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Canada H3C 3J7; E-mail: Pierre.Legendre@umontreal.ca

2Institute of Control Sciences, 65 Profsoyuznaya, Moscow 117806, Russia; E-mail: Makarenkov.Vladimir@uqam.ca

Abstract.—A reticulogram is a general network capable of representing a reticulate evolutionary struc-
ture. It is particularly useful for portraying relationships among organisms that may be related in a
nonunique way to their common ancestor—relationships that cannot be represented by a dendro-
gram or a phylogenetic tree. We propose a new method for constructing reticulograms that represent
a given distance matrix. Reticulate evolution applies �rst to phylogenetic problems; it has been found
in nature, for example, in the within-species microevolution of eukaryotes and in lateral gene transfer
in bacteria. In this paper, we propose a new method for reconstructing reticulation networks and
we develop applications of the reticulate evolution model to ecological biogeographic, population
microevolutionary, and hybridization problems. The �rst example considers a spatially constrained
reticulogram representing the postglacial dispersal of freshwater �shes in the Québec peninsula; the
reticulogram provides a better model of postglacial dispersal than does a tree model. The second
example depicts the morphological similarities among local populations of muskrats in a river valley
in Belgium; adding supplementary branches to a tree depicting the river network leads to a better
representation of the morphological distances among local populations of muskrats than does a tree
structure. A third example involves hybrids between plants of the genus Aphelandra. [Biogeographic
history; distance matrix; phylogenetic tree; reticulation network; reticulogram.]

Reticulate evolution refers to evolutionary
processes that cannot be fully represented by
the tree model. Reticulate patterns of rela-
tionships are found in nature in the follow-
ing phylogenetic situations: (1) lateral gene
transfer in bacterial evolution, which can
be studied either in the deep phylogeny or
in presently evolving groups; (2) hybridiza-
tion between species, including allopoly-
ploidy in plants; (3) microevolution of lo-
cal populations within a species, involving
genetic differentiation of allopatric popula-
tions, gene exchange through migration, or
both (example 2 below); (4) homoplasy, the
portion of phylogenetic similarity resulting
from evolutionary convergence (i.e., para-
llel evolution and reversals), which can be
represented by reticulation branches added
to a phylogenetic tree; and nonphylogenetic
situations, such as (5) host–parasite relation-
ships involving host transfer and (6) vicari-
ance and dispersal biogeography (example 1
below).

A reticulogram is a type of graph capa-
ble of representing relationships among or-
ganisms that may have more than one path
connecting an organism to another. Such a
structure, which contains cycles, cannot be
represented by a phylogenetic tree, which is
acyclic by de�nition. Phylogenetic trees are

particular cases of reticulograms and include
the extra property that the path from the root
to any object is unique.

Sneath (1975) summarized the biologi-
cal evidence from various �elds and �rst
showed how reticulate evolution could be
represented using modi�ed cladograms. The
biological concepts that form the foundation
of reticulation analysis as well as the meth-
ods currently available for the reconstruction
of reticulograms have been summarized in a
special section of the Journal of Classi�cation
(Legendre, 2000a).

Here we propose a new method for recon-
structing reticulation networks and apply
the reticulate evolution model to ecologi-
cal biogeographic, population microevolu-
tionary, and hybridization problems. Other
examples involving reticulation events that
can be interpreted in terms of hybridiza-
tion, homoplasy, and endosymbiosis are de-
veloped in a companion paper (Makarenkov
and Legendre, in prep.).

INFERRING PHYLOGENETIC TREES AND
RETICULATION NETWORKS

A matrix of pairwise distances among
leaves can be associated with any phyloge-
netic tree (see Zaretskii, 1965; Buneman, 1974;
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Lapointe and Legendre, 1992). Such a ma-
trix is called a tree distance matrix. Let di j
denote the value of the tree distance between
a pair of taxa i and j corresponding to leaves
i and j of the tree. The condition known as
the four-point condition or additive inequal-
ity, which characterizes phylogenetic trees, is
the following:

di j C dkl D max fdik C d j l ; dil C d jkg,
for (all i, j, k, and l) (1)

A phylogenetic tree uniquely de�nes a set of
distances d that satisfy the four-point condi-
tion. Inversely, whenever a set of distances
d satis�es this condition, it de�nes a unique
phylogenetic tree.

Because in practice raw empirical data
rarely satisfy the four-point condition, a
phylogenetic tree representation has to be
inferred by using an appropriate �tting
method. A wide variety of methods allow
reconstruction of phylogenetic trees from
a given distance matrix; for an overview,
see, for example, Barthélemy and Guénoche
(1991) or Swofford et al. (1996). Each method
approximates the observed distance matrix
according to a stated criterion. The most
popular estimation criteria are (weighted)
least squares, neighbor-joining, maximum
likelihood, and maximum parsimony.

We will use the least-squares criterion in
the present study: it is appropriate for the
task; it is the most widely used criterion for
statistical estimation; and it is often compu-
tationally faster than methods based on par-
simony or maximum likelihood. The prob-
lem of �tting a phylogenetic tree to a distance
matrix according to least squares was shown
to be NP-hard by Day (1987, 1996). This re-
sult has stimulated the development of sev-
eral heuristic approaches allowing inference
of tree topologies in polynomial time.

Several authors have proposed algorithms
for the representation of empirical distances
among taxa by using general network mod-
els instead of phylogenetic trees (for exam-
ple, Feger and Bien, 1982; Feger and Droge,
1984; Orth, 1988; Klauer, 1988, 1989; Klauer
and Carroll, 1989, 1995). In such network
models, the taxa are represented by the
nodes of a weighted graph. The minimum
path-length distances between pairs of taxa
approximate the empirical distances. For
example, Klauer and Carroll (1989, 1995)

designed an algorithm for constructing a
least-squares representation of a distance
matrix by a general network with a �xed
number of branches, a constraint that would
not be appropriate for reticulation analysis.
Their procedure �ts a network with a spec-
i�ed number of branches so that the min-
imum path-length distances optimally ap-
proximate the observed data. Readers are
referred to De Soete and Carroll (1996) for
an overview of the general network �tting
techniques.

Lapointe (2000) reviewed four distance-
based methods that can be used to account
for reticulation events. Pyramids (Diday
and Bertrand, 1986) and weak hierarchies
(Bandelt and Dress, 1989) are techniques de-
veloped to �tdendrograms with overlapping
clusters; they can be used for classi�cation
but are ill-adapted to phylogenetic analysis.
The concept of weak clusters, leading to the
construction of a weak hierarchy for an em-
pirical similarity matrix, was proposed by
Bandelt and Dress (1989). Their weak hier-
archy clustering technique can be used to
represent an additive tree structure that con-
tains some ambiguous solutions. Weak hi-
erarchies allow one to refrain from resolv-
ing con�icting features right away, as would
be required when producing a standard den-
drogram. Subsequent investigation of weak
clusters by Bandelt and Dress (1992a, 1992b),
Bandelt (1995), and Dress et al. (1996) has
given rise to the popular method of split
decomposition. In this transformation-based
approach, the observed data are canonically
decomposed into a sum of “weakly compat-
ible splits” and represented by a so-called
splitsgraph. For perfect phylogenetic data,
the splitsgraph is a phylogenetic tree; less
perfect data are depicted with a tree-like net-
work that represents the con�icting informa-
tion contained in the data. In a splitsgraph, a
pair of nodes may be linked by a set of par-
allel branches representing alternative solu-
tions. Splitsgraphs are mostly used to display
incompatibilities in data sets. However, this
is often not the purpose of reticulate analysis,
except when the study focuses on displaying
homoplasy. An example comparing splits-
graph analysis with reticulogram analysis, as
introduced in the present paper, is presented
by Makarenkov and Legendre (in prep.).

Here we describe a new way of modeling
the representation of an empirical distance
matrix. A reticulogram is based on a network
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topology which includes a set of nodes la-
beled with taxon, locality, or some other
form of object names, as well as a set of
intermediate nodes. Reticulograms may,
for instance, describe the �ne-scale spatial
structure of ecological populations or the
broad-scale spatial structure of species
assemblages studied in historical biogeog-
raphy, which results from migrations that
occurred across historical time scales. The
term reticulogram, created by Lefkovitch in
1983 (cited in Legendre, 1984), is a condensa-
tion of, and stands for, reticulated cladogram
(Wanntorp, 1983). The distance between a
pair of nodes in a reticulogram is de�ned as
the minimum path-length distance over the
set of all paths linking them. In Figure 1 (left)
for instance, the distance between objects
x and z is 3, whereas in Figure 1 (right)
the minimum path-length distance, which
goes through the branch between x and z,
is 0.5. The least-squares �tting of an optimal
reticulogram structure representing a given
distance measure has been shown to be a
delicate problem; this problem is at least
as complicated as the NP-hard problem of
�tting a phylogenetic tree to a given distance
matrix by least squares.

We decided to use a heuristic algorithm,
which runs in polynomial time relative to
the number of observed objects (taxa and so
forth), to seek an optimal reticulogram rep-
resentation of a given distance matrix. Given
that the problem of inferring a phylogenetic
tree from evolutionary distances is a very
well studied issue, and taking into account
the fact that several ef�cient tree-�tting algo-
rithms are already available, we propose to
start the reticulogram reconstruction proce-
dure from a phylogenetic tree topology that
provides an initial �t for the distance matrix.
In this approach we add new branches, called
reticulation branches, one at a time to a grow-

FIGURE 1. (Left) A phylogenetic tree T and (right) a reticulogram T C zx.

ing network structure, minimizing at each
step the least-squares loss function, which is
computed as the sum of the quadratic dif-
ferences between the values of the distance
matrix and the associated reticulogram
estimates.

The method of continuous track analysis
(CTA), proposed by Alroy (1995) to depict
reticulate patterns in phylogenetic and
biogeographic studies, bears some resem-
blance to our method. CTA is a parsimony
method used primarily with paleontolog-
ical material. The inner nodes of the tree
represent fossils in the data set subjected
to the analysis, so that no internal nodes
of unknown identity have to be added
to the network. As a consequence, just
as in reticulogram analysis discussed in
this paper, an initial tree is computed (in
CTA, the Wagner method is used to obtain
the starting tree); then some connecting
branches are removed and replaced by con-
nections that minimize the number of “track
fragments,” which represent continuity of
character states through the phylogeny. CTA
cannot be used in phylogenetic problems
in which the inner nodes are unknown
taxa.

Several methods have been proposed to
detect reticulate evolutionary events in nu-
cleotide sequence data (e.g., Jakobsen and
Easteal, 1996). These methods also have their
limitations; for example, they cannot be used
to analyze biogeographic problems.

In particular cases, reticulation branches
may be chosen by a supplementary matrix
of weights or using any supplementary con-
straint matrix associated with a given dis-
tance matrix. For instance (example 1 below),
we constructed a spatially constrained retic-
ulogram representing the postglacial dis-
persal of freshwater �shes in the Québec
peninsula.
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A NEW METHOD FOR RETICULOGRAM
RECONSTRUCTION

Basic De�nitions

Let us introduce some basic de�nitions. A
reticulogram or reticulation network R is a
triplet (N, B, l) such that N is a set of nodes,
B is a set of branches, and l is a function of
branch lengths that assigns real nonnegative
numbers to the branches. Each node i is either
a taxon belonging to a set X or an intermedi-
ate node belonging to N ¡ X.

A reticulogram is connected if, for every
pair of nodes i and j , there is at least one path
from i to j . The reticulogram is called undi-
rected if no direction is associated with the
branches. Given a connected and undirected
reticulogram R, the minimum path-length
distance between nodes i and j , denoted ri j ,
is de�ned as follows:

ri j D min fl p(i, j ) j p is a path from i to jg
(2)

A set of reticulation distances, denoted r ,
can be associated with the set of pairwise
distances among the taxa in X. They are
the minimum path-length distances among
taxa whose relationships are represented by
a reticulogram.

Selected Approach

In this section we describe an algorithm
for inferring a connected and undirected
reticulogram from an empirical distance ma-
trix. First, we reconstruct a phylogenetic
tree from a distance matrix, using one of
the existing �tting algorithms, for exam-
ple, neighbor-joining (Saitou and Nei, 1987),
Fitch (Felsenstein, 1997), or weighted least
squares (Makarenkov and Leclerc, 1999).
Supplementary branches are then added to
the phylogenetic tree, one at a time, each
one minimizing a least-squares or weighted
least-squares loss function. Addition of retic-
ulation branches stops when the minimum of
a stopping criterion is reached. The stopping
criteria we are using (see Eqs. 5 and 6) take
into account the least-squares loss function as
well as the number of parameters of the retic-
ulogram under construction. Because in our
study the reticulogram technique is based on
the least-squares loss function, we have used
an initial phylogenetic tree for which topol-
ogy and branch lengths are also determined

by least squares rather than by the parsimony
or maximum likelihood criteria. Methods of
reticulation analysis could be developed for
parsimony (see Alroy, 1995) or maximum
likelihood, but they would involve entirely
different algorithms.

Let D be a distance matrix on the �nite
set X of n taxa and let T be a phyloge-
netic tree inferred from D by means of an
available tree-�tting method. This tree has at
most n leaves and 2n ¡ 3 branches. Such a
nondegenerate tree is called a binary tree.
Any phylogenetic nonbinary tree can be
transformed into a binary tree associated
with the same tree distance matrix, by
adding to the nonbinary tree branches of
null length where appropriate. In this study,
we consider binary phylogenetic trees as the
foundation for the reticulogram reconstruc-
tion algorithm. Thus, reticulation networks
introduced in this paper will always com-
prise 2n ¡ 2 nodes, including n ¡ 2 interme-
diate nodes and n leaves labeled according
to the taxa in X. The number of branches in
a reticulogram will vary from 2n ¡ 3, which
is the number of branches in a phylogenetic
tree, to (2n ¡ 2)(2n ¡ 3)/2, which is the num-
ber of branches in a complete graph with
2n ¡ 2 nodes. The original tree may be rooted
or not; this does not really matter when
constructing undirected reticulograms.

Mathematical Description of the Problem

Let us now discuss the problem from a
mathematical point of view. Our task is to
reconstruct a connected and undirected retic-
ulation network R with a �xed number (say,
K ) of links that represents best, according
to least squares, a given distance matrix D.
The optimization problem at stake can be
formulated as follows:

Q D
X

i2X

X

j2X

(di j ¡ ri j )2 ! min (3)

under the following constraints: ri j D 0, for
all i,j 2 X, and reticulation distance r is
associated with a reticulogram R with K
branches. In many instances, a phylogenetic
tree already represents a good estimate of
an evolutionary structure; several ef�cient
tree-�tting algorithms are available in the
literature. We decided to start reticulogram
reconstruction from a phylogenetic tree topo-
logy inferred from a given distance matrix
D. This was also the strategy followed by
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Alroy (1995). New reticulated branches will
be added to the growing reticulogram, one
during each iteration of the algorithm.

Consider a binary phylogenetic tree T in-
ferred from a distance matrix D and a pair of
nodes x and y in T that are not linked by a
branch. In the �rst iteration, we have to add a
�rst reticulation branch to T . Thus, we have
to �nd an optimal value l , according to the
least-squares objective function Q (Eq. 3), for
a new potential branch xy that we are adding
to the tree T , while keeping �xed the lengths
of all existing branches (Fig. 2). We will not
present here the rather lengthy and not very
illuminating algebra needed for identifying
the particular value that optimizes the length
of the new branch. In summary, we con-
sider several length values, using a quadratic
spline as the criterion function. We optimize
within the various intervals between spline
points to obtain the optimal length value l for
a particular branch xy.

When this optimum value has been found,
we compute the corresponding value of the
objective function, Qxy, which provides the
gain in �t after branch xy has been added,
and retain the value Qxy as a potential min-
imum of the least-squares criterion after ad-
dition of the �rst reticulation branch. Then
we select another pair of objects in T (say, i
and j) that are not linked by a branch and
compute both the optimal value of a poten-
tial new branch ij and the corresponding gain
in �t Qi j . If Qi j is less than Qxy, we retain ij
as the new potential branch to be added to T
during the �rst iteration.

To obtain the optimum value of the least-
squares criterion Q over the set of all possi-
ble new branches, this computation should
be repeated for all pairs of tree nodes that

FIGURE 2. A new branch of length l can be added to
the tree T between nodes x and y.

are not linked by a branch. The exact solu-
tion can be found in polynomial time. One
will need O(n4) time to optimally place a
new branch into a phylogenetic tree with
n leaves. Similarly, in the second and forth-
coming iterations, an extra reticulation
branch, the one contributing the most to the
reduction of the least-squares function Q,
will be added to the reticulation network. In
a later subsection, we describe goodness-of-
�t criteria that can be used to stop the process
of adding new branches to the reticulogram.

Weighted Least-Squares Criterion

Reticulation branches can also be added to
the network according to a weighted least-
squares criterion of the following form:

Q D
X

i2X

X

j2X

wi j (di j ¡ ri j )2 ! min (4)

The new feature here is the weight function
wi j applied to the separation of taxa i and j .
The function w is symmetric, taking nonneg-
ative values.

The weighted least-squares criterion may
be useful in various practical situations. If
some values of an observed distance measure
are known to be uncertain, this information
can be incorporated in the weighted least-
squares loss function by giving low values
to the weights corresponding to the uncer-
tain entries. If some values in the distance
matrix are unknown, these missing data can
be handled by setting the associated weights
to 0. In problems involving spatially autocor-
related data, such as biogeography, weights
may be given as an inverse function of the
variogram, a spatial autocorrelation function
originally developed in the �eld of geostatis-
tics; this way, larger distances receive lower
weights.

In the present study, we used the weighted
form of the algorithm to impose a constraint
of spatial contiguity to the freshwater �sh
data from the Québec peninsula (example 1
below). Weights of 0 were given to pairs of
regions that did not have common bound-
aries, whereas weights of 1 were assigned to
pairs of adjacent regions. In that study, we
did not use weights other than 0 and 1. In a
biogeographic studies in general, a noninte-
ger weight wi j may represent a probability
for regions i and j to be linked, for example,
by a river connection.
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For an overview of applications of the
weighted least-squares criterion in phylo-
genetics, see Swofford et al. (1996). Nu-
merous effective methods exist for inferring
phylogenetic trees by using weighted least
squares. Felsenstein (1997) described how
this kind of optimization is performed in
the package PHYLIP; see also the recent pa-
pers by Makarenkov and Leclerc (1999) and
Gascuel (2000). Bryant and Waddell (1998)
and Makarenkov and Leclerc (1999) describe
how to compute optimal branch lengths for a
tree with �xed topology in the weighted case.

The procedure for computing the optimal
length l of a new hypothetical branch xy can
be adapted to the weighted least-squares ob-
jective function. As in the unweighted case,
the optimal solution can be obtained in poly-
nomial time relative to the number of taxa.

Some Properties of a Reticulation Distance

A reticulation distance is no longer a tree
distance. Figure 1 gives an example of a
reticulation distance not satisfying the four-
point condition characterizing phylogenetic
trees. The four-point condition is ful�lled if
the greatest two among the three possible
sums of distance are equal. This condition
holds for the tree distanc ± associated with
tree T (Fig. 1 left) but not for the distance
r associated with the reticulogram T C xy
(Fig. 1 right):

±(x,y) C ±(z,w) D 4; r (x,y) C r (z,w) D 4;

±(x,z) C ±(y,w) D 6; r (x,z) C r(y,w) D 3:5;

±(x,w) C ±(y,z) D 6; r (x,w) C r(y,z) D 5:

However, because the reticulation distance
is the minimum path-length distance in
a weighted graph, it satis�es the triangle
inequality.

Stopping Rules for Adding Reticulation
Branches

A reticulogram contains more branches
and consequently uses more parameters than
a (bi)furcating phylogenetic tree. As in all sta-
tistical models, including more parameters
means a better �t but a loss in simplicity and
robustness; we deal with this issue by using
a special cost criterion. In this subsection, we
consider two goodness-of-�t criteria to mea-
sure the improvement in �t when reticulation
branches are added to a tree. These criteria
take into account the least-squares loss func-

tion, which can be weighted or not, as well
as the number of parameters of the reticu-
logram. The minima of these criteria pro-
vide stopping rules for adding reticulation
branches when the exact number of branches
is unknown in advance, as is often the case
in biological applications.

The maximum number of branches one
might place into a reticulogram obtained
from a basic phylogenetic tree with n leaves
is (2n ¡ 2)(2n ¡ 3)/2. However, we know that
any metric distance can be represented by a
complete graph with n(n ¡ 1)/2 branches.
We can thus consider this last value the max-
imum possible number of branches in a retic-
ulogram. Consequently, the number of de-
grees of freedom of a reticulogram with N
branches may be de�ned as [n(n ¡ 1)/2] ¡ N;
accordingly, the �rst function we propose to
consider is the following:

Q1 D

qP
i2X

P
j2X(ri j ¡ di j )2

[n(n ¡ 1)=2] ¡ N

D
p

Q
[n(n ¡ 1)=2] ¡ N

: (5)

An interesting feature of this criterion is that
in our algorithm the function Q1 usually has
only one minimum over the interval [2n ¡
3, n(n ¡ 1)/2) of possible values of N. This
minimum may be used for stopping the ad-
dition of reticulation branches to the growing
reticulogram.

The least-squares loss function itself, in-
stead of its square root, may be considered as
an appropriate numerator for the goodness-
of-�t criterion. Q2 is a slightly modi�ed cri-
terion whose minimum is usually achieved
several iterations later than the minimum of
the function Q1.

Q2 D
P

i2X
P

j2X(ri j ¡ di j )2

(n(n ¡ 1)=2 ¡ N)

D
Q

(n(n ¡ 1)=2 ¡ N)
: (6)

As a consequence, the modi�ed criterion us-
ually requires adding more reticulation bran-
ches to the network than does criterion Q1.

During a Monte Carlo study described be-
low, we carried out an investigation to ex-
plore how many local minima the criteria
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Q1 and Q2 may possess over the interval
[2n ¡ 3, (2n ¡ 3) C 2N¤] of possible values
of N, where N¤ is the number of reticulation
branches yielding the �rst local minimum of
Q1 or Q2. The upper bound of (2n ¡ 3) C
2N¤ chosen for these simulations was likely
to contain the number of branches providing
the global minimum of Q1 or Q2. In addition
to the global minimum, criterion Q1 had lo-
cal minima only in 0.972% of cases (i.e., for
35 out of 3,600 basic phylogenetic trees on the
sets of 10, 20, and 30 taxa analyzed; see the
simulation study for more details), whereas
criterion Q2 had no local minima at all over
the observed interval of values of N. The ab-
sence of local minima for Q2 and the very
small percentage of appearance of local
minima for Q1 justi�es the usage of the
�rst minimum of these functions as a stop-
ping criterion for addition of reticulation
branches. In the section of practical exam-
ples, we will illustrate the application of stop-
ping rules Q1 and Q2 in real-world situations.

Another interesting stopping rule, which
will be used in the Monte Carlo simulations
(below), consists in adding to the phyloge-
netic tree several reticulations that provide
a given percentage of gain in �t, compared
with the least-squares loss Q of the unretic-
ulated tree. In the simulations, we explored
how many reticulation branches were added
by the algorithm to produce a 10%, 15%, or
25% gain in �t with respect to the unreticu-
lated tree.

Algorithmic Time Complexity

For an (n £ n) distance matrix, the al-
gorithm described above requires at most
O(kn4) time to add k reticulation branches to
the phylogenetic tree. The algorithm requires
at most O(n2) time to compute the optimal
length of a new hypothetical branch xy. Con-
sidering that the possible number of pairs of
nodes x and y not linked by a branch in a
reticulogram under construction is of the or-
der of n2, we conclude that the algorithm re-
quires O(kn4) time to place k branches onto
the reticulogram. However, in our simula-
tion study, the algorithm required on average
O(n) time to compute the optimal length of a
new branch xy. Consequently, in practice, the
overall time complexity of placing k branches
to the reticulogram is closer to O(kn3) than to
O(kn4).

Simulation Study

In carrying out simulations for the algo-
rithm described in the previous section, we
used the evaluation approach proposed by
Pruzansky et al. (1982) to compare phyloge-
netic tree-�tting algorithms, adapting their
strategy to test reticulogram reconstruction
algorithms.

Each simulated data set was obtained as
follows: First, an unrooted tree topology with
n leaves and 2n ¡ 3 branches was randomly
generated. For each such tree topology, the
length of each branch was selected at random
from a uniform distribution on the real inter-
val [0,1], leading to a phylogenetic tree T . A
tree distance t, corresponding to the obtained
tree T , was computed. To simulate a reticulo-
gram, we then placed in T a random number
(sampled from a uniform distribution on the
interval [1,n] of integers) of branches, with
random lengths selected as above. The lo-
cations of these branches were also selected
randomly. The reticulation distance matrix R
associated with the constructed reticulogram
R, computed by using minimum path-length
distances between pairs of taxa, was normal-
ized to have unit variance.

Normally distributed random errors
with mean 0 and variances ¾ 2 D f0:0, 0:1,
0:25, 0:5g were added to R to obtain repli-
cates of the distance matrix D. In the rare
cases where a negative value of d(x, y) arose,
it was replaced with the constant 0.01. We
carried out simulations with matrices of size
(10 £ 10), (20 £ 20), and (30 £ 30). Thus,
we effectively created “phylogenetic tree C
reticulation branches C noise” realizations.
Because our procedure does not guarantee
reconstruction of a true reticulogram when
the data are indeed reticulation distances,
we also carried out similar tests when the
random noise variance ¾ 2 was 0. For each
combination of values (n, ¾ 2), 100 data sets
were generated. The results reported in
Tables 1 and 2 are averages from 100 differ-
ent simulated distance matrices, for a total
of 3,600 simulated data sets in each table.

Because our method includes a method
for �tting phylogenetic trees as its �rst part,
we carried out a Monte Carlo investigation
involving three different tree reconstruction
methods that may be used to compute the ba-
sic phylogenetic tree structure and the asso-
ciated tree distance matrix D . The following
phylogenetic tree �tting methods were used:
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TABLE 1. Average proportions of variance of the distance matrices accounted for by the tree reconstruction
algorithms (columns V.Tree%) and the reticulogram reconstruction procedure (columns V.Ret%) for different
amounts of variance (¾ 2) of the random error. Larger values of V are better.

¾ 2 D 0:0 ¾ 2 D 0:1 ¾ 2 D 0:25 ¾ 2 D 0:5

n
Tree

algorithm V.Tree% V.Ret% V.Tree% V.Ret% V.Tree% V.Ret% V.Tree% V.Ret%

10 ADDTREE 94.49 97.18 87.82 91.95 84.17 88.22 75.88 80.98
10 NJ 94.58 97.20 88.06 92.09 84.27 88.26 76.09 81.03
10 MW 94.69 97.25 88.21 92.15 84.51 88.36 76.42 81.29
20 ADDTREE 89.56 94.61 83.12 88.55 76.74 81.85 66.77 72.40
20 NJ 89.44 94.52 83.36 88.54 76.82 81.86 66.61 72.28
20 MW 90.56 94.94 84.30 88.90 77.56 82.29 67.40 72.95
30 ADDTREE 87.28 93.47 81.72 87.07 72.29 78.48 63.17 69.26
30 NJ 87.44 93.49 81.69 87.02 72.10 78.31 63.00 69.15
30 MW 88.98 94.13 82.70 87.43 73.44 78.91 64.16 69.95

NJ, neighbor-joining; MW, method of weighted least squares.

the ADDTREE method of Sattath and
Tversky (1977);

the neighbor-joining method of Saitou and
Nei (1987); and

the weighted least-squares method of
Makarenkov and Leclerc (1999).

Goodness-of-�t was estimated by the fol-
lowing two quantities, computed for all sim-
ulated data sets:

1. The proportion of variance accounted for
by the phylogenetic trees or the reticulo-
grams, as expressed in Eq. 7, where m(d)
is the mean value in the upper-triangular
portion of the distance matrix D, and r is
the �tted reticulation distance (or the tree
distance):

Var% D 100 £
³

1 ¡
P

i j2X(di j ¡ ri j )2

P
i j2X(di j ¡ m(d))2

´

(7)

This quantity was computed for the tree
distance matrix obtained by using one

TABLE 2. Mean values of the goodness-of-�t criterion Q1 computed for the tree reconstruction algorithms
(columns Q1.Tree) and the reticulogram reconstruction algorithm (columns Q1 :Ret) for different amounts of variance
(¾ 2) of the random error. Smaller values of Q1 are better.

¾ 2 D 0:0 ¾ 2 D 0:1 ¾ 2 D 0:25 ¾ 2 D 0:5

n
Tree

algorithm Q1.Tree Q1.Ret Q1 .Tree Q1 .Ret Q1.Tree Q1 .Ret Q1.Tree Q1.Ret

10 ADDTREE 0.0484 0.0400 0.0845 0.0792 0.1034 0.1001 0.1384 0.1357
10 NJ 0.0480 0.0399 0.0837 0.0787 0.1031 0.0998 0.1379 0.1354
10 MW 0.0476 0.0397 0.0832 0.0782 0.1024 0.0993 0.1369 0.1342
20 ADDTREE 0.0275 0.0209 0.0380 0.0336 0.0479 0.0451 0.0623 0.0600
20 NJ 0.0275 0.0211 0.0378 0.0336 0.0478 0.0451 0.0625 0.0601
20 MW 0.0262 0.0203 0.0368 0.0331 0.0471 0.0446 0.0617 0.0594
30 ADDTREE 0.0186 0.0137 0.0245 0.0215 0.0322 0.0295 0.0405 0.0386
30 NJ 0.0184 0.0137 0.0245 0.0216 0.0323 0.0296 0.0406 0.0387
30 MW 0.0172 0.0130 0.0238 0.0213 0.0314 0.0292 0.0400 0.0382

NJ, neighbor-joining; MW, method of weighted least squares.

of the three above-mentioned tree-�tting
methods (columns V.Tree% in Table 1) as
well as for the reticulation distance pro-
vided by our algorithm (columns V.Ret%
in Table 1). The procedure of adding retic-
ulation branches was stopped when k new
branches had been placed onto the tree
network, where k is the random number
of reticulation branches in the true reticu-
logram generated before adding noise.

2. The criterion of goodness-of-�t Q1 (Eq. 5),
which takes into account the least-squares
loss as well as the number of degrees of
freedom of a reticulogram (or tree) with N
branches. The quantities Q1.Ret reported
in Table 2 represent the averages of the
minimum values of this function achieved
on the interval of integer values [1 : : : k],
where k is a random number of reticula-
tion branches placed in the true reticulo-
gram before adding the noise. The same
quantities were also computed for all the
basic phylogenetic trees and reported in
the columns Q1.Tree of Table 2.
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The Monte Carlo simulations lead to the
following observations:

1. The better the �t provided by a tree re-
construction method, the closer the retic-
ulation distance was to the generated dis-
tance. This observation remains true for
the �t measured either by the percent-
age of variance accounted for (Table 1)
or by the goodness-of-�t criterion Q1
(Table 2). In these simulations, the
weighted least-squares tree reconstruction
method generally provided a better �t
than the neighbor-joining and ADDTREE
methods, which gave results very similar
to each other.

2. For any considered combination of pa-
rameters (n, ¾ 2), reticulograms always
provided better average values of the
goodness-of-�t criterion Q1 than did phy-
logenetic trees, regardless of the basic tree
reconstruction method (Table 2).

3. The smaller the noise or the size of the dis-
tance matrix, the better the percentage of
variance accounted for (Table 1) and the
criterion of goodness-of-�t Q1 (Table 2) for
the tree reconstruction methods and the
reticulograms.

Further simulations were carried out to
investigate the behavior of the algorithm
for trees that did not contain reticulation
branches. No reticulation branch should be
added when the data consist of unreticulated
additive trees without error. In the presence
of error, however, we can expect some reticu-
lation branches to be formed, as in the type I
error of statistical tests.

Random trees, with n D f10, 20, 30g, were
generated as described above, and the cor-
responding patristic distance matrices were
computed. Normally distributed random
errors were with mean 0 and variances ¾ 2 D
f0:0, 0:1, 0:25, 0:5g. No reticulation branches
were added to the trees. We �tted a tree
by the method method of weighted least
squares, followed by reticulation analy-
sis. We calculated how many reticulation
branches were necessary to obtain a gain
in adjustment (measured by coef�cient Q,
Eq. 3) of 10%, 15%, and 25%, compared with
the least-squares coef�cient Q obtained for
the �tted tree.

Simulation results for 100 random trees
(Table 3) con�rm that no reticulation bran-
ches were added by the algorithm when an-
alyzing error-free data (¾ 2 D 0:0). In the case

TABLE 3. Mean number of reticulation branches, in
100 simulations for type I error, needed to obtain a gain
in �t (measured by the least-squares coef�cient Q) of
10%, 15%, and 25%, compared with the least-squares
coef�cient Q of the �tted tree.

n ¾ 2 D 0:0 ¾ 2 D 0:1 ¾ 2 D 0:25 ¾ 2 D 0:5

Gain in �t: 10%
10 0.00 1.66 2.59 2.93
20 0.00 4.08 4.71 5.24
30 0.00 8.05 9.09 10.73
Gain in �t: 15%
10 0.00 3.21 4.23 5.40
20 0.00 6.99 8.37 10.23
30 0.00 14.14 16.64 20.92
Gain in �t: 25%
10 0.00 8.27 12.20 14.73
20 0.00 16.81 21.15 25.78
30 0.00 29.00 29.91 30.00a

aThe maximum number of reticulation branches allowed in
this simulation study was 30.

of trees to which error had been added (¾ 2 D
f0:1, 0:25, 0:5g), the number of reticulation
branches necessary to produce preselected
increases in �t depended on the number of
leaves n and the amount of error ¾ 2 added to
the patristic distance matrix of the random
tree. The number of “false reticulation
branches” added to the tree by the algorithm
in the case of noisy data increased with
increasing n and with the amount of noise in
the data. These results indicate that if reticu-
lation analysis is used with unreticulated but
noisy data, the method is likely to produce
reticulation branches that represent incom-
patibilities because of the noisy nature of the
data.

EXAMPLES

We will now explore how the reticulation
method works in practice, using examples
from biogeography, population microevolu-
tion, and hybridization.

Example 1: Postglacial Dispersal Routes
of Freshwater Fishes

Methods designed for inferring phyloge-
netic trees can sometimes help reconstruct
biogeographic history. This is the case when a
tree-like structure of geographic dispersal is
sought, describing the invasion of an area by
a group of species. Most methods of phylo-
genetic reconstruction assume that different
branches of the tree evolved independently
from one another, thus preventing reticu-
late interactions between branches after their
point of splitting-off. This assumption is
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unrealistic in many biogeographic problems.
Considering a general network model es-
tablishing extra relationships between ob-
served territory units would allow one to
identify and represent potential reticulate
interactions.

Legendre and Legendre (1984) used
present-day data on �sh fauna to reconstruct
plausible routes taken by freshwater �shes to
reinvade the Québec peninsula after the last
glaciation. The Laurentide Ice Sheet retreated
from the peninsula from about 14,000 years
to 5,000 years ago. The presence or absence
of 109 species in 289 pixels (1±-square map
units) was analyzed. The territory under
study was divided into 21 regions by spa-
tially constrained clustering of the 289 pixels,
based on a matrix of Sørensen similarity coef-
�cients among pixels computed from the �sh
presence–absence data. These larger territory
units are numbered 1 to 21 in Figure 3. The
Sørensen coef�cient, a similarity measure
for species presence–absence data, is widely
used in ecology to compare sites or regions.
Spatially constrained clustering is a cluster-
ing method whereby a map containing oper-
ational geographic units (OGUs) character-
ized by multivariate data can be divided into
regions containing contiguous OGUs (see
Legendre and Legendre [1998] for details).

Using the presence–absence of the
85 stenohaline (i.e., restricted to fresh wa-
ter) species only, Legendre (1986) applied
several methods of phylogenetic analysis to
reconstruct the postglacial dispersal routes.
Among them, a Camin–Sokal phylogenetic
tree (Camin and Sokal, 1965) was �tted to
a matrix of the �sh presence–absence in
the 21 territory units (Fig. 3). When �sh
reinvaded the Québec peninsula at the end
of the last glaciation, the root of the tree,
represented by the glacial refugia (Hudson
and Mississippi rivers), was hypothesized
to have contained all 85 stenohaline species
presently found in the peninsula—except
Moxostoma hubbsi (Legendre, 1942), the only
species of vertebrate endemic to Québec;
that species appeared in the Saint Lawrence
River and some af�uents since the last
glaciation. As the �sh assemblage moved
north and east, using river pathways, it
could only lose species along the way; it
could not recreate them. The Camin–Sokal
parsimony method mimics this process in
that reversals are not permitted to occur
during tree reconstruction. The “ancestral

state,” found in the root of the tree, was
thus the presence of a species; the “derived
state” was taken to be the absence of a
species in >50% of the pixels of a territory
unit. The branches of the Camin–Sokal tree
are represented by solid lines in Figure 3;
internal nodes are numbered 23 to 42.

This, of course, was a simpli�ed view. Bio-
geographic reticulation events most proba-
bly occurred, with �sh species reaching re-
gions through alternative river pathways.
This is why the reticulogram (below) ex-
plains the reinvasion process better than the
Camin–Sokal tree.

For the present analysis, the presence–
absence data were transformed into a metric
distance matrix by using the Jaccard coef�-
cient. This matrix served �rst to �nd the op-
timal branch lengthsof the Camin–Sokal tree,
whose topology was taken from Legendre
(1986), and second to transform the phyloge-
netic tree into a reticulation network. Retic-
ulation branches (dashed lines) were added
to the tree by using a spatially constrained
form of our algorithm, that is, with the con-
straint that reticulation branches could only
be drawn between adjacent territory units.
Territory units that touch each other by even
a single point in Figure 3 were considered
adjacent.

The total sum of squares (total SS) in the
Jaccard distance matrix was 5.487 before �t-
ting the tree; after �tting the tree, the resid-
ual SS was 1.660. This result means that the
41 branches of the tree together explained
3.828 units of SS, or 0.0934 unit per branch
on average. Compare this value to the con-
tributions to SS of the nine reticulation
branches added to the tree, which together
explained 0.249 units of SS—from 0.0387
for the �rst reticulation branch (the 17–
37 link) to 0.0164 for the ninth reticulation
branch (the 12–13 link). By adding nine new
branches to the phylogenetic tree, the value
of the least-squares loss function Q was re-
duced from 1.660 to 1.410. The minimum val-
ue of the goodness-of-�t criterion Q1 (Eq. 5)
was reached at that point, having decreased
from 0.00678 (without reticulation branches)
to 0.00656 (with nine reticulation branches).
Although the phylogenetic tree well rep-
resents the major thrust of the postglacial
�sh dispersal in the Québec peninsula
(3.828 units of SS for 41 branches), the reticu-
lation branches that were added (0.249 units
of SS for 9 branches, or 0.0277 units per
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FIGURE 3. Map of the Québec peninsula divided into 21 biogeographic regions linked by a Camin–Sokal tree
(thick solid lines) depicting possible postglacial dispersal routes for stenohaline freshwater �sh species; reticulation
branches (dashed lines) were added to that tree.
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branch) represent a nonnegligible fraction of
the similarity that was not represented by the
phylogenetic tree. They correspond to �sh
migrations between neighboring territory
units, using the river network, as explained
in more detail by Legendre and Legendre
(1984).

Example 2: Microgeographic Morphological
Differentiation in Muskrats

Le Boulengé et al. (1996) studied the dif-
ferentiation in cranial morphology of local
populations of muskrats (Ondatra zibethicus)
in a river network in southern Belgium near
the French border. Muskrats are semiaquatic
rodents introduced from North America into
Europe in 1905 by Prince John of Bohemia as
a valuable fur-bearing animal. In Belgium,
they were released in nature in 1928 (Van
Wijngaarden, 1955). Muskrats colonized the
La Houille River network during the 1950s
and exchanged genes among local popu-
lations until eradication during a trapping
campaign carried out between October 1971
and February 1972. The part of the study
that concerns us here includes nine local
populations of muskrats found in a 50 km2

area, inhabiting ponds scattered along the
tributaries of River La Houille. The ob-
served variability was attributed to a socio-
biological mechanism called isolation by dis-
tance along corridors, a model for which Le
Boulengé et al. (1996) have presented a de-
tailed behavioral justi�cation. They statisti-
cally tested 10 predictions originating from
this model and involving morphological and
geographic distances among the local pop-
ulations of muskrats. The Mahalanobis dis-
tance was used to quantify the morphologi-
cal distances among local populations, based
on 10 age-adjusted linear measurements on
skulls (mandible and cranium) (Table 4).

The river network (Fig. 4) is taken to rep-
resent an unrooted tree-like network corre-
sponding to the main dispersal routes for
muskrats among local populations. We used
the age-adjusted Mahalanobis distance ma-
trix among the nine populations to �t dis-
tances to the branches of the tree (Table 5).

Reticulations branches were added to the
tree. Table 6 reports the contribution of each
new reticulation branch to the reduction
of the least-squares criterion Q (right-hand
column). The minimum of the goodness-of-
�t function Q2 (Eq. 6) indicates that only

the �rst four reticulation branches should be
added (Fig. 5). The total sum of squares in the
Mahalanobis distance matrix was 18.72 be-
fore �tting the tree. After �tting the tree, the
residual SS was 3.420; that is, the 15 branches
of the tree (Table 5) together explained
15.300 units of SS, or 1.02 unit per branch.
Compare this result to the contributions to SS
of the four �rst reticulation branches: 0.800,
0.438, 0.162, and 0.122 (Table 6). Those values
are not negligible: the four reticulation bran-
ches help in an important way to explain
the morphological distances among the local
populations of muskrats.

Although the local populations were in
general isolated from one another by forested
areas crossed by small swift-water creeks,
some (Zones M and Z on the one hand, and
M and C on the other) were separated from
each other by only short strips of swampy
area; muskrats could readily move between
these zones. For that reason, local popula-
tions M and Z were not included in the anal-
ysis of Le Boulengé et al. (1996) but they are
included in the present study because they
offer opportunities for reticulation branches.
The headwaters of Zones N and O are also
very close to each other, although the inter-
vening area is forested. Three of the four retic-
ulation branches proposed by the algorithm
are between these neighbor areas: Zone M
and node 10 (adjacent to Zone C), M and
Z, and N and O. Gene exchange between
these areas was expected but could not be
expressed correctly by a nonreticulated net-
work model. A fourth reticulation branch is
identi�ed between Zones J and N; it is not ex-
plained by geographic proximity and it thus
presumably results from preferential migra-
tion along the river network, founder effect,
genetic drift, or other chance mechanism.

Example 3: Phylogenetic Analysis
of Aphelandra and Hybrids

In 1992, McDade published an analysis
of a unique data set consisting of 50 mor-
phological characters (coded into two to six
states) measured over 12 species of Central
American Aphelandra (perennial plants of the
Acanthus family) and a series of 17 hybrids
of known parental origin. The characters are
described in McDade (1990: Appendix B).

We tried to reproduce the trees presented
by McDade (1992), using the methodology
described in that paper, but failed, perhaps
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TABLE 4. Lower triangular Mahalanobis distance matrix for nine local populations of muskrats of the La Houille
River basin, based on 10 age-adjusted linear measurements taken on skulls, for a total of 144 individuals (Le Boulengé
et al., 1996: Table1). This distance matrix is not reported in full in that paper; it was provided to us by EricLeBoulengé,
Université Catholique de Louvain, Belgium, whom we gratefully acknowledge.

Population
zones C E J L M N O T Z

C 0.0000
E 2.1380 0.0000
J 2.2713 2.9579 0.0000
L 1.7135 2.3927 1.7772 0.0000
M 1.5460 1.9818 2.4575 1.0125 0.0000
N 2.6979 3.3566 1.9900 1.8520 2.6954 0.0000
O 2.9985 3.6848 3.4484 2.4272 2.6816 2.3108 0.0000
T 2.3859 2.3169 2.4666 1.4545 1.7581 2.2105 2.5041 0.0000
Z 2.3107 2.3648 1.8086 1.6609 2.0516 2.2954 3.4301 2.0413 0.0000

because the data table has been updated by
McDade since her 1992 paper; that certainly
was the case for the ancestral states, which
were stated for all characters in McDade
(1990: Appendix B), whereas the data table
she sent us contained six unknown states for

FIGURE 4. Schematic representation of the upper La Houille River network in Belgium, showing the nine muskrat
population zones (terminal nodes identi�ed by letters), the inner nodes (numbers), the tree branches (thick solid
lines) and the reticulation branches (thick dashed lines). Node number 10, which sits on a river segment, is repre-
sented by an ellipse. Geographic coordinates of the area are given near the border of the map.

the hypothesized ancestor. We proceeded as
follows: First, a matrix of simple-matching
similarity coef�cients (S) was computed
among the species subjected to the analysis
and was transformed into a distance matrix
by using the transformation D D (1 ¡ S)0:5.
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TABLE 5. List of branches and their lengths in the
phylogenetic tree (represented by solid lines in Fig. 4).

Branch Branch length Branch Branch length

10–E 1.041 12–16 0.242
11–J 0.940 12–15 0.000
12–L 0.480 15–T 0.743
13–O 1.851 10–C 1.169
14–M 0.650 10–11 0.051
13–15 0.093 11–16 0.044
13–14 0.000 16–Z 0.624
14–N 0.814

The missing values in the data—six in the
Ancestor and nine in each of the GOxLE and
PAxLE hybrids—were handled by pairwise
deletion during calculation of the similarity
coef�cient. We then reconstructed a phyloge-
netic tree, using the neighbor-joining method
(Saitou and Nei, 1987), and added reticu-
lation branches to the tree as described in
the present paper. Addition of reticulation
branches stopped when criterion Q1 (Eq. 5)
reached its minimum value.

The reconstructed tree (Fig. 6a) was fairly
similar to the tree reported by McDade
(1992: Fig. 1), the three main clades being
identical. The total sum of squares in the dis-
tance matrix was 2.340 before �tting the tree,
whereas after �tting the tree, the residual SS
was 0.121; this result means that the 23 edges
of the tree together explained 2.219 units
of SS, or 0.096 unit per branch on average.
In comparison, the �ve reticulation bran-
ches added to the tree explained together
0.048 units of SS—from 0.016 for the �rst
reticulation branch (the 18–STOR link) to
0.004 for the �fth reticulation branch (the

TABLE 6. List of new branches with their lengths for the �rst 10 iterations of the algorithm. Q is the least-squares
loss function, Q2 D Q/[n(n ¡ 1)/2] ¡ N is the goodness-of-�t function; the minimum is reached at iteration 4 (bold).
Theright-hand column gives the contribution of each reticulation branch to the minimization of the sum of squares Q.
The �rst four reticulation branches are represented by dashed lines in Figure 4.

Iteration Branch Branch length Q Q2 Contribution to SS (Q)

0 3.420 0.1629
1 N–O 1.770 2.620 0.1310 0.800
2 M–10 0.678 2.182 0.1148 0.438
3 J–N 1.729 2.020 0.1122 0.162
4 M–Z 1.048 1.898 0.1117 0.122
5 O–T 2.466 1.850 0.1156 0.048
6 C–J 1.948 1.805 0.1203 0.045
7 L–Z 1.137 1.761 0.1258 0.044
8 E–T 1.933 1.726 0.1328 0.035
9 L–T 1.067 1.702 0.1418 0.024

10 E–Z 1.608 1.679 0.1526 0.023

FIGURE 5. Behavior of (a) the least-squares function
Q and (b) the goodness-of-�t criterion Q2 for the �rst
10 iterations of the reticulogram reconstruction algo-
rithm applied to the Mahalanobis distance matrix from
Table 3. Abscissa: number of iterations of the algorithm.
Zero corresponds to the phylogenetic tree before reticu-
lation edges were added. The minimum value of Q2 was
reached at iteration 4.



2002 LEGENDRE AND MAKARENKOV—RETICULOGRAMS 213

FIGURE 6. Reticulation analysis of McDade’s Aphelandra data (a) for the 12 Aphelandra species and (b)–(d) for
the same species plus one hybrid in each case (indicated in bold). Dashed lines: reticulation branches added to the
tree (bold dashed lines: reticulation branches connecting to hybrids). Branches are not drawn to be proportional
to the trees’ branch lengths. Species name abbreviations: CAMP D Aphelandra campanensis; DARI D A. darienensis;
DEPP DA. deppeana (formerly called A. scabra, and abbreviated SC in McDade’s 1992paper); GOLF D A. golfodulcensis;
GRAC D A. gracilis; HART D A. hartwegiana; LING D A. lingua-bovis; LEON D A. leonardii; PANA D A. panamensis;
SINC D A. sinclairiana; STOR D A. storkii; TERR D A. terryae; Ancestor D hypothesized ancestor. For hybrids, the
abbreviations are constructed as follows: The �rst two letters of the ovulate parent’s species name are followed by
the �rst two letters of the staminate parent’s name. For example, DEXSI D DEPP (ovulate) £ SINC (staminate).

SINC–STOR link)—or 0.010 units of SS per
reticulation branch on average. By adding
�ve reticulation branches to the phyloge-
netic tree, the value of the least-squares loss
function Q was reduced from 0.121 to 0.073,
corresponding to a 40% reduction of the
residual SS of the tree. The least value of the
goodness-of-�t criterion Q1 was reached at
that point, having decreased from 0.00634

(without reticulation branches) to 0.00541
(with �ve reticulation branches).

The data set of 12 species was reanalyzed
together with the DEXSI hybrid (Fig. 6b). The
ovulate parent species, SINC, was the sister-
group of the hybrid in the tree. The stami-
nate parent, DEPP, was linked to the hy-
brid by a reticulation branch, indicated in
bold, which actually connected to node 15,
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containing DEPP and PANA. The �ve retic-
ulation branches present in Figure 6a were
also found in Figure 6b, with little change.
The Ancestor–LEON reticulation branch was
moved to a higher node in Figure 6b,
whereas the branch joining nodes 14 and
23 was moved to a lower position in the
tree.

The GOXLE hybrid is found near the ovu-
late parent GOLF in Figure 6c and is linked
to node 18 by a reticulation branch to which
the staminate parent LEON is connected. The
�ve other reticulation branches are identical
to those in Figure 6a.

The PAXLE hybrid is found near the stami-
nate parent LEON in Figure 6d, and it is
linked to the ovulate parent PANA by a retic-
ulation branch. The �ve other reticulation
branches are identical to those in Figure 6a.

This example shows that hybrids may be
identi�ed by reticulation analysis. In each
of these examples, the tree reconstruction
method placed the hybrid near one of the
parents in the tree, and the reticulation anal-
ysis linked it to the other parent by a reticula-
tion branch. The other reticulation branches,
which were present in all trees (without and
with hybrids), display other features of the
similarity, possibly homoplasy. Their posi-
tions were not much affected by the presence
of hybrids in the analysis.

DISCUSSION

We propose a new method for reconstruct-
ing reticulation networks from empirical
distance matrices. We recommend its use in
phylogenetic problems in which researchers
suspect hybridization or wish to represent
homoplasy in the data, and in biogeographic
or microevolutionary problems in which a
network is sought to represent the data. Start-
ing with a phylogenetic tree, which pro-
vides an initial �t for a distance matrix,
the algorithm improves on the tree solu-
tion by adding reticulation branches to the
growing network. The method uses least
squares or weighted least squares, placing
optimally, during each iteration, a new retic-
ulation branch onto the reticulogram un-
der construction. The network inferred from
a distance matrix of size n £ n may have
from n C 1 to 2n ¡ 2 nodes, depend-
ing on the topology of the phylogenetic
tree reconstructed in the �rst part of the

method, and from n to (2n ¡ 2)(2n ¡ 3)/2
branches in total. Such a structure, which
comprises intermediate nodes, should pro-
vide a better �t to the distance matrix
than will a phylogenetic tree. Note that
each reticulation branch added by our algo-
rithm represents a contradictory signal for
which the phylogenetic tree reconstruction
method has had to �nd compromises. The
greater the number of extra branches added
to a tree during reticulation analysis, the
more con�icting features the original tree
encompassed.

In different biogeographic or phylogenetic
contexts, new reticulation branches may
have different interpretations. In example 1,
we showed that reticulation branches can
represent migration routes among territory
units that cannot be depicted by a phyloge-
netic tree. The reticulation network allowed
us to link adjacent geographic areas pos-
sessing similar species assemblages and
formulate new hypotheses about species
migration routes. In example 3, reticulation
branches linked hybrids to parent species,
which happened to be known with certainty
in that case.

Reticulograms can be of great interest in
the study of bacterial evolution through lat-
eral gene transfer, hybridization of eukary-
otes, microevolution, and homoplasy, exam-
ples of which we give in a separate paper
(Makarenkov and Legendre, in prep.). In a
special journal section dedicated to retic-
ulate evolution, Lapointe (2000), Legendre
(2000b,c), Rohlf (2000), Smouse (2000), and
Sneath (2000) described several applica-
tions for reticulation networks. Testing our
method in each of these �elds and provid-
ing plausible interpretations for reticulation
branches should be of great interest for the
development of evolutionary theory; we are
making our computer program available to
researchers to encourage them to carry out
such studies. In each case, the interpreta-
tion should be based on the fact that any
new reticulation branch linking two par-
ticular species indicates that the connected
species are more closely related, or more
similar for some other reason, than can be
represented by a (bi)furcating phylogenetic
tree. In somecases, reticulation branchesmay
depict homoplasy (an example is given in
Makarenkov and Legendre, 2000). Or they
may represent possible hybridization or



2002 LEGENDRE AND MAKARENKOV—RETICULOGRAMS 215

mutation events that occurred during evolu-
tion, or suggest that connected species could
have a common ancestor. Examples of these
cases remain to be explored.

A Monte Carlo study supported the supe-
riority of reticulograms, using the criteria de-
scribed in this paper, over phylogenetic trees
for �tting reticulated data. The algorithm
proposed in this paper remains, however, a
heuristic strategy to approximate a distance
matrix by a reticulogram with a �xed num-
ber of nodes; it does not guarantee an optimal
solution. The resulting reticulogram depends
heavily on the phylogenetic tree from which
the reticulation network reconstruction algo-
rithm starts; different initial trees may lead
to different sets of reticulation branches. The
present algorithm could be improved by re-
arranging the reticulogram topology during
each iteration or by removing and replacing
some branches. This will be the subject of
another paper.

The heuristic algorithm for reconstructing
reticulation networks described in this paper
has been included in the T-REX package
developed by Makarenkov and Casgrain
(2000) (see Makarenkov, 2001). In addition
to reticulation analysis, the T-REX program
includes some popular phylogenetic tree-
�tting algorithms: ADDTREE of Sattath and
Tversky (1977), neighbor-joining of Saitou
and Nei (1987), unweighted neighbor-
joining of Gascuel (1997), the method of
weighted least squares of Makarenkov and
Leclerc (1999), and others. It is available
as freeware to the research community at
URL <http : ==www:fas:umontreal:ca=biol=
casgrain=en=labo=t-rex=>. T-REX allows
users to visualize tree and reticulogram
structures but does not map individual
characters on trees or reticulate phylogenies.
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