths Li1 and Li2 given by

Eq. (3).

(7) nA  nA � 1.
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. End(While)

. At the end of this loop, we have one quadruplet of nodes remaining. We use the

standard NJ algorithm to determine the tree structure involving these four species.

The output of our algorithm is either a classical phylogenetic tree with n leaves, or a

hybridization network with the same n terminal nodes. Its time complexity is Oðn3Þ
as in the standard NJ algorithm.

Remark 2. We do not include the iteration nA ¼ 4 in the loop since in this case the

hybridization network corresponding to a distance matrix is not unique, as it is

illustrated by the example of Fig. 9, where networks (a) and (b) correspond to the

same distance matrix

D ¼
0 3 3 3

3 0 4 3

3 4 0 3

3 3 3 0

0
BB@

1
CCA:

In these networks, � ¼ 0:5 and all branch lengths are equal to 1. The length of the

dashed branches is equal to 0.

This algorithm has been implemented in the Cþþ programming language and a

Monte Carlo simulation study was carried out to assess its performances.

7. Results of Simulations

In our simulations, we consider as a true positive any hybrid that is identi¯ed as a

hybrid, even if its parents are not correctly identi¯ed. We give more precise results

about the identi¯cation of hybrids' parents in some particular cases. We consider as a

false positive any identi¯ed hybrid that is not a true hybrid, even if one or two of the

identi¯ed parents are true hybrids. The true positive rate is computed as the number

of true positives divided by the number of true hybrids. The false positive rate is

computed as the number of false positives divided by the number of nonhybrid

species in the tree.

(a) (b)

Fig. 9. Two networks corresponding to the same distance matrix of size 4.
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In our simulations, we set �min ¼ 1� �max. Then, we de¯ned DIFFMAX ¼
�max � 0:5.

7.1. Simulations with additive networks

7.1.1. A theoretical result for trees

Proposition 3. If the input distance matrix is a tree metric, our algorithm ¯nds the

exact phylogenetic tree corresponding to this matrix.

Proof. If the input distance matrix is a tree metric, then for all triplets of species we

have MINh
i;j � 0. Consequently, our algorithm does not ¯nd any hybrid, and the

identi¯cation of neighbors is exactly the same as in the standard NJ algorithm. Thus,

the correct phylogenetic tree is recovered.51

7.1.2. Simulation with hybrids between terminal branches

In our simulations, we used an algorithm generating random phylogenetic trees

available on the T-REX website.26,27 This algorithm takes as input the size of the tree

n and the average branch length l, and gives as output a random binary phylogenetic

tree with n leaves constructed according to the procedure described by Kuhner and

Felsenstein.52 In this way, We generated 1,000 unrooted trees for each considered tree

size n ¼ 8, n ¼ 16, n ¼ 32, and n ¼ 64, with l ¼ 0:1. Then, the following procedure

was used to add a hybrid: We randomly selected two integers 1 � i < j � n, two real

values � and � between 0 and 1, and a real value x from an exponential distribution

with mean 0:1. We added a species h ¼ nþ 1 by using Eqs. (13)–(15) with Ci ¼ �Li,

Cj ¼ �Lj, and Lh ¼ x. We added from 1 to 5 hybrids to each of the trees. We carried

out three series of simulations for � ¼ 0:3, � ¼ 0:4, and � ¼ 0:5, with

DIFFMAX ¼ 0:25.We computed the average true positive and false positive rates for

all sizes of trees and all numbers of hybrids. These results are shown in Fig. 10.

The best results were obtained for greater values of n, for smaller numbers of

hybrids, and for the values of � close to 0:5. We can also observe that the false

positive rate is very close to 0, and that the true positive rates are close to 100% for

n ¼ 64. Most false negatives are hybrids between neighbors or between very close

parents. That is the reason why the identi¯cation of hybrids is more complicated for

smaller values of n. In the case of neighbor parents, the following issue can appear. If

species h is the hybrid of neighbor species i and j, the NJ algorithm can identify i and

h (or j and h) as neighbors. Thus, species h is identi¯ed as a parent of a hybrid and

not as a hybrid.

It is worth mentioning that all true positives in this simulation were identi¯ed

with both correct parents and with the correct value of �.

7.1.3. Simulation with hybrids having two descendants

We also carried out a simulation with a hybrid having two descendants as in the

con¯guration (a) in Fig. 11. The obtained true positive and false positive rates were
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very similar to those shown in Fig. 10. However, the detection of correct parents was

not systematic. Table 1 reports the identi¯cation of hybrids' parents for � ¼ 0:5. If

the algorithm identi¯es a set of at least two species as a hybrid, we can solve this

problem by applying the algorithm once more, replacing this set of species by their

(a) (b)

(c) (d)

Fig. 10. Average simulation results for additive networks with hybridization level � ¼ 0:3 (�), � ¼ 0:4

(W), and � ¼ 0:5 (�), and with DIFFMAX ¼ 0:25. Figure (a) (respectively (c)) shows the true (respec-

tively false) positive rate as a function of the tree size. Figure (b) (respectively (d)) shows the true
(respectively false) positive rate as a function of the number of hybrids.

(a) (b)

Fig. 11. Two network topologies used in our simulations with additive networks.
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common ancestor. In this case, we will ¯nd both correct parents like in the previous

simulation.

7.1.4. Simulation with hybrids between nonterminal branches

We also run a simulation involving a hybrid with one parent having two descendants

as shown in Fig. 11(b). The true positive rates in this simulation were lower than in

the two previous simulations, as it is shown in Table 2 for n ¼ 32 and � ¼ 0:5. These

results are due to the fact that the condition MINhH
iH ;j

> 0 at step 4 of our algorithm

does not hold for hybrids between nonterminal branches. Then, hybrid h is detected

only if species i1 and i2 are joined before possible detection of h. If we replace the

condition MINhH
iH ;j

> 0 by MINhH
iH ;j

> �0:01, for example, we will obtain almost the

same true positive rates as in the two previous simulations. However, the false

positive rate will be higher.

7.2. Simulations with nonadditive networks (i.e. with sequence-based

networks)

As previously, we generated 1,000 unrooted trees for each size n ¼ 8, n ¼ 16, n ¼ 32,

and n ¼ 64, with l ¼ 0:1. Then, using Seq-Gen,53 we simulated the evolution of

nucleotide sequences of length N ¼ 1;000 along these trees, by using the Kimura-2-

parameter substitution model.54 Thus, for each generated tree we obtained n

sequences (one sequence per species) of size N . Then, the hybrids were added to the

data as follows. We randomly chose two integers 1 � i < j � n. Let � be the selected

degree of hybridation. We created a new hybrid sequence with the ¯rst ��N

nucleotides of sequence i to which we added the last ð1� �Þ �N nucleotides of

sequence j. This sequence was added to the n original sequences. In our simulations,

we considered � ¼ 0:3, � ¼ 0:4, and � ¼ 0:5, and we added to trees 0 to 5 hybrid

species. Then, we used the Phylip package55 to obtain a distance matrix from each

Table 1. Identi¯cation of hybrids' parents for additive networks with one hybrid

having two descendants.

Tree size n ¼ 8 n ¼ 16 n ¼ 32 n ¼ 64

True positives with both correct parents 75% 75% 69% 49%
True positives with only one correct parent 3% 11% 25% 49%

True positives with no correct parents 0% 0% 2% 0%

Table 2. True positive rates for n ¼ 32 and one hybrid with hybridization level � ¼ 0:5 in

additive networks.

Tree size n ¼ 8 n ¼ 16 n ¼ 32 n ¼ 64

Hybrids between terminal branches 81% 85% 98% 99%

Hybrids with one parent having two descendants 52% 64% 66% 79%
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set of sequences, by using the Kimura-2-parameter substitution model. Thus, for

each size n, we obtained 1,000 matrices corresponding to the original trees and 15,000

matrices corresponding to networks having 1 to 5 hybrids with three di®erent values

of �. The obtained results are shown in Fig. 12 for DIFFMAX ¼ 0:25 and in Fig. 13

for DIFFMAX ¼ 0:35. We used two di®erent values of DIFFMAX because there was

a signi¯cant di®erence in the true positive rates in this simulation (this di®erence was

much smaller in the simulations with additive data).

The greatest true positive rates and the lowest false positive rates were provided

by the new algorithm for n ¼ 32 and n ¼ 64. The identi¯cation of hybrids was

much more di±cult for � ¼ 0:3, even though the results are much better for

DIFFMAX ¼ 0:35.

Table 3 reports the results concerning the identi¯cation of hybrids' parents for

� ¼ 0:5. We can observe that the identi¯cation of both parents is more di±cult for

greater values of n.

Table 4 reports the number of iterations after which each hybrid was found in

trees and in networks with one hybrid and with hybridization level � ¼ 0:5. Mention

that true positives are generally detected after a much smaller number of iterations

(a) (b)

(c) (d)

Fig. 12. Average simulation results for nonadditive networks with hybridization level � ¼ 0:3 (�), � ¼ 0:4

(W), and � ¼ 0:5 (�), and with DIFFMAX ¼ 0:25. Figure (a) (respectively (c)) shows the true (respec-

tively false) positive rate as a function of the tree size. Figure (b) (respectively (d)) shows the true

(respectively false) positive rate as a function of the number of hybrids.
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Table 3. Identi¯cation of hybrids' parents in nonadditive networks with one hybrid
and hybridization level � ¼ 0:5.

Tree size n ¼ 8 n ¼ 16 n ¼ 32 n ¼ 64

True positives with both correct parents 86% 88% 77% 53%

True positives with only one correct parent 1% 3% 11% 30%

True positives with no correct parents 0% 0% 2% 6%

Table 4. Average number of iterations � (and the corresponding

standard deviation �) after which hybrids were detected in networks
with one hybrid and hybridization level � ¼ 0:5.

Tree size True positives with both parents False positives

n ¼ 8 � ¼ 1:5, � ¼ 1:4 � ¼ 2:3, � ¼ 0:9

n ¼ 16 � ¼ 4:1, � ¼ 3:0 � ¼ 8:9, � ¼ 2:6

n ¼ 32 � ¼ 10:0, � ¼ 7:6 � ¼ 22:1, � ¼ 6:7

n ¼ 64 � ¼ 22:7, � ¼ 13:7 � ¼ 50:7, � ¼ 13:7

(a) (b)

(c) (d)

Fig. 13. Average simulation results for nonadditive networks with hybridization level � ¼ 0:3 (�), � ¼ 0:4

(W), and � ¼ 0:5 (�), and with DIFFMAX ¼ 0:35. Figure (a) (respectively (c)) shows the true (respec-

tively false) positive rate as a function of the tree size. Figure (b) (respectively (d)) shows the true

(respectively false) positive rate as a function of the number of hybrids.
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than false positives. Thus, the number of iterations could be an interesting criterion

to consider to distinguish between true positives and false positives.

Notice that the values of � determined by our algorithm were very close to the

simulated values. For example, for the case of n ¼ 32 and one hybrid, we found

�� ¼ 0:493 and �� ¼ 0:034 for � ¼ 0:5, �� ¼ 0:398 and �� ¼ 0:034 for � ¼ 0:4, �� ¼
0:302 and �� ¼ 0:033 for � ¼ 0:3, where �� (respectively, ��) is the mean (respec-

tively, the standard deviation) of � found for true positive hybrids with both correct

parents.

7.3. Experiments with real data

We tested our new algorithm on real data. We considered the dataset of restriction

maps of the rDNA cistron of 12 species of mosquitoes constructed using eight rec-

ognition restriction enzymes.56 A total of 26 sites were scored. This dataset is pre-

sented in Table 5.

Huson and Kl€opper42 have constructed the split graph and the galled network

associated to this dataset (see Fig. 14).

We computed the Hamming distances from the sequences of Table 5 to obtain a

distance matrix of size 16 between these species. Then, we applied our algorithm

(with DIFFMAX ¼ 0:1) to this matrix and obtained the hybridization network

shown in Fig. 15.

We obtained the same number of reticulations (4) as Huson and Kl€opper, and the

general structure of our network is quite similar to the split graph and galled tree

topologies presented in Fig. 14. For example, species Aedes epactius and Aedes

atropalpus are located at the extremity of a reticulation in both networks. However,

some signi¯cant di®erences can also be observed. For example, species Aedes tri-

seriatus could be considered as a hybrid in the split graph and galled tree topologies,

Table 5. Dataset of the restriction maps of the rDNA cistron of 12 species

of mosquitoes constructed using eight recognition restriction enzymes.

Aedes albopictus 1 1 1 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 0 1 0
Aedes aegypti 1 1 1 1 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 0

Aedes seatoi 1 1 1 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 0 0 0

Aedes °avopictus 1 1 1 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 0 1 0
Aedes alcasidi 1 1 1 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 0 0 0

Aedes katherinensis 1 1 1 1 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 0 0 0

Aedes polynesiensis 1 1 1 1 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 0 1 0

Aedes triseriatus 1 0 1 1 0 1 0 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 0
Aedes atropalpus 1 0 1 1 0 1 0 1 0 0 0 1 0 0 0 1 0 1 1 1 0 0 0 0 1 0

Aedes epactius 1 0 1 1 0 1 0 1 0 0 0 1 0 0 0 1 0 1 1 1 0 0 0 0 1 0

Haemagogus equinus 1 0 1 1 0 1 0 1 0 0 0 1 1 0 0 1 0 1 0 1 0 1 0 0 0 0

Armigeres subalbatus 1 0 1 1 0 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0
Culex pipiens 1 1 1 1 0 1 1 1 0 0 0 1 0 0 0 1 1 1 0 1 0 0 1 0 1 1

Tripteroides bambusa 1 1 1 1 0 1 1 1 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 1 0

Sabethes cyaneus 1 1 1 1 0 1 0 1 0 0 1 1 0 0 0 1 0 1 0 1 0 1 0 0 0 0
Anopheles albimanus 1 1 0 1 1 1 0 1 1 0 0 1 0 1 1 1 0 1 0 1 1 1 0 1 0 0
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(a) Split graph network (b) Recombination galled network

Fig. 14. Split graph and galled network obtained for the rDNA cistron dataset in Table 5.

Fig. 15. Hybridation network obtained with our new algorithm. The values of � are indicated on the

reticulation branches (depicted by dashed lines).
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whereas it is identi¯ed as a potential parent of four hybrids in our network. In the

same way, species Sabethes cyaneus is not involved in any reticulation in the split

graph and galled tree topologies, whereas it is a parent of a hybrid in our network.

The main advantage of our network representation over split graphs and galled trees

is that it identi¯es hybrids and their parents explicitly. Moreover, our algorithm

provides the exact hybridization levels �, and these levels are compatible with the

sequences of hybrids and their parents (see Table 5). For example, the sequence of

species Haemagogus equinus can be obtained by concatenation of the ¯rst half of the

sequence of species Aedes triseriatus and the second half of the sequence of species

Sabethes cyaneus.

It is worth noting that in this example we changed the condition MINhH
iH ;j

> 0 to

MINhH
iH ;j

> �0:01 at step 4 of our algorithm. Indeed, we had MINhH
iH ;j
¼ 0 for all

potential hybrids. This kind of adaptation could be used when the number of

detected hybrids is too small (or too large, in the latter case, we should replace 0 by a

small positive threshold). This threshold is one of the parameters of our program.

8. Conclusion

We have described a novel fast algorithm for inferring hybridization networks from

distance matrices based on the NJ principle. These distance matrices, assumed to

encompass contradictory evolutionary signals, could be obtained from the concate-

nation of genetic sequences or directly from the comparison of genomes of the ob-

served species. The new algorithm provides a good practical solution to the complex

problem of the identi¯cation of hybridization events. The algorithm's time com-

plexity of Oðn3Þ makes it applicable for the analysis of large genomic datasets.

Moreover, the quality of the obtained results improves as the numbers of considered

species grows. The new algorithm ¯nds the exact tree solution when the input dis-

tance matrix is a tree metric (or a distance close to a tree metric). The true positive

detection rate is very high and the correct hybrids parents are always recovered for

additive networks when the hybrids are located between terminal branches. We also

provide a way of recovering the correct additive networks when the hybrids are

located at any place in the network. The simulation study carried out with sequence

data provided very good detection rates as well, even though the false positive rates

were a little bit higher in this case.

The execution of our algorithm on the rDNA cistron data56 allowed us to infer an

explicit hybridization network which was compared to the split graph42 and galled

tree42 topologies. Mention that both split graph and galled tree algorithms infer only

implicit phylogenetic networks and are not capable of determining the precise levels

of hybridization.

In the future, it would be also important to investigate in more detail how the new

technique copes with the tree reconstruction artifacts which generally a®ect phylo-

genetic analysis; the main of them are long-branch attraction and unequal evolu-

tionary rates.
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The software implementing the discussed algorithm was implemented in the Cþþ
language. It is freely available to the research community at the following URL ad-

dress: http://www.info2.uqam.ca/˜makarenkov v/makarenv/hybrids detection.zip.
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