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Abstract. Farach, Kannan and Warnow (1995) have defined Problem MCA  (matrix completion
to additive) and proved it to be NP-complete: given a partial dissimilarity d on a finite set X, does
there exist a tree metric extending d to all pairs of elements of X. We use a previously described
simple method of phylogenetic reconstruction, and its extension to partial dissimilarities, to
characterize some classes of polynomial instances of MCA  and of a related problem. We point out
that these problems admit many other polynomial instances. Our main tool consists of two
classes of generalized cycles, together with the corresponding maximal acyclic graphs (2-trees and
2d-trees).

Résumé. Farach, Kannan et Warnow (1995) ont posé le problème MCA  (matrix completion to
additive) suivant et ont démontré sa NP-complétude : étant donné une dissimilarité d partielle sur
un ensemble fini X, est-il possible de l'étendre en une distance d'arbre définie sur toutes les paires
d'éléments de X. Nous utilisons une méthode simple de reconstruction phylogénétique,
précédemment décrite, et son extension aux dissimilarités partielles pour caractériser des classes
d'instances polynomiales de MCA  et d'un problème voisin. Nous montrons qu'en fait beaucoup
d'autres instances sont aussi polynomiales. L'outil principal est constitué par deux classes de
cycles généralisés, avec les graphes acycliques maximaux (2-arbres et 2d-arbres) correspondants.
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1. Introduction

We consider a partial metric d on a fixed finite set X. Precisely, the value of d is known
on a subset E of undirected pairs of elements of X. The following decision problem MCA
(Matrix Completion to Additive) arises in several application domains, e.g. phylogenetic
tree reconstruction: does there exist a valued X-tree T, such as the tree metric dT

associated with it satisfies the following condition: for any xy ∈  E, d(x,y) = dT(x,y).
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In other terms, is it possible to complete d into a tree metric? We also consider a non-
metric version WMCA  (WeakMatrix Completion to Additive) of MCA , where negative
values on some edges of the X-tree T are allowed and, as a consequence, dT does not
necessarily satisfy the metric triangle inequality.

Farach, Kannan and Warnow (1995) proved that Problem MCA  is NP-complete. Here
we characterize some polynomial instances of both Problems WMCA  (Section 4) and
MCA  (Section 5). Our approach is based on a simple phylogenetic reconstruction method
recalled in Section 3. This method was previously described in Leclerc and Makarenkov
(1998) and recently extended to an approximation method to fit a tree metric to a partial
metric with (Guénoche and Leclerc 2000). Two types of generalized aciclicities will be
extensively used in this paper. One of them is defined, whereas the other is recalled, in
Section 2. In Section 6, we point out that Problems MCA  and WMCA  are, in fact,
polynomial in a wide class of instances.

2. Notations and definitions

2.1. Graphs and XLL-trees. We consider here only undirected simple graphs without
loops or multiple edges. In such a graph G = (V,E), a vertex v is a leaf if its degree ∂(v)
is equal to 1. In a path (vv1, v1v2, …, vk–1v') of G between two vertices v and v', all the
vertices are distinct except, possibly, when v = v' and the path P is a cycle of G. The
graph G is a tree if it is connected and has no cycles. The unique path between two
distinct vertices v and v' of a tree T is denoted as T(v,v'). The graph G is a k-clique if |V|
= k and uv ∈  E for all u, v ∈  V. A triangle of G is a subset of V inducing a 3-clique; such
a subset is denoted xyz instead of {x,y,z}.

A valued graph is an ordered pair (G,l), where G is a graph and l is a real length
function on the edge set E of G. When the graph G is connected and has no circuits of
negative length, we set, for any two distinct vertices v and v' of G,
dG(v,v') = MinP path of G between v and v' ∑e∈ P l(e).
In the case of a tree T, dT(v,v') = ∑e∈ T(vv') l(e).

An XLL–tree (leaf labelled according to X tree) is a tree T satisfying two
properties: (i) the leaf set of T is X; (ii) for any v ∈  V(T)-X, ∂(v) ≥ 3. In an XLL-tree, the
vertices in V(T)-X are called latent vertices. The maximum number of latent vertices of T
is n-2, where n = |X|; when it is reached, all the latent vertices have degree 3 and the tree
T is said to be resolved. For more definitions and properties of such trees, see the book of
Barthélemy and Guénoche (1991).

2.2. Dissimilarities and metrics. A dissimilarity on X is a real function d on X×X
satisfying d(x,y) = d(y,x) and d(x,y) ≥ d(x,x) = 0 for all x, y ∈  X:

A dissimilarity d is a metric (or a metric) if it satisfies the classical metric triangle
inequality: for all x, y, z ∈  X, d(x,z) ≤ d(x,y) + d(y,z). It is well known that this
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property is satisfied by the minimum path length function of any positively valued
connected and undirected graph. So, a metric dm is associated in this way to the complete
graph on X valued by a dissimilarity d.

A dissimilarity d is a tree metric if it satisfies the following four-point condition:
for all x, y, z, w ∈  X, the inequality (F) holds:

d(x,y) + d(z,w) ≤ max{ d(x,z) + d(y,w), d(x,w) + d(y,z) }. (F)

It is now well-known that a tree metric is uniquely representable by the lengths of the
paths between the leaves of a non-negatively valued XLL-tree Td, called its tree
representation (Buneman 1971).

An extension of the previous result (Leclerc 1995) consists of considering the
weak four-point condition, where the inequality (F) is met only for all distinct x, y, z, w
∈  X. A dissimilarity d satisfying this condition is not necessarily a metric. Such a
dissimilarity is called a tree dissimilarity. A real function d on X×X satisfying the weak
four-point condition is called a tree function. A tree function (resp. dissimilarity) is easily
transformable into a tree dissimilarity (resp. metric) by addition of a convenient positive
constant 2C to each of its values. Conversely, reducing by C the lengths of all terminal
edges in a positively valued XLL-tree T is equivalent to reducing by 2C the path lengths
between leaves of T. As a consequence, a tree function has again a unique XLL-tree
representation, possibly with negative lengths on the external edges (incident to the
leaves).

Sometimes, the dissimilarity d is partial, in that sense that it is defined only on a
set E of unordered pairs of elements of X. Thus, we have a support graph G = (X,E),
valued by d. We say that a dissimilarity d' extends d, or d completes into d' if xy ∈  E
implies d'(xy) = d(xy). Without loss of generality, it will be assumed in the sequel that G
is connected. We say that d is a partial metric if, for any xy ∈  E, d(xy) = dm(xy). For the
complete graph as G, d is a partial metric if and only if it is a metric. The following
property is well-known and easy to obtain. Clearly, a partial metric d may be always
completed into its associated minimum path length metric dm.

Proposition 2.1. A partial dissimilarity  d  completes into a metric on  X  if and only if
it is a partial metric.

2.3. Two problems. Assume that a partial dissimilarity on X with a support graph G =
(X,E) is given. The following "Matrix Completion to Additive" (MCA ) problem has been
shown to be NP-hard by Farach et al. (1995):

Problem MCA:  given a partial metric d on X, does it complete into a tree metric?
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According to Proposition 2.1 above, when the given partial dissimilarity is not a metric,
the answer to Problem MCA  is negative. The following "Weak Matrix Completion to
Additive" (WMCA ) problem remains of interest since such a completion still provides a
tree structure (but negative lengths do not fit most of evolutionary models). In such an
extension, it is not important to distinguish tree dissimilarities from tree functions in the
completion ouput. Here we do not address the complexity status of WMCA , and just
exhibit some polynomial classes of instances.

3. 2d-trees and 2-trees

We recall and complete the description of two classes of graphs which constitute major
tools for this study.

3.1. 2d-acyclic graphs. Let G = (X,E) be a finite undirected simple graph, and A ⊆  E a
set of edges of G. Then, XA denotes the set of all vertices incident to one edge of A at
less, and GA the subgraph (XA,A) of G. A set C ⊆  E is said to be a kd-cycle (d for
degree) of G if all the vertices of XC have degree at least k+1 in GC and C is minimal for
inclusion with this property. Clearly, a 1d-cycle is a cycle. Here we are concerned with
the case k = 2.

Examples. If GC is isomorphic to the complete graph Kk+2 or to the complete bipartite
graph Kk+1,k+1, then C is a kd-cycle. If GC is a wheel, then C is a 2d-cycle.

A graph with no kd-cycles is said kd-acyclic. The maximal kd-acyclic graphs are
called here kd-trees. They have been characterized in a recursive way by Todd (1989):
• the complete graph Kk with k vertices is a kd-tree;
• if G = (X,E) is a kd-tree, then, for any subset Y ⊆  X of cardinality k and new vertex x

∉  X, the graph G' = (X∪ { x},E∪ { xy: y ∈  Y}) is a kd-tree.

Then, a graph G = (X,E) is a 2d-tree if there exists an ordering (x1,x2,…,xn) of X
such that x1x2 ∈  E and, for i = 3,…, n, the vertex xi has degree 2 in the subgraph Gi

induced by the vertex set {x1,x2,…,xi} (such an ordering is a reversed elimination order,
abbreviated as RE order). A 2d-tree with n vertices is 2-connected and has 2n-3 edges. It
has at least one vertex of degree 2. Both graphs G and G' of Figure 1 are 2d-trees.

1

2 3

4
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1

2
3

4

5

G G '
Figure 1
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Given a set of edges A, Todd proposes a procedure for deciding whether it
includes a kd-cycle. This procedure determines a subset  Peel(A) of A, called the kd-
peeling of A, as follows: search a vertex of degree at most k in GA; if no such vertex
exists, then  Peel(A) = A; otherwise, delete the vertex found with its incident edges, and
repeat the operation until no vertices of degree 1 remain. The set of remaining edges is
Peel(A). The set A is a kd-acyclic if and only if  Peel(A) = ∅ . Such an algorithm clearly
runs in O(n) time.

A connected 2d-acyclic graph completes in many ways into a 2d-tree; we give here
a procedure that will be useful in Section 4:
• If there exists a vertex x of degree 1, add a new edge between x and an arbitrary other

vertex y, not already adjacent to x. Repeat the operation until no vertex of degree less
than 2 remains.

• List all the pairs not included in E in an arbitrary order and check them according to the
list order. For each such pair xy, use the 2d-peeling algorithm above to determine
whether the graph (X, E∪ { xy}) is acyclic; add xy to E if the answer is positive, and
reject it otherwise. Stop when |E| = 2n-3.

Algorithm 3.1. Completion of 2d-acyclic graph into a 2d-tree.
While there exists x ∈  X such that ∂(x) = 1

Select y  ∈  E such that y ≠ x and xy ∉  E

E := E ∪  {xy}

End While
If  |E| = 2n-3 then stop Algorithm
Else

Make a list L of all pair xy not included in E
While |E| < 2n-3

Select any pair xy from L
Apply 2d-peeling algorithm to check whether the graph

G = (X, E∪ { xy}) is acyclic

L: = L \ {xy }
If  G is acyclic

E := E ∪  {xy}

End While
End Else

Proposition 3.2. If  G  is a 2d-acyclic graph, the above algorithm extends it into a 2d-
tree in  O(n3) time.

Proof. Clearly, adding an edge to a vertex of degree 0 or 1 cannot create a 2d-cycle. This
justifies the first part of the algorithm. In the second part, the final graph is a maximal 2d-
acyclic graph, that is a 2d-tree; otherwise, further pairs would be retained during the
scanning of of the list.
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As far as the algorithmic complexity is concerned, the first part is in O(n). In the second
one, we have to check O(n2) pairs, the peeling procedure being in O(n) each time. ❑

The notion of chain generalizes to 2d-trees. Let G = (X,E) be a 2d-tree on X and a
pair xy ∉  E. The graph G' = (X,E∪ { xy}) is no longer 2d-acyclic. It has a unique 2d-
cycle Cxy = Peel(E∪ { xy}). At each step of the peeling algorithm, a vertex is eliminated
together with two edges. So, setting Y = XPeel(E∪ { xy})  and n' = |Y|, the equality
|Peel(E∪ { xy})|  =  2n'-2 holds. Then, the graph H = (Y,Cxy-{ xy}) is 2d-acyclic with
2n'-3 edges and, so, is a 2d-tree. This 2d-tree has one or two vertices of degree two,
taken in the set {x,y}; it is called the 2d-chain G[xy] of  G  between  x  and  y . If x' and
y' are two vertices of G[xy], then the 2d-chain G[x'y'] is a subgraph of G[xy]. The
length of a 2d-chain, comprised between 2 and n-2, is the number of its vertices minus 2.
We then have the following property:

Proposition 3.3. For any RE order on  X , the last vertex of  G[xy] is  x  or  y  and
has degree 2 in  G[xy].

Proof. Assume that there exists a RE order L on X and a vertex z of G[xy] such that both
x and y are predecessors of z in L. Then, the construction above would lead to a 2d-chain
between x and y without z as a vertex. ❑

3.2. 2-acyclic graphs. Another generalization of cycles and trees is more classical than the
previous one, and has prompted important litterature. Recall that, given a graph G, a
reduced graph is obtained from G by successive contractions of edges incident to a vertex
of degree 2 until no such possible operation remains. For instance, a cycle reduces to a 3-
clique. A graph G is homeomorphic to a graph H without vertices of degree 2 if its
reduced graph is isomorphic to H.

For k ≥ 2, a set C ⊆  E is said to be a k-cycle of G if the graph GC is
homeomorphic to Kk+2. Especially, a 1-cycle is a cycle. A graph with no k-cycles is said
k-acyclic. The maximal k-acyclic graphs are the classical k-trees, which are recursively
characterized as follows:
• the complete graph Kk is a k-tree ;
• if G = (X,E) is a k-tree, then, for any k-clique Y ⊆  X of G and new vertex z ∉  X, the

graph G' = (X∪ { z},E∪ { zy: y ∈  Y}) is a k-tree.

So, k-trees are particular cases of kd-trees. The subgraphs of 2-trees are exactly
the graphs with no subgraph homeomorphic to K4; they are called partial 2-trees or series-
parallel graphs in the literature (Wald and Colbourn 1983). k-trees are also the maximal
triangulated (or chordal, or rigid circuit) graphs with no (k+2)-clique (Rose 1974), that is
the maximal graphs of treewidth k (see e.g. Bodlaender 1997). Such properties make
them to constitute an interesting class in algorithmic graph theory.
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We are again interested in the case where k = 2. A graph G = (X,E) is a 2-tree if
there exists a RE order (x1,x2,…,xn) of X such that x1x2 ∈  E and, for i = 3,…, n, the
vertex xi has degree 2 and belongs to a unique triangle in the subgraph Gi  induced by the
vertex set {x1,x2,…,xi}. A 2-tree with n vertices has at least two vertices of degree 2. 2-
trees are the maximal triangulated graphs without 4-clique. The graph G' of Figure 1 is a
2-tree while G is not (note that it is a 2-cycle). An O(max(m,n)) algorithm to decide
whether a given graph G is 2-acyclic was devised by Liu and Geldmacher (1980). The
analogous problem is NP-hard for k ≥ 3 (Arnborg et al. 1987).

As a consequence of the above recursive characterizations of 2d-trees and 2-trees,
one obtains the following property which, for k = 2, is a variant of a well-known result of
Dirac (1952; see, e.g., Welsh 1976, p. 238, or Aigner 1979, p. 387):

Proposition 3.4. A  kd-cycle includes at least one  k-cycle.

Proof. Otherwise, let C be a kd-cycle such that GC  has no k-cycle. So, GC  is a
subgraph of a maximal graph G with no k-cycle, that is a k-tree. But G is also a kd-tree, a
contradiction with the hypothesis that C is a kd-cycle. ❑

4 The triangle method

4.1. A solution of WMCA in 2d-trees. We first assume that the support graph G of the
given partial dissimilarity d is a 2d-tree. In that case, an extension of d to a tree function
always exists and is obtained by the triangle method. This procedure, introduced in
Leclerc (1995), was then formalized and studied in Makarenkov (1997), Leclerc and
Makarenkov (1998), and Guénoche and Leclerc (2000).

In fact, the triangle method builds a valued XLL-tree T such that dT(x,y) = d(x,y)
for any xy ∈  E. The basic observation is that a triangle {x,y,z}, weighted according to d,
defines a valued {x,y,z}LL-tree T of the 3-star type, that is, with a unique latent vertex u.
The values d(x,y), d(x,z) and d(y,z) are uniquely obtained as path lengths in T after
resolving the following system of linear equations 2dT(xu) = d(x,y) + d(x,z) - d(y,z),
2dT(yu) = d(y,x) + d(y,z) - d(x,z) and 2dT(zu) = d(z,x) + d(z,y) - d(x,y).

The order of vertices in G is an arbitrary RE order x1, x2,…, xn. So, for every xi ,
there exist exactly two elements y, z ∈  { x1,…, xi-1} such that both xy and xz belong to
E. The triangle {xi,y,z} will be changed into an {xi,y,z}LL-tree of the 3-star type, and
the obtained 3-stars will be successively glued to finally obtain an XLL-tree.

• First, the triangle {x1,x2,x3} is represented as a 3-star T3. Then, the same operation is
made on the triangle {x4,y,z}, where y, z ∈  {x1,x2,x3}.



8

• A second 3-star T4 is obtained with the path T4(yz) common with T3(yz), with the
same length d(y,z). The trees T3 and T4 are glued on this path to obtain an
{ x1,x2,x3,x4}LL-tree.

• A new triangle with the vertices xi, y, z such that y, z ∈  { x1,x2,…,xi-1} is considered
at each step; the existence of such a triangle is guaranteed by the properties of RE
orders. If yz ∉  E, then its value is fixed as dTi-1(y,z), the length of the path between y
and z in the current {x1,x2,…,xi-1}LL-tree Ti-1. So, the 3-star corresponding to the
triangle {xi,y,z} provides a grafting of the new vertex xi onto this tree.

• Finally, an XLL-tree T =Tn is obtained, preserving all the dissimilarity values in d.
Applying the triangle method is polynomial with O(n2) complexity. Thus:

Proposition 4.1. If  G = (X, E) is a 2d-tree, then there exists a valued  XLL-tree  T
such that the tree function  dT  extends  d .

Theorem 4.2. If  G = (X, E) is 2d-acyclic, then there exists a valued  XLL-tree  T  such
that the tree function  dT  extends  d .

Proof. Assume G is 2d-acyclic and use Algorithm 3.1 to obtain a 2d-tree G' = (X, E')
with E ⊆  E'. Give arbitrary positive lengths to all the pairs in E'-E. Now d extends to a
partial dissimilarity with a 2d-acyclic support graph and the result follows from
Proposition 4.1. ❑

Since Algorithm 3.1 runs in O(n3) and the triangle method runs in O(n2), we are
able to conclude:

Corollary 4.3. Partial dissimilarities with 2d-acyclic support graphs constitute a
polynomial class of Problem WMCA .

In the particular case where G is a 2-tree, Leclerc and Makarenkov (1998) showed
that the final X-tree does not depend on the order on triangles. Their arguments extend to
2d-trees.

Theorem 4.4. The triangle method uniquely extends a partial dissimilarity  d  with a 2d-
tree support graph  G = (X,E) to a tree function  dT , independently of the used  RE
order.

Proof. Let x, y ∈  X such that xy ∉  E. We proceed by induction on the length k of the 2d-
chain G[xy]. The result is obvious for k ≤ 4. Assume that it is true for all 2d-trees of
length at most k-1 and, without lost of generality, that x has degree 2 in G[xy]. Let z and
z' be the vertices adjacent to x in this graph. As observed in Section 3.1, either the pair
zz' belongs to E, or G[zz'] ⊂  G[xy]. In both cases, dT(z,z') is given or, by the induction
hypothesis, uniquely determined by the triangle method applied to  G[zz']; the same for
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both pairs yz and yz'. Finally, one has dT(x,y) = max{ d(x,z) + dT(y,z') , dT(x,z') +
dT(y,z }- dT(z,z'). ❑

Example 4.5. Consider Figure 2, which shows a 2d-tree endowed with a partial metric
d. Figure 3 shows the 3-stars associated to its triangles and their successive
incorporation, until the final X-tree is obtained. In all our examples, the alphabetic order
on the vertices will be an RE order.
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Figure 2: a 2d-tree endowed with a partial metric d
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4.2. Resolved 2d-trees and the MCA problem. The triangle method provides a unique
tree function extension of any partial dissimilarity defined on a 2d-tree. But this extension
is not always the unique possible one.
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Example 4.6. Consider the valued 2d-tree of Figure 4, with the RE order (a, b, c, d,
e). The tree of Figure 5 shows four possible graftings of  d  on the initial { a, b, c }-tree,
among an infinity; here,  d1  is the grafting provided by the triangle method. The reason
of such an ambiguity is the equality of the sums d(a,c)+d(b,d) and d(a,d)+d(b,c). So, the
third sum dT(a,b)+d(c,d) can take any value inferior to 12 (corresponding to the triangle

method), and superior to 4 if a metric is required. Then, the grafting of  e  provides a tree
metric only for 2 ≤ dT(c,d) ≤ 6: d2 and d4 are the extreme placements of d compatible

with this condition.
With a slight change on the given partial dissimilarity, say d(b,c) = 7.1, the

triangle method extension becomes the unique possible one since, according to the four-
point condition, one then obtains dT(a,d)+d(b,c) = 12.1 and, so, dT(c,d) = 10.1.

Although  a  and  d  have no longer the same grafting point on the path T(yz), the
obtained XLL-tree is very close to the previous one with the  d1  placement for  d . In that
sense, the triangle method extension gives a particularly stable tree. Note also that,
although the data constitute a partial metric, the unique possible extension is not a tree
metric.

Definition 4.7. A valued 2d-tree G on X is said to be resolved if it leads, by applying
the triangle method, to a resolved XLL-tree.

Theorem 4.8. The tree function extension of a partial dissimilarity with a 2d-tree
support graph  G  is unique if and only if  G  is resolved.

Proof. If G is resolved, each of the n-2 latent vertices is placed in turn at an interior point
of an edge of the current tree. There is no choice for this placement and the proof is easily
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obtained by induction on n. For the converse, assume that, at some step of the triangle
method, a new vertex xi = x is grafted on the path T(yz) at a point u which is already a

latent vertex. So, two edges xu and uv, both not belonging to the path T(yz), are
obtained, with respective lengths l(xu') and l(uu''). Determine a new tree T' by replacing
xu and uv with three edges uu', u'x and u'v, and give them lengths respectively equal to
l'(uu') = ε, l'(u'x) = l(u'x)-ε, l'(uu') = l(uu')-ε, where ε is a small enough strictly

positive constant. The metric in the obtained valued tree T' is an alternative extension of
the values of d between all the pairs of predecessors of x in the considered RE order.
Starting from T' to continue the triangle method process leads to an extension of d that
differs from the triangle method one.❑

Example 4.9. Set X= { a, b, c, d, e} and consider the valued 2d-tree G  (here, a 2-tree)
in Figure 6. The triangle method gives the XLL-tree of Figure 7, with the vertex u of
degree 4. With ε = 1, the operation described in the above proof provides the alternative

tree T' of Figure 8, where all the lengths of edges of G are still preserved as path lengths.
On the contrary, the valued 2d-tree of Example 4.5 is resolved. Consequently, it leads to
a unique XLL-tree, which is depicted in Figure 3.
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Given a partial dissimilarity d with a 2d-tree support graph G, one may use the
triangle method (in O(n2)) to determine the corresponding XLL-tree T. If T is resolved,
then the extension of d is unique. This extended measure will meet the metric condition if
and only if none of external edges in T has a strongly negative length. So:

Corollary 4.10. Partial dissimilarities with resolved 2d-tree support graphs constitute a
polynomial class of Problem MCA .

Theorem 4.8 will be useful in Section 6 to find other polynomial classes. We end
this section with three remarks:

Remark 4.11. As Example 4.6 shows, Problem MCA  remains difficult in an
unresolved 2d-tree. In that case, many tree function extensions are possible, and the
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problem is to determine whether some of them are metric. Example 4.9 shows an easy
case, where the triangle method extension is already metric.

Remark 4.12. For similar reasons, Corollary 4.10 cannot be extended to 2d-acyclic
graphs. In this case again, many tree function extensions exist. Although it is always
possible to extend a partial metric from a 2d-acyclic to a 2d-tree support graph (fix the
length of a new edge as the minimum path length between its extremities whenever this
quantity is defined), such an extension is not guaranteed to be a partial tree metric.

Remark 4.13. The case of resolved 2d-trees may be considered as the general one,
since unresolved ones correspond to additional linear dependencies between the values of
d. For instance, in Example 4.9, we have 2l(a,u) = d(a,b)+d(a,c)-d(b,c) = d(a,d)+d(a,e)-
d(d,e).

5 Partial 2-trees and Problem MCA

Compared to 2d-trees, 2-trees provide, as support graphs, additional information
about the corresponding valued XLL-tree (Leclerc and Makarenkov 1998). Especially,
we have the following result:

Proposition 5.1. Let  d  be a partial dissimilarity with a 2-tree support graph  G , and
dT  the tree function extending  d  obtained by the triangle method. Then,  dT  is a tree

metric if and only if  d  is a partial metric.

Since 2-trees are chordal graphs, it is easy to verify that d, with a 2-tree support
graph G = (X, E), is a partial metric if and only if all the triangles of G are metric.
Assume that G is just 2-acyclic. We then can add new pairs to E until a 2-tree is obtained.
To obtain a tree metric extension by the triangle method, we have to give to each new
edge xy a length preserving the property of being a partial metric. For that purpose, a
simple solution consists of taking the minimum length dm(x,y) of a path of G between x
and y as d(x,y).

As recalled in Section 3.2, fast algorithms exist to recognize partial 2-trees, that
are graphs without subgraphs homeomorphic to K4 (that is, 2-cycles). Here we give a

simple algorithm that combines this recognition with a 2-tree extension of a given partial
metric d. The algorithm is based on the construction of a RE order, together with marking
some new edges. Let x be a vertex with minimum degree ∂(x) in the current graph:
• if ∂(x) > 2, the algorithm stops; G is not a partial 2-tree;
• if ∂(x) = 1, let y be the vertex adjacent to x and z a vertex, different from x, adjacent to

y; a convenient length is assigned to the pair yz, which is marked, and x is eliminated
together with the edge xy;
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• if ∂(x) = 2, let y and z be the vertices adjacent to x; if the pair xy is not already an edge
of the current graph, then this edge is marked and added, a convenient length is
assigned to it, and x is eliminated together with the edges xy and xz.

Algorithm 5.2. Completion-elimination procedure.
While | X | ≥ 3

While there exists x ∈  X such that ∂(x) = 1

Select y  such that xy ∈  E and z ≠ x  such that yz ∈  E

Mark  xz
d(x,z) := dm(x,z)
X := X \ {x}  and E := E \ {xy}

End While
While there exists x ∈  X such that ∂(x) = 2

Select y and z such that xy ∈  E and xz ∈  E

If yz ∉  E

Mark  yz
E := E ∪  {yz}

d(y,z) := dm(y,z)
X := X \ {x}
E := E \ {xy,xz}

End While
End While

The irreducible part of G, notée Irr(G) is the graph obtained at the end of this
procedure; either Irr(G) = K3 or all its vertices have degree at least 3. Let E' be the set E

augmented with all the marked pairs.

Theorem 5.3. The above procedure extends a given partial metric with the support
graph  G  to a partial metric with a 2-tree support graph if and only if Irr(G) = K3.

Proof. The completion-elimination procedure determines a RE order on X. We first show
that the elimination of x cannot change the eventual 2-acyclicity of G. This is obvious
when ∂(x) = 1. For ∂(x) = 2, when deleting x, a 2-cycle C of G including the edges xy
and xz could be suppressed. The existence of such a 2-cycle implies another one C'
obtained by substituting yz to these two edges; if yz ∈  E, then the 2-cycle C' exists in G

and is not affected by the deletion of x; if yz ∉  E, then C' is substituted to C before
deleting x. In all cases, the new graph is 2-acyclic if and only if G is. So, if Irr(G) = K3,

all the successively considered graphs are 2-acyclic. Otherwise, Irr(G) has a 2d-cycle, as
defined in Section 3.1 and, by Proposition 3.2, is not 2-acyclic.
Assume Irr(G) = K3 and consider the graph G' = (X,E'): on this graph, the above

valuation and elimination procedure consists of successive eliminations of a vertex
belonging to a unique triangle, which is metric. So, G' is a metric 2-tree and the result
follows. ❑
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Corollary 5.4. Partial metrics with 2-acyclic support graphs constitute a polynomial
class of Problem MCA .

Example 5.5. Consider the partial metric d of Figure 9 with a cycle support graph.
While eliminating vertices  a  and  c , edges  be  and  bd  are added with respective lengths
10  and  7 . The resulting 2-tree corresponds to the XLL-tree of Figure 10, with null
lengths for the edges adjacent to  a  and  c , which gives a tree metric extension of d.
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3 1
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4 2

a bc
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e

Figure 9 Figure 10

Remark 5.6. When the completion-elimination procedure leads to a complete graph
Irr(G) with a vertex set Y of cardinality at least 4, it could be expected that we just have to
determine whether d|Y is a tree metric. In fact, this is only the case if all of the edges of
Irr(G) have not received their lengths during the procedure. Otherwise, many possible
lengths were convenient, provided they are compatible with the triangle metric condition.
So, it is not possible to give a general conclusion.

Example 5.7. Applying the completion-elimination procedure to the valued graph of
Figure 11 leads to a K4. In that example, no possible system of lengths on the new edges
can give a tree metric.

df
4 5

a b c

e

3 3

8 6 2

3

Figure 11

The elimination of vertices  a  and  c  implies addition of edges  bf  and  bd . These
operations lead to the complete graph on Y = { b, d, e, f}. One may have 5 ≤ d(b,e) ≤ 10
and 1 ≤ d(b,d) ≤ 5; so, d(b,e) + d(d,f) = 9, 10 ≤ d(b,f) + d(d,e) ≤ 15 and 5 ≤ d(b,d) +
d(e,f) ≤ 9. The four-point condition cannot be satisfied.

In the example above, the answer to Problem MCA  was obtained with a
polynomial number of elementary operations. In a more general case, the graph Irr(G) is
endowed with edge lengths, some of them comprised into intervals. One has then an
instance of the "sandwich problem", also proved NP-complete by Farach et al. (1995).
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6 Further polynomial cases

6.1. Skew C4's. A C4 of G is a cycle of length 4 (the usual term 4-cycle has another
meaning in this paper). A C4 xyzw is said skew if d(x,y) + d(z,w) ≠ d(x,w) + d(y,z).
Then, if, say, xz ∈  E, we have d(y,w) = max{ d(x,y) + d(z,w) , d(x,w) + d(y,z) }-
d(x,y). If xyzw does not admit a chord, we have the linear equation d(y,w) + d(x,y) =
max{ d(x,y) + d(z,w) , d(x,w) + d(y,z) } with two variables. A graph G with enough
skew 4-cycles leads in this way to a system of linear equations, whose resolution may
give an answer to problems MCA  and WMCA  in a polynomial time.

Example 6.1. The support graph of Figure 12 has 9 edges; so, it remains 6
undetermined values for an extension of d.
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G has 9 skew C4's leading to the following system of equations:

abcd : d(a,c)+d(b,d) = 12 abcf : d(a,c)+d(b,f) = 13
abed : d(a,e)+d(b,d) = 12 abef : d(a,e)+d(b,f) = 13
adef : d(a,e)+d(d,f) = 12 adcf : d(a,c)+d(d,f) = 12
bcde : d(b,d)+d(c,e) = 11 bcfe : d(b,f)+d(c,e) = 12
cdef : d(c,e)+d(d,f) = 11
This system has the solution: d(a,c) = d(a,e) = 7, d(b,d) =d(d,f) = 5, d(b,f) = d(c,e) = 6.
The corresponding tree metric is represented by the XLL-tree of Figure 13.

6.2.  G  includes a 2d-tree. 2d-acyclic graphs are sparse, because they have at most 2n-3
edges. When the number of edges increases, it may be expected that the support graph G
admits a 2d-tree H = (Y,F) as a subgraph (we call H a 2d-subtree of G). The triangle
method then provides an YLL-tree T and, if H is resolved, a unique tree function dT

extending the restriction d|F. One may then, in a first step, compare the obtained values of
dT to the values of d on pairs of E not in F, but with extremities in Y. If the values are not
identical, Problem WMCA  (and so MCA ) has a negative answer for the data. Otherwise,
the positive answer to WMCA  obtained for a part of the data can be also, according to
Section 4.2, a negative one for MCA . In both problems, one may, with a positive answer
on Y, try to extend the obtained solution to the remaining pairs of E, or to seek another
2d-tree in G.
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This approach allows us to solve Problems WMCA  and MCA  in many cases. We
present here a more formalized procedure that works as soon as G admits a subgraph H
which is a resolved 2d-tree on X.

Definition 6.2. A diamond D of G is a quadruple xyzw of elements of X such that {xy,
yz, zw, wx, xz} ⊆  E and yw ∉  E (so, D is a C4 with a unique chord). The diamond D is
resolved if the C4 xyzw is skew.

It was observed in Section 6.1 above that Condition (F) uniquely determines the
value of the second chord of a resolved diamond. A step of the procedure is as follows:
• scan all the quadruples of elements of X. When a quadruple is a 4-clique of G, check

whether it satisfies the four-point condition (F); if not, stop: d is not a tree function.
When a quadruple xyzw is a diamond, check whether it is resolved; if it is the case, set
d(y,w) = max{ d(x,y) + d(z,w) , d(x,w) + d(y,z) }-d(x,y) and add the pair yw to E.

This step is iterated until either all the pairs have received a tree function value, or a 4-
clique not satisfying Condition (F) is found, or no new pairs can be valued; in the last
case, the problems remain undetermined.

Assume that G includes a resolved 2d-tree H and consider the elements of X in an
RE order. The first four vertices of a resolved 2d-tree constitute a resolved diamond in H;
at the next step, the fith vertex constitutes a resolved diamond with some triples in the
previous vertices, and so on. According to Theorem 4.8, the extension is unique or leads
to contradict Condition (F); in both cases, problems WMCA  and MCA  are solved. The
scanning of quadruples is in O(n4)-* and the number of iterations is bounded by the
number of pairs not in E, that is O(n2). Finally, the procedure needs at worst  O(n6) time.

Theorem 6.3. Partial dissimilarities with support graphs including a resolved 2d-tree
constitute polynomial instances of Problems WMCA and MCA.

There are generally few missing values in phylogenetic applications. Therefore, an
algorithm based on the above procedure generally provides an answer. In Guénoche and
Leclerc (2000), the triangle method was applied, in a tree metric approximation purpose,
to more than 500 partial metric tables corresponding to vertebrate homologous genes
issued from the HOVERGEN database (Duret et al. 1994). Among them, the answer to
MCA  remained undetermined for only a dozen tables, with unconnected support graphs.

Example 6.4. Consider the valued graph in Figure 14; it has n = 6 vertices and m = 10
edges. The deletion of the edge  ab  provides a resolved 2d-tree (while the deletion of  af
gives an unresolved one). In the above procedure, a first scanning of quadruples gives the
diamonds  bacd  (unresolved),  cbde  (d(b,e) = 7) and  dcef  (d(c,f) = 6). The edges  be
and  cf  are added to E and a second scanning is performed. From the diamonds  cafd ,
cafe  and  abcf , we find, respectively, d(a,d) = 6, d(a,e) = 6 and d(b,f) = 10. then d does
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not satisfy Condition (F) on the 4-clique bcdf . The conclusion is that this partial metric
cannot be completed as a tree function.
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7. Conclusion

We described and established new properties of two classes of acyclic-like graphs
(Section 3). Problems WMCA  and MCA  were proved (Sections 4 and 5) to be
polynomial for, respectively, 2d-acyclic and 2-acyclic graphs. We also observed (Section
6) that, although MCA  is NP-complete, most of the practical instances of this problem are
polynomially resolvable.

Here is our last example, presenting a seemingly difficult instance. The Petersen
graph of Figure 15 is a 2d-cycle and has no 2d-subtrees. It is endowed with a partial tree
metric, except the value of one edge (in bold), increased by 1. It may be expected that
such a partial metric no longer extends to a tree metric. How to prove (or disprove) that?
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