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Abstract. This paper addresses the problem of approximating a dissimilarity ma-
trix by means of a reticulogram. A reticulogram represents an evolutionary structure
in which the objects may be related in a non-unique way to a common ancestor. Den-
drograms and additive (phylogenetic) trees are particular cases of reticulograms.
The reticulogram is obtained by adding edges (reticulations) to an additive tree,
gradually improving the approximation of the dissimilarity matrix. We constructed
a reticulogram representing the evolution of 12 primates. The reticulogram not only
improved the data approximation provided by the phylogenetic tree, but also de-
picted the homoplasy contained in the data, which cannot be expressed by a tree
topology. The algorithm for reconstructing reticulograms is part of the T-Rex soft-
ware package, available at URL <http://www.fas.umontreal.ca/BIOL/legendre>.

1 Introduction

Several algorithms have been proposed for the representation of empirical
dissimilarity data using a general network where the objects are represented
by the nodes of a valued graph whose minimum path-length distances are
associated with the dissimilarities (Feger and Bien 1982; Orth 1989; Klauer
and Carroll 1989). An expanding tree structure based on weak clusters has
also been proposed by Bandelt and Dress (1989) leading to a weak hierarchy
for an empirical similarity matrix. Bandelt and Dress (1992) and Bandelt
(1995) resumed investigation of weak clusters and proposed the method of
split decomposition.

We outline the main features of a reticulogram reconstruction algorithm
offering another way of modelling a dissimilarity matrix by means of a net-
work. Our representation uses a topology called a reticulogram which includes
the vertices associated with the objects in a set X as well as the intermediate
nodes. A reticulogram can represent relationships among objects that may be
related in a non-unique way to a common ancestor; such a structure cannot
be represented by a tree. In a reticulogram, the distance between i and j is
the minimum-path-length distance over the set of all paths linking ¢ and j.

Inferring an additive tree from a dissimilarity matrix is a very well-studied
issue in the literature. We launch the reticulogram reconstruction algorithm
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from an additive tree topology providing an initial fit for the dissimilarity
matrix. The algorithm adds new edges or reticulations to a growing reticulo-
gram, minimising the least-squares loss function computed as the sum of the
quadratic differences between the original dissimilarities and the associated
reticulogram estimates.

Reticulate patterns are found in nature in some phylogenetic problems.
(1) In bacterial evolution, lateral gene transfer (LGT) produces reticulate
evolution; LGT represents the mechanisms by which bacteria can exchange
genes across “species” through a variety of mechanisms (Sonea & Panisset
1976, Margulis 1981). (2) Reticulate evolution also occurs in plants where
allopolyploidy may lead to the instantaneous appearance of a new species
possessing the chromosome complement of its two parent species. (3) Tt is also
found in within-species micro-evolution in sexually reproducing eukaryotes.
Reticulate patterns may also occur in non-phylogenetic problems such as
host-parasite relationships involving host transfer and in the field of ecological
biogeography.

2 Algorithm for constructing reticulograms

This section describes the most important features of our reticulogram re-
construction algorithm. A reticulogram or tree network R is a triplet (E, V1)
where V 1s a set of vertices, F is a set of edges and [ is a function of edge
lengths assigning real non-negative numbers to the edges. Each vertex ¢ is
either an object belonging to a set X or a node belonging to V' — X. In this
study we considered only connected and undirected reticulograms. The algo-
rithm uses as input a dissimilarity matrix D on the set of n objects and an
additive tree T inferred from D using one of the classical reconstruction al-
gorithms. At each step, the algorithm adds to the additive tree T a new edge
(reticulation) of optimal length ensuring the minimisation of the following
least-squares loss function:

Q=Y (dist(i,j) — d(i, 5))* > min (1)
ieX jeX
where d(%, j) is a dissimilarity value between objects i and j, and dist(i, j)
is the corresponding value of reticulogram distance defined as a minimum-
path-length distance between vertices ¢ and j in R.

Makarenkov & Legendre (1999) introduced a statistical criterion @1 which
measures the gain in fit when a new reticulation is added. The minimum
of this criterion provides a stopping rule for addition of reticulations. This
function takes into account the least-squares loss function as well as the
number of degrees of freedom of the reticulogram under construction:

D (dist(if) — d(if))? .
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N is the number of edges in the reticulogram. N is equal to 2n—3 in a binary
additive tree with n leaves corresponding to the objects in X and n—2 internal
nodes. Thus, in this study, the reticulogram will always contain 2n—2 internal
nodes, n of which correspond to the observed objects.

y ]

Fig.1. A new edge of length I can be added to tree T between vertices x and y.

Consider now a binary additive tree T inferred from a dissimilarity d by
means of an appropriate fitting method and a pair of vertices z and y in T
not linked by an edge (Fig. 1). Using the least-squares loss function, we have
to determine an optimal value [ for a new edge zy that may be added to the
tree T'. Let us consider the set A(zy) of all pairs of objects ij of X such that:

Min {dist(iz) + dist(jy);dist(jz) + dist(iy)} < dist(ij) (3)

The set A(zy) represents the distances between pairs of objects that are
susceptible of changing if a new reticulation zy is added. Actually, the set
A(zy) can be subdivided into the m subsets A1, As, ..., Ay, such that A(zy) =
{A1U A5 U ...UA,,}. They are defined in the following way:

Ay = {ij} such that:

dist(i,j) — Min{dist(i, x) + dist(j, y); dist(j, ) + dist(i,y)} =
Mingijeawyyy{dist(i, j) — Min{dist(i, x) + dist(j, y); dist(j, x) + dist(i,y) } }
= ll

A = {ij} such that:
dist(i,j) — Min{dist(i, z) + dist(j, y); dist(j, ) + dist(i,y)} =l > l_1

Apm = {ij} such that:

dist(i,j) — Min{dist(i, z) + dist(j, y); dist(j, z) + dist(i,y)} =
Mazxjijeay)idist(i, j) — Min{dist(i, x) + dist(j, y); dist(j, x) + dist(, y) } }
=l = dist(z,y) > lm_1

This subdivision is performed because each different subset A; can be
associated with an interval of possible edge lengths [ for which a particular
optimisation problem may be formulated. Let us compose a special quadratic
function to be minimised for a fixed interval of edge length values. To obtain
its optimal solution, suppose that iy <1 < lg41, where £k = 0...m — 1. This
constraint means that if a new edge zy of length ! is added to 7', only the
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set of distances dist(ij) such that ij € {A, U Ap_q U...U Agyq} will change
lengths. Thus, the function to minimise to compute the optimal length value
of | is as followngz

Q*(wy,k) = > > (Min{dist(i,z) + dist(j, y); dist(j, x) + dist(i, y)}+
p=k+1ijeA,

[ —d(i,j))* — min (4)
subject to the constraint I < ! < lg41. Q*(zy, k) comprises the quadratic
sum of differences between the dissimilarities d and the associated reticulo-
gram distances dist, considering only the distances that may change in the

reticulogram. The non-trivial solution [* (zy, k) is (Makarenkov and Legendre,
submitted):

Z Z (d(i,5) — Min{dist(i, z) + dist(j, y); dist(j, z) + dist(i,y)})
p=k+1ij€A, _ (5)

> 14l

p=k+1

This calculation is repeated over all intervals of edge lengths I <1 <lg41,
for £ = 0...m — 1, for the given pair of vertices zy. The global optimum for
criterion ) found for every particular solution, as well as the global optimum
of the edge length [ over the set of defined intervals, are recursively obtained.
To obtain the optimum value for @) over the set of all possible new edges,
the computations are repeated for all pairs of tree (reticulogram) vertices not
linked by an edge.

3 Application

In a recent study, Makarenkov & Legendre (1999) considered two applications
of reticulogram reconstruction. The first one concerned the postglacial disper-
sal of freshwater fishes in the Québec Peninsula. The second example depicted
the morphological differentiation of muskrats in a river valley in Belgium. We
will now examine how the method can be applied to represent homoplasy in
the phylogenetic tree of primates. Homoplasy is the portion of phylogenetic
similarity resulting from convergence. The data, from Hayasaka et al. (1988),
consisted of a portion of the protein-coding mitochondrial DNA (898 bases)
over 12 species of primates. The dissimilarity matrix (Table 1) was obtained
by computing the Hamming distance among the species. First, a phylogenetic
tree was inferred from the dissimilarity matrix using the neighbor-joining
method (Saitou & Nei 1987). The tree is represented by full lines in Fig. 2.
The phylogeny separated four basic groups of primates. The values of criteria
@ and @ after approximation of the edge lengths (about this technique, see
Makarenkov & Leclerc 1999) were 0.002479 and 0.001106, respectively. Five
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new edges (reticulations, dashed lines in Fig. 2) were added to the tree by the
algorithm. The minimum of (); was reached at the fifth step of the algorithm,
which allowed to decrease 1 to 0.001041, whereas @) dropped to 0.001733
(gaining about 30%).

1 2 3 4 5 6 7 8 9 10 11
2 Pan 0.089
3 Gorilla 0.104 0.106
4 Pongo 0.161 0.171 0.166
5 Hylobates 0.182 0.189 0.189 0.188
6 Macaca fus. 0.232 0.243 0.237 0.244 0.247
7 M. mulatta 0.233 0.251 0.235 0.247 0.239 0.036
8 M. fascicul. 0.249 0.268 0.262 0.262 0.257 0.084 0.093
9 M. sylvan. 0.256 0.249 0.244 0.241 0.242 0.124 0.120 0.123
10 Saimiri sc. 0.273 0.284 0.271 0.284 0.269 0.289 0.293 0.287 0.287
11 Tarsius sy. 0.322 0.321 0.314 0.303 0.309 0.314 0.316 0.311 0.319 0.320
12 Lemur ca. 0.308 0.309 0.293 0.293 0.296 0.282 0.289 0.298 0.287 0.285 0.252

Table 1. Dissimilarity matrix among primates; species 1 18 Homo sapiens.
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Fig.2. Reticulogram representing the phylogeny of the primates from Table 1.
Full lines: edges of the additive tree. Dashed: reticulations added by algorithm.
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How can we interpret reticulations? From the mathematical point of view,
each reticulation improves the representation of matrix D by the classical ad-
ditive tree, allowing an optimal gain in fit. From the biological point of view,
the lengths of the reticulations are of great importance. If the length of a
reticulation is small with respect to the other edge lengths, it may represent
a mutation event that occurred during evolution. In the example, the reticu-
lations are long and they occur between distant groups, so that they represent
homoplasy (i.e., information representing convergent evolution: parallel evo-
lution and reversals) in the data, which the phylogenetic tree was unable to
correctly represent. For instance, the distance between Homo sapiens and
Macaca fuscata is 0.23215 in Table 1. The distance between these species
is 0.24133 along the tree, whereas the minimum-path-length reticulogram
distance, which includes the reticulation linking the Cercopithecoidea and
Hominoidea, is 0.23549. This value is a better representation of the original
dissimilarity than the tree path-length distance is.
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