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Abstract. Farach, Kannan and Warnow (199@vedefinedProblemMCA (matrix completion

to additive) and proved it to be NP-complete: given a partial dissimithaty a finite setX, does
there exist a tree metric extendiddgo all pairs of elements of. We use a previouslgescribed
simple method of phylogenetic reconstructicamd its extension to partial dissimilarities, to
characterize some classes of polynomial instanchB3# and of a related problem. We point out
that these problems admit many otlpedynomial instances. Our main tool consists of two
classes of generalized cycles, together withcthreespondingnaximal acyclic graphs (2-trees and
2d-trees).

Résumé.Farach, Kannan et Warnow (1995) ont posé le probMi@é& (matrix completion to
additive) suivant et ont démontré sa NP-complétude : étamiéune dissimilaritéd partielle sur
un ensemble fink, est-il possible de I'étendre en wtistance d'arbre défingur toutes lepaires
d'éléments deX. Nous utilisons uneméthode simple de reconstructiorphylogénétique,
précédemment décrite, sbn extension aux dissimilarités partielles poaractériser deslasses
d'instancegpolynomiales déViCA et d'un probleme&oisin. Nous montrongju‘enfait beaucoup
d'autresinstances sont aussi polynomiales. L'outil principal est congpéméeux classes de
cycles généralisés, avec les graphes acycliques maximaux (2-arbres et 2d-arbres) correspondants.

Keywords: tree, 2-tree, partial distance
1. Introduction

We consider a partial metricon a fixed finite seX. Preciselythe value ofd is known
on a subseE of undirected pairs of elementsXifThe following decision probleflCA

(Matrix Completion to Additivejrises in severapplicationdomains, e.gphylogenetic
tree reconstructiondoesthere exist a valueK-tree T, such asthe tree metricdr

associated with it satisfies the following condition: for agyl E, d(x,y) = d(x.y).



In otherterms, is it possible toompleted into a tree metric? Walso consider a non-
metric versionWMCA (WeakMatrix Completion to Additive) dACA , wherenegative

values on some edges tbe X-tree T are allowedand, as a consequenal;, does not

necessarily satisfy the metric triangle inequality.

Farach, Kannaand Warnow (1995) provetthat ProblemMCA is NP-complete. Here

we characterizeome polynomial instances of bd@moblemsWMCA (Section 4) and
MCA (Section 5). Our approach is based on a simple phylogenetic reconstmetimd
recalled in Section 3. This methads previouslydescribed irLeclercand Makarenkov
(1998) andrecently extended to an approximation method to fit a tree metric to a partial
metric with (Guénoche andeclerc2000). Two types ofjeneralized aciclicities will be
extensivelyused in this pape©One of them idefined, whereathe other is recalled, in
Section 2. In Section 6, we point dimiat ProblemsMCA and WMCA are, in fact,
polynomial in a wide class of instances.

2. Notations and definitions

2.1. Graphsand XLL-trees.We consider here only undirected simpglaphs without
loops or multiple edges. In such a gr&pk (V,E), a vertexv is aleaf if its degreed(v)

is equal to 1. In a patiw, vivo, ..., —1Vv') of G between two verticegandv', all the
vertices are distinatxcept, possibly, whem = v' and the patli is acycle of G. The
graphG is atree if it is connected andhas no cyclesThe unique path between two
distinct verticess andv' of a treeT is denoted a$(v,v'). The graplG is ak-clique if V|
=k anduv E for allu, v V. Atriangle of G is a subset d¥ inducing a 3-clique; such
a subset is denotegyzinstead of §,y,2}.

A valued graphs an ordered paiQ,/), whereG is a graph and is a real length
function on the edge s&tof G. When thegraphG is connected andas nocircuits of
negative length, we set, for any two distinct verticasdv' of G,
dg(v,v') = Minp path ofG betweerv andv' 2 edP £(€).

In the case of a treB d1(v,V') = Y eaTw) £(€).

An XLL-tree (leaf labelled according tX tree) is a treel satisfying two
properties: (i) the leaf set afis X; (ii) for anyv [0 V(T)-X, d(v) = 3. In anXLL-tree, the
vertices inV(T)-X are calledatent verticesThe maximumnumber oflatent vertices off
isn-2, wheren = [X|; when it is reached, dlhe latent vertices have degrear®l thetree
T is said to beesolved For more definitions and properties of such trees, see the book of
Barthélemy and Guénoche (1991).

2.2. Dissimilarities andmetrics. A dissimilarity on X is a real functiond on XxX
satisfyingd(x,y) = d(y,x) andd(x,y) = d(x,x) = 0 for allx, y O X:

A dissimilarityd is ametric (or ametric) if it satisfiesthe classical metric triangle
inequality: for all x, y, z O X, d(x,2) < d(x,y) + d(y,2z). It is well known that this

2



property is satisfied byhe minimum path length function adny positively valued
connected and undirected graph. So, a méftis associated in this way the complete
graph onX valued by a dissimilarity.

A dissimilarity d is atree metric if it satisfiesthe following four-point condition:
for all x, y, z, w 0 X, the inequality (F) holds:

d(x,y) + d(z,w) < max{ d(x,2) + d(y,w), d(x,w) + d(y,2) }. (F)

It is now well-knownthat a tree metric isiniquely representable by the lengths of the
paths betweerthe leaves of a non-negatively valued.L-tree Ty, called its tree
representatiorfBuneman 1971).

An extension of therevious resul{Leclerc 1995) consists of considering the
weak four-point conditionwhere the inequality (F) imetonly for all distinctx, y, z, w
0 X. A dissimilarity d satisfying this condition is not necessarily a met8ach a
dissimilarity is called dree dissimilarity. A real functiond on XxX satisfyingthe weak
four-point condition is called tee function A tree function(resp.dissimilarity) is easily
transformable into a tree dissimilarifsesp. metric) by addition of a convenient positive
constant £ to each ofits values. Converselyeducing byC the lengths o#ll terminal
edges in a positively valued_L-tree T is equivalent to reducing byC2the path lengths
between leaves of. As a consequence,teee functionhasagain a uniqueXLL-tree
representation, possibly withegative lengths on the exterradges (incident to the
leaves).

Sometimes, the dissimilarity is partial, in thatsensethat it is defineconly on a
setE of unordered pairs aflements oiX. Thus, wehave asupportgraphG = (X,E),
valued byd. We saythat a dissimilarityd' extendsd, or d completes inta' if xy O E
impliesd'(xy) = d(xy). Without loss of generality, it will be assumedlie sequethat G
Is connected. We say théits apartial metricif, for anyxy O E, d(xy) = dM(xy). For the
completegraph asG, d is a partial metric ifand only if it is a metricThe following
property is well-known and easy to obtain. Clearlypaatial metricd may bealways
completed into its associated minimum path length meftic

Proposition 2.1.A partial dissimilarity d completes into a metric on Xanflonly if
it is a partial metric.

2.3. Two problemsAssumethat a partial dissimilarity oiX with a support grapi =
(X,E) is given. The following "Matrix Completion to AdditiveMCA ) problem has been
shown to beé\P-hard by Farach et al. (1995):

Problem MCA: given a partial metrid on X, does it complete into a tree metric?



According to Propositior2.1 above, whethe given partial dissimilarity iaot a metric,

the answer to ProblenMCA is negative.The following "Weak Matrix Completion to

Additive” (WMCA ) problem remains of interest sinsech acompletion stillprovides a
treestructure (but negative lengths do fibtmost of evolutionarymodels). In such an
extension, it is noimportant to distinguishree dissimilaritiedrom treefunctions in the

completionouput. Here we doot addresgshe complexitystatus ofWMCA , and just

exhibit some polynomial classes of instances.

3. 2d-trees and 2-trees

We recalland complete thedescription of two classes of graphs whanstitute major
tools for this study.

3.1. Ad-acyclic graphsLet G = (X,E) be a finite undirected simplgraph,andA U E a
set of edges of5. Then,Xa denotes the set @il vertices incident to one edge Afat
less,and Ga the subgraph Xa,A) of G. A setC [0 E is said to be &d-cycle(d for
degree) ofs if all the vertices oK have degree at ledstl in Gc andC is minimal for
inclusion with thisproperty. Clearly, dd-cycle is a cycle. Here ware concerned with
the cas&k = 2.

Examples.If G¢ is isomorphic tathe completegraphKy+2 or to the complete bipartite
graphKy+1 k+1, thenC is akd-cycle. IfG¢ is a wheel, thel is a 2d-cycle.

A graph with nokd-cycles is saikd-acyclic The maximakd-acyclicgraphs are
called here&d-trees They have been characterized in a recursive way by Todd (1989):
» the complete grapKy with k vertices is &d-tree;

* if G=(X,E) is akd-tree, then, for any subsét] X of cardinalityk and newertexx
O X, the graphG' = (XO{x}, EO{xy. y O Y}) is a kd-tree.

Then, a grapit = (X,E) is a 2d-tree if there exists an orderimgX2,...,xn) of X
suchthatxyxo O E and, for i =3,..., n, the vertexx; hasdegree 2 in thesubgraphG
induced by the vertex sex{xo,..., X} (such an ordering is eeversed elimination order
abbreviated aRE ordej. A 2d-tree withn vertices is 2-connected ahds 2-3 edges. It
has at least one vertex of degree 2. Both graphs G and G' of Figure 1 are 2d-trees.

1 1
5 3 5 a2 3
4 4
G G'
Figure 1



Given a set of edgeA, Todd proposes arocedure fordeciding whether it
includes &d-cycle. Thisprocedure determines sabset PeeX) of A, called thekd-
peelingof A, as follows: search eertex of degree at mogtin Ga; if no suchvertex
exists, then Ped] = A; otherwise delete the vertefound with itsincidentedges, and
repeat the operation until no vertices of degreemain.The set of remainingdges is
Peel@). The sefA is akd-acyclic if and only if Pee) = (0. Such aralgorithm clearly
runs inO(n) time.

A connected 2d-acyclic graph completes in many ways into a 2d-tree; we give here

a procedure that will be useful in Section 4:

« If there exists a vertexof degree 1, add a new edge betweemnd an arbitrary other
vertexy, not already adjacent ta Repeat the operation until no vertex of dedess
than 2 remains.

« List all the pairs not included & in an arbitrary order and check them according to the
list order. Foreachsuchpair xy, usethe 2d-peeling algorithm above to determine
whether the graphX, ELJ{xy}) is acyclic; addxy to E if the answer is positive, and
reject it otherwise. Stop whel| = 2h-3.

Algorithm 3.1. Completion of 2d-acyclic graph into a 2d-tree.
While there existx [ X such thav(x) = 1
Selecty [ E such thay # x andxy 0 E

E:=EO {xy}
End While
If |E| = 2n-3 thenstop Algorithm
Else
Make a listL of all pairxy not included irE
While [E| < 2n-3
Selectany pairxy from L
Apply 2d-peeling algorithmo check whether the graph
G = (X, EO{xy}) is acyclic
L:=L\{xy}
If Gis acyclic
E:=EO {xy}
End While
End Else

Proposition 3.2.1f G is a 2d-acyclic graph, the aboaégorithm extends iinto a 2d-
tree in Qn3) time.

Proof. Clearly, adding an edge to a vertex of degree 0 or 1 cangaie &2d-cycle. This
justifies the first part of the algorithm. In the second part, the final grapmexianal 2d-
acyclic graph, that is a 2d-treeptherwise, further pairs would betainedduring the
scanning of of the list.



As far as the algorithmic complexity @ncernedthe first part is inO(n). In thesecond
one, we have to che@(n?) pairs, the peeling procedure beingifn) each time. O

The notion of chain generalizes to 2d-trees.iet (X,E) be a 2d-tree oK and a
pair xy O E. ThegraphG' = (X,E{xy}) is no longer 2d-acyclic. It has a unique 2d-
cycleCyy = PeelELI{xy}). At eachstep ofthe peelingalgorithm, a vertex igliminated
together withtwo edges. SogsettingY = Xpeelgo{xy)) andn' = [Y|, the equality
|PeelE0{xy})| = 2n'-2 holds. ThenthegraphH = (Y,Cxy{Xy}) is 2d-acyclic with
2n'-3 edges andso, is a 2d-treeThis 2d-treehas one or twovertices of degreéwo,
taken in the set{y}; it is called the2d-chainG[xy] of G between x and .yif x' and
y' aretwo vertices of G[xy], then the 2d-chaifG[x'y"] is a subgraph o6G[xy]. The
lengthof a 2d-chain, comprised between 2 ar2] is the number of its vertices minus 2.
We then have the following property:

Proposition 3.3.For any RE order on X the lastvertex of Gxy] is x or y and
has degre® in Gxy].

Proof. Assume that there exists a RE ordem X and a vertex of G[xy] suchthatboth
x andy are predecessors oin L. Then, the construction above would lead to a 2d-chain
betweerx andy withoutz as a vertex. O

3.2. 2acyclic graphsAnother generalization of cycles and trees is more classical than the
previous oneand has promptednportant litteratureRecall that, given a graphG, a
reduced graph is obtained fragby successive contractions of edges incident to a vertex

of degree 2 until no such possible operation remains. For instance, a cycle reduces to a 3-
clique. A graphG is homeomorphido a graphH without vertices of degree 2 if its
reduced graph is isomorphickb

For k > 2, a setC [ E is said to be &-cycle of G if the graph G¢ is
homeomorphic t&y+2. Especially, a 1-cycle is a cycle. A graph withkaoycles is said
k-acyclic The maximak-acyclic graphsare the classicdt-trees, whichare recursively
characterized as follows:

» the complete grapKg is ak-tree ;
o if G=(X,E) is ak-tree, then, for ani-clique Y O X of G and newvertexz [J X, the
graphG' = (XO{z,EO{zy. y O VY}) is a k-tree.

So, k-treesare particulacases okd-trees.The subgraphs of 2-treesre exactly
the graphs with no subgraph homeomorphik4othey are called partial 2-trees or series-
parallelgraphs inthe literature (Wald an@olbourn 1983)k-treesarealsothe maximal
triangulated (or chordal, or rigid circuit) graphs with k&2)-clique (Rosel974), that is
the maximalgraphs oftreewidthk (seee.g. Bodlaenderl997). Suchpropertiesmake
them to constitute an interesting class in algorithmic graph theory.



We are again interested in the case where2. A graphG = (X,E) is a 2-tree if
there exists a RE ordexy(xy,...,Xn) of X suchthatxixy 00 E and, for i =3,..., n, the
vertexx; has degree 2 and belongs to a unique triangle in the suligrapkuced by the
vertex set ¥1,X,...,X}. A 2-tree withn vertices has at least twertices of degree 2. 2-
trees are the maximal triangulated graphs without 4-clique. The GraphFigure 1 is a
2-tree whileG is not (notethat it is a2-cycle). AnO(max(m,n)) algorithm to decide
whether a given graph G &acyclicwas devised byiu and Geldmache(1980). The
analogous problem NP-hard fork = 3 (Arnborget al. 1987).

As a consequence of the above recursive characterizations of 2d-tre:¢rews!
one obtains the following property which, for 2, is a variant of a well-known result of
Dirac (1952; see, e.g., Welsh 1976, p. 238, or Aigner 1979, p. 387):

Proposition 3.4.A kd-cycle includes at least one k-cycle.

Proof. Otherwise,let C be akd-cycle suchthat Gc has nok-cycle. So,G¢ Is a
subgraph of a maximal grag@hwith nok-cycle, that is &-tree. ButG is also &d-tree, a
contradiction with the hypothesis th@ais akd-cycle. [

4 The triangle method

4.1. A solution ol WMCA in 2d-trees.We first assumé¢hat thesupport graplG of the
given partial dissimilaritgl is a 2d-tree. Irthatcase, arextension ofd to a tree function
always exists and is obtained Hiye triangle method This procedurejntroduced in
Leclerc (1995), wasthen formalized and studied in Makarenk@997), Leclerc and
Makarenkov (1998), and Guénoche and Leclerc (2000).

In fact, the triangle method builds a valudd_-tree T suchthatdt(x,y) = d(x,y)
for anyxy [0 E. The basic observation is that a triangtg/{}, weightedaccording tad,
defines a valuedXy,z}LL-tree T of the 3-star type, that is, with a unique latesttex u.
The valuesd(x,y), d(x,z2) andd(y,z) are uniquely obtained as path lengthsTirafter
resolvingthe following system oflinear equations @&r(xu) = d(x,y) + d(x,2) - d(y,2),
2dt(yu) = d(y,x) + d(y,2) - d(x,2) and 2it(zu) = d(z,x) + d(zy) - d(x,y).

The order of vertices i@ is an arbitrary RE ordeq, x,..., Xn. S0, foreveryx;,
there exist exactly two elemernytsz O {Xq,..., Xj-1} suchthatboth xy andxz belong to
E. The triangle &;,y,z} will be changed into anX,y,zZ}LL-tree of the 3-star type, and
the obtained 3-stars will be successively glued to finally obtaXLartree.

« First, the triangle X1,x2,x3} is represented as a 3-st&g. Then, thesame operation is
made on the trianglex{,y,z}, wherey, z [0 {X1,X2,x3}.



* A second 3-stalf4 is obtained withthe pathT4(y2 common withT3(yz), with the
same lengthd(y,z). The treesTz and T4 are glued onthis path to obtain an
{X1,X2,X3,X4}LL-tree.

* A new triangle with the vertices, y, zsuch thay, z O {xg,X2,...,Xj-1} is considered
at each step; the existence safch atriangle is guaranteed by the properties of RE
orders. Ifyz[J E, then its value is fixed asi-1(y,2), the length ofthe path between
andz in the current %1,X2,...,Xi-1}LL-tree Ti-1. So, the 3-star corresponding to the
triangle {xi,y,z} provides a grafting of the new vertexonto this tree.

* Finally, anXLL-tree T =T" is obtained, preservingll the dissimilarity values ind.
Applying the triangle method is polynomial wi{n2) complexity. Thus:

Proposition 4.1.1f G = (X, E) is a2d-tree, therthereexists avalued XLL-tree T
such that the tree functiont dextends d .

Theorem 4.2.1f G= (X, E) is 2d-acyclic, then there exists a valued XLL-tree T such
that the tree function 1dextends d .

Proof. AssumeG is 2d-acyclic andiseAlgorithm 3.1 toobtain a 2d-tre&' = (X, E’)
with E [0 E'. Give arbitrary positive lengths @l the pairs inE'-E. Now d extends to a
partial dissimilarity with a 2d-acyclic support graph andhe result follows from
Proposition 4.1. [

Since Algorithm 3.1 runs i®(n3) and the triangle methadins inO(n?), we are
able to conclude:

Corollary 4.3. Partial dissimilarities with 2d-acyclic support graphs constitute a
polynomial class of ProbleMVYMCA .

In the particular case whe@is a 2-tree, Leclerc and Makarenkov (1998pwed
that the finalX-tree does not depend on the order on triangllesir arguments extend to
2d-trees.

Theorem 4.4.The triangle method uniquely extends a partial dissimilarity d witk-a
tree supportgraph G= (X,E) to a treefunction & , independently of thased RE
order.

Proof. Letx, y 0 X such thaky [J E. We proceed by induction on the lengtbf the 2d-
chainG[xy]. The result iobvious fork < 4. Assumethat it is truefor all 2d-trees of
length at mosk-1 and, without lost of generality, thahas degree 2 iG[xy]. Let z and
Z' be the vertices adjacentxan this graph. As observed i8ection3.1, either the pair
zz'belongs tde, or G[zz] O G[xy]. In both casesit(zz) is given or, bythe induction
hypothesisuniquely determined by the triangle method applied3jzz]; the same for



both pairsyz andyz'. Finally, one haslt(x,y) = max{ d(x,2) + dt(y,z) , d1(x,z") +
dr(y,z}- dr(zz). O

Example 4.5 Consider Figure 2, which shows a 2d-tree endowi¢iu a partial metric

d. Figure 3 showsthe 3-stars associated to its triangles and their successive
incorporation, until the finak-tree is obtained. lall our examplesthe alphabetiorder

on the vertices will be an RE order.

50 25

o
’ A
H
N o
(@)
O

Figure 2: a 2d-tree endowed with a partial metric
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Figure 3: construction of axrtree from the valued 2d-tree of Figure 2



4.2. Resolvedd-treesand theMCA problem.The triangle methoghrovides a unique
tree function extension of any partial dissimilarity defined on a 2d-tree. But this extension
is not always the unique possible one.

¢ a
Ce 2 o 1 1 2 ! oD
d4 11 1
a3 |2
d2 4
6 dl
Figure 4 Figure 5

Example 4.6.Consider thevalued 2d-tree of Figure 4, withe REorder (a, b, c, d,
e). The tree of Figure 5 shows four possible graftings of d on the initial { a, b, c }-tree,
among an infinity; here, d1 the graftingprovided bythe trianglemethod.The reason
of such an ambiguity is the equality of the sudtesc)+d(b,d) andd(a,d)+d(b,c). So, the
third sumdr(a,b)+d(c,d) can take anyalue inferior to 12 corresponding tdhe triangle
method), and superior to 4 if a metric is required. Then, the grafting of e proviges a
metriconly for 2< dt(c,d) < 6: d2 and d4 are the extreme placements obrdpatible
with this condition.

With a slight change on the givepartial dissimilarity, sayd(b,c) = 7.1, the
triangle method extension becomes the unjgpssible onesince,according to thdour-
point condition, onethen obtainsdr(a,d)+d(b,c) = 12.1 and, sody(c,d) = 10.1.
Although a and d have no longer the same grafting point on theTpath the
obtainedXLL-tree is very close to the previous one with the d1 placement for thatin
sense,the triangle method extensiagives aparticularly stabletree. Note also that,
although thedata constitute a partiatetric, the uniqueossible extension is notteee
metric.

Definition 4.7. A valued 2d-treés on X is said to beesolvedif it leads, byapplying
the triangle method, to a resolvEdL-tree.

Theorem 4.8. The tree function extension of partial dissimilarity with a 2d-tree
support graph G is unique if and only if G is resolved.

Proof.If G is resolved, each of the2 latent vertices is placed in turn at an interior point
of an edge of the current tree. There is no choice for this placement and the proof is easily
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obtained by induction on. For the converse, assume that, at some stetfheftriangle
method, a new vertex, = x is grafted on the path(y2) at a pointu which isalready a
latentvertex. So, twoedgesxu and uv, both not belonging tdhe pathT(yz), are
obtained, with respective lengthxu’) and/(uu”). Determine a new treE by replacing
xu anduv with three edgesu’, u'x andu'v, and givethemlengths respectively equal to
2'(uu’) = g, £'(u'x) = £(u'X)-g, ¢'(uu’) = ¢(uu’)-g, wheree is a smallenoughstrictly
positive constant. The metric in the obtained valweeT' is an alternativextension of
the values ofl betweenall the pairs of predecessors &fin the considered RErder.
Starting fromT' to continue the triangle meth@docesdeads to an extension af that
differs from the triangle method oné.

Example 4.9.SetX={ a, b, c, d, e} and consider the valued 2d-t@&dhere, a 2-tree)
in Figure 6.The triangle methodivesthe XLL-tree of Figure 7, withthe vertexu of
degree 4. Witle = 1, the operation described in the abpweof provideshe alternative
treeT' of Figure 8, where all the lengths of edge&didre still preserved gsathlengths.
On the contrary, the valued 2d-tree of Example 4.5 is resolved. Consequdedsito
a unigueXLL-tree, which is depicted in Figure 3.

o C

[ XS

Figure 6 Figure 7 Figure 8
Given apatrtial dissimilarityd with a 2d-treesupport graplG, one mayuse the
triangle method (ir0(n?)) to determine theorresponding{LL-tree T. If T is resolved,

then the extension afis unique. This extended measure will meetntieric condition if
and only if none of external edgeslimas a strongly negative length. So:

Corollary 4.10. Partial dissimilarities with resolvedd-tree support graphsonstitute a
polynomial class of ProbleiCA .

Theorem 4.8 will be useful in Section 6 to find other polynomi@asses. We end
this section with three remarks:

Remark 4.11. As Example4.6 shows, Problem MCA remains difficult in an
unresolved 2d-tree. Ithat case,many tree functiorextensionsare possible,and the
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problem is to determine whetheome ofthem aremetric. Example4.9 shows areasy
case, where the triangle method extension is already metric.

Remark 4.12. For similar reasons,Corollary 4.10 cannot be extended to 2d-acyclic
graphs. Inthis caseagain,many tree functiorextensions existAlthough it is always
possible toextend a partial metrifrom a 2d-acyclic to a 2d-tresupport graph (fix the
length of anew edge as the minimum path length betwagrextremities whenever this
gquantity is defined), such an extension is not guaranteed to be a partial tree metric.

Remark 4.13. The case ofesolved 2d-treesnay be considered as the generag,

since unresolved ones correspond to additional linear dependencies between the values of
d. For instance, in Example 4.9, we havéu) =d(a,b)+d(a,c)d(b,c) =d(a,d)+d(a,e)-

d(d,e).

5 Partial 2-trees and Problem MCA

Compared to 2d-trees, 2-trees provide, as sugpaphs,additional information
about thecorresponding valueXLL-tree (Leclerc and Makarenkovl998). Especially,
we have the following result:

Proposition 5.1.Let d be a partial dissimilarity with Ztree supportgraph G , and
dt thetreefunction extending dobtained by thdriangle method. Then, 1 is a tree

metric if and only if d is a partial metric.

Since 2-trees are chordgdaphs, it issasy to verifythatd, with a 2-treesupport
graphG = (X, E), is a partial metric ifand only ifall the triangles ofG are metric.
Assume thaG is just 2-acyclic. We then can add new pairk totil a 2-tree is obtained.
To obtain a tree metriextension by the trianglmethod, wehave to give to each new
edgexy a length preservinthe property of being gartial metric. Forthat purpose, a
simple solution consists of taking the minimum lendfti{x,y) of a path ofG betweenx
andy asd(x,y).

As recalled in Sectio3.2, fast algorithms exist to recognigmrtial 2-trees,that
aregraphs without subgraptmeomorphic td&4 (thatis, 2-cycles).Here we give a
simple algorithm that combines this recognition with a 2-tree extension of aygixte
metricd. The algorithm is based on the construction of a RE order, together with marking
some new edges. Lebe a vertex with minimum degreé¥) in the current graph:

» if d(X) > 2, the algorithm stop§ is not a partial 2-tree;

» if JX) = 1, lety be the vertex adjacentxandz a vertex, different from, adjacent to
y; a convenient length is assigned to the pairwhich is marked, and is eliminated
together with the edgey;
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» if d(X) = 2, lety andz be the vertices adjacentxpif the pairxyis notalready an edge
of the currentgraph, then this edge is marked armdided, aconvenient length is
assigned to it, andis eliminated together with the edggsandxz

Algorithm 5.2. Completion-elimination procedure.
While | X |=3
While there existx U X such thav(x) = 1
Selecty such thaky [0 E andz# x such thayz[ E
Mark xz
d(x,2) := dM(x,2)
X=X\ {x} andE :=E\ {xy}
End While
While there existx [ X such thav(x) = 2
Selecty andz such thaky 0 E andxz[ E

If yzOE
Mark yz
E=EU{yzd
d(y,2) :=dM(y,2)
X=X\ {x}
E .=E\{xyxzg
End While

End While

The irreducible part of G, notéelrr(G) is thegraph obtained ahe end of this
procedure; either Ir§) = Kz or all its vertices have degree at least& E' be the seE

augmented with all the marked pairs.

Theorem 5.3. The above procedurextends a givempartial metric with the support
graph G to a partial metric with Ztree support graph if and onlylifr(G) = Ks.

Proof. The completion-elimination procedure determines a RE ord¥r dre firstshow
that the elimination ok cannot change the eventual 2-acyclicityGf This is obvious
whend(x) = 1. Ford(x) = 2, whendeletingx, a 2-cycleC of G including theedgesxy
and xz could besuppressedThe existence osuch a2-cycle implies another on€’
obtained by substitutingz to these two edges;yz[] E, then the 2-cycl€' exists inG
and is not affected by the deletion xfif yz O E, thenC' is substituted tcC before
deletingx. In all cases, the new graph is 2-acyclic if and onfy i$. So, if Irr(G) = K3,
all the successively considered graphs are 2-acyclic. Otheiw{$&), has a 2d-cycle, as
defined in Section 3.1 and, by Proposition 3.2, is not 2-acyclic.

Assumelrr(G) = K3z and considethe graphG' = (X,E"): on this graph, the above
valuation andelimination procedure consists of successigiminations of a vertex
belonging to a unique triangle, which is metBo, G' is a metric 2-tre@and the result
follows. O
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Corollary 5.4. Partial metricswith 2-acyclic support graphs constitute a polynomial
class of ProblenMCA .

Example 5.5. Considerthe partial metriad of Figure 9 with acycle supportgraph.

While eliminating vertices a and c, edges be and bd are added with respective lengths
10 and 7 . The resulting 2-treerresponds tahe XLL-tree of Figure 10with null

lengths for the edges adjacentto a and c, which gives a tree metric extedsion of

[¢_Neo]
[ ]

d
e a ¢
. B—I
3 1 4
Figure 9 Figure 10

Remark 5.6. When the completion-elimination procedure leads tocomplete graph
Irr(G) with a vertex seY of cardinality at least 4, it could be expected that we just have to
determine whethety is a treemetric. In fact, this is onlyhe case ill of theedges of
Irr(G) have not received their lengtldsiring the procedure. Otherwisenany possible
lengths were convenient, provided thag compatiblevith the triangle metricondition.

So, it is not possible to give a general conclusion.

Example 5.7. Applying the completion-elimination procedure to the valgeaph of
Figure 11 leads to a/In that example, no possible system of lengthshemew edges
can give a tree metric.

a c

8 2

JENY
Figure 11

The elimination of vertices and c¢ implies addition oédges bf and bd . These
operations lead to the complete graphven{ b, d, e, f}. One may have $ d(b,e)< 10
and 1< d(b,d)< 5; so,d(b,e) +d(d,f) = 9, 10< d(b,f) + d(d,e)< 15 and & d(b,d) +
d(e,f) < 9. The four-point condition cannot be satisfied.

In the exampleabove, the answer to ProblenMCA was obtained with a
polynomial number of elementary operations. In a more geoasalthe graph IrrG) is
endowed with edgéengths, some othem comprised intointervals. One has then an
instance of the "sandwich problem”, also prodgdcomplete by Farach et al. (1995).
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6 Further polynomial cases

6.1. Skew G's. A C4 of G is a cycle of length 4 (thasualterm 4-cyclehas another
meaning in thigpaper). AC4 xyzwis saidskewif d(x,y) + d(z,w) # d(x,w) + d(y,2).
Then, if, sayxz 0 E, we haved(y,w) = max{ d(x,y) + d(zw) , d(x,w) + d(y,2) }-
d(x,y). If xyzwdoes notadmit achord, wehave the linear equatiai(y,w) + d(x,y) =
max{ d(x,y) + d(zw) , d(x,w) + d(y,2) } with two variables. A graplG with enough
skew4-cycles leads in thiway to a system olinear equations, whose resolution may
give an answer to problenCA andWMCA in a polynomial time.

Example 6.1.The support graph of Figure 12 has 9 edges; so, it remains 6
undetermined values for an extensiorml.of

b
a 3 ‘% c
6 7 2
6
a o2 2

5 \ 11
d 3 e' 6 f b

Figure 12 Figure 13

G has 9 skewC4's leading to the following system of equations:

abcd d(a,c)+d(b,d) = 12 abcf d(a,c)+d(b,f) = 13
abed : d(a,e)#d(b,d) = 12 abef d(a,e)#d(b,f) = 13
adef d(a,e)+d(d,f) = 12 adcf d(a,c)+d(d,f) = 12
bcde d(b,d)+d(c,e) = 11 bcfe d(b,f)+d(c,e) = 12
cdef d(c,e)+d(d,f) = 11

This system has the solutiai(a,c) =d(a,e) = 7d(b,d) =d(d,f) = 5,d(b,f) = d(c,e) = 6.
The corresponding tree metric is represented b¥ithetree of Figure 13.

6.2. G includes &d-tree.2d-acyclic graphare sparse because they have at most2
edges. When the number of edges increases, it maydeeted that theupport graptG
admits a 2d-treél = (Y,F) as a subgraph (weall H a aI-subtreeof G). The triangle
method therprovides anYLL-tree T and, ifH is resolved, ainiquetree functiondt
extending the restrictiohe. One may then, in a first step, compare the obtained values of
dt to the values afl on pairs oE not inF, but with extremities iry. If the valuesare not
identical, ProblenWMCA (and sdMICA) has a negative answer for the data. Otherwise,
the positiveanswer toVMCA obtainedfor a part of the data can k@so, according to
Section 4.2, a negative one fdCA . In both problems, one may, with a positive answer
onY, try to extend the obtainesblution tothe remainingoairs ofE, or to seek another
2d-tree inG.
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This approach allows us to solve ProblaMgICA andMCA in many cases. We
present here a more formalized procedbetworks as soon a8 admits asubgraphH
which is a resolved 2d-tree o

Definition 6.2. A diamondD of G is a quadrupleyzwof elements oK such that xy,
yz, zw, wx, xzt O E andyw [J E (so,D is aC4 with a uniquechord). The diamondD is
resolvedif the C4 xyzwis skew.

It was observed isection6.1 above thaCondition (F) uniquely determines the
value of the second chord of a resolved diamond. A step of the procedure is as follows:
» scan all the quadruples of elementsxofWhen a quadruple is a 4-cliqgue @f check

whether it satisfieshe four-point condition(F); if not, stop:d is not atree function.

When a quadrupleyzwis a diamond, check whether it is resolved; if iths case, set

d(y,w) = max{d(x,y) +d(zw) , d(x,w) + d(y,2) }-d(x,y) and add the paywto E.
This step igterated until eitherll the pairs havereceived a tree functiomalue, or a 4-
cligue notsatisfying Condition(F) is found, or no new paisan be valued; in the last
case, the problems remain undetermined.

Assume tha6 includes a resolved 2d-trekand consider the elementsXfin an
RE order. The first four vertices of a resolved 2d-tree constitute a resolved dianténd in
at the nexstep,the fith vertex constitutes @esolved diamond with some triples in the
previous vertices, and so on. According to TheoremtldeBextension is unique or leads
to contradict Condition (F); in botbasesproblemsWMCA andMCA aresolved. The
scanning of quadruples is @(n%-* and the number of iterations ibounded by the
number of pairs not i, that isO(n2). Finally, the procedure needs at wo@(né) time.

Theorem 6.3. Partial dissimilaritieswith supportgraphs including aesolved2d-tree
constitute polynomial instances of ProblewisICA andMCA.

There are generally few missing values in phylogenetic applications. Therefore, an
algorithm based on the above procedure gengpadlyides an answer. I@uénoche and
Leclerc (2000), the triangle methedas applied, in &ree metric approximatiopurpose,
to more thans00 partial metric tablesorresponding tovertebratehomologous genes
issued fromthe HOVERGEN database (Duretatt 1994). Among them, the answer to
MCA remained undetermined for only a dozen tables, with unconnected support graphs.

Example 6.4.Consider the valued graph in Figure 14; it has 6 vertices anan = 10

edges. The deletion of the edge ab provides a resolved 2d-treetfwhileletion of af

gives an unresolved one). In the above procedure, a first scanning of quadruples gives the
diamonds bacd (unresolved), cbd#b(e) = 7)and dcef d(c,f) = 6). Theedges be

and cf are added ® and a second scanning is performed. Ftieediamonds cafd ,

cafe and abcf, we find, respectivalya,d) = 6,d(a,e) = 6 andi(b,f) = 10.thend does
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not satisfy Conditior{F) onthe 4-cliquebcdf . The conclusion ighat this partial metric
cannot be completed as a tree function.

Figure 14

7. Conclusion

We described and established new properties of two classeyait-like graphs
(Section 3). ProblemsWMCA and MCA were proved (Sections 4 and 5) to be
polynomial for, respectively, 2d-acyclic and 2-acygiaphs. Wealso observed (Section
6) that, althougiMCA is NP-complete, most of the practical instances of this problem are
polynomially resolvable.

Here is ourast example, presenting a seemingly difficnfitance.The Petersen
graph of Figure 15 is a 2d-cycle and has no 2d-subtrees. It is endowedpaitialatree
metric, except the value of one edgel{oid), increased by 1. It may be expectbat
such a partial metric no longer extends to a tree metric. How to prove (or disprove) that?

Figure 15
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