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Abstract

It has been postulated tha&xisting species have been linked in past in a waythat can be
described using an additive tree structure. Any such tree structure reflecting species relationships is
associated with a matrix of distances between the species considered and called a distance matrix or
a tree metrianatrix. A circular order of elements ofX corresponds to aircular (clockwise)
scanning otthe subsetX of vertices of a tredrawn on a plane. Thigaper describes asptimal

algorithm using circular orders tocompare thetopology of twotrees given by their distance
matrices. This algorithnallows us tocompute theRobinson andFoulds topologic distance
between two trees. It emplogsgcularordertree reconstruction to compute ardered bipartition

table of the tree edges for both given distance matrices. These bipartitioratabilesn compared

to determine th&obinson and~ouldstopologic distanceknown to be anmportant criterion of

tree similarity. The described algorithiasoptimal timecomplexity, requiringO(n?) time when
performed on twaxn distance matrices. ttan be generalized to get another optialgbrithm,
which enablesghe strictconsensusree of k unrooted treesgiven their distance matrices, to be

constructed itO(kr?) time.
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Introduction

A tree is a formalstructure of the representation of tpeocess of evolutionThe leaves
represent the speciasider study,the interior nodes representirtual ancestors andhe edges
represent the evolutionary events. In biology this tree is calfgtylagenetic treeor anadditive tree
if tree edges havehe valuations.The principal goal of phylogenetic reconstruction is to infer an
additive treefrom imperfect contemporarglata, which do not correspordirectly to anytree
topology. Consequently, we shouldtilize an available fiting method to obtain thdata
corresponding to an additive tree.

It is important to be able to compare trees obtained from the observed real data because different
fitting methods may provide different trees eventh@ same initial dataet. Whentwo datasets are
consideredihe knowledge ofthe comparativéndices, like the Robinson and-oulds distance, for
example,can give ussome ideas abotite similarity or dissimilarity of the evolutionagrocesses

corresponding to these data.

Zaretskii (1965), Buneman(1971), Patrinosand Hakimi(1972) and Dobson (1974)ave
provedthat adissimilarity d corresponds to aadditive tree ifand only if the following statement
holds: foreachfour elements, j, k, | of X, we haved(i,j) + d(k,l) < max {d(i,k) + d(j,l); d(,l) +
d(j,k)}. Moreover, this additive tree is unique consideringract definition of additive treesee the

next section). A dissimilaritg fulfilling the above inequality igalled atree metric. Severaloptimal

algorithms, withtime complexity O(n?) for an nxn matrix, for reconstructing amdditive tree
corresponding to a giveinee metricmatrix, have beeproposed irthe literature. Among thevorks
addressing this problenthe paper of Watermarmt al. (1977) introducingthe first optimal
reconstruction algorithm as well as its modifiegrsion, presented by Hein (1989) the case of
binary trees, which také3(nlogn) time, should be mentioned.

Another type of tree reconstructigorocedure consists oélgorithms based orcircular

(diagona) orders A circular order of elements &fcorresponds to a circular (clockwise) scanning of
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the subsetX of vertices of a tredrawn on a planeThe first tree reconstruction algorithmssing
diagonal and circular orders were independgmthposed byChaikenetal. (1983) and Yushmanov
(1984) respectively. IiMakarenkov and_eclerc (1997), we provedhat the diagonaand circular
ordersintroduced in thewo above-mentioned articles are indeed the sameadsw suggested a
manner in which they may be applied to greblems oftree metricrecognition and fitting of #&ree

metric to a given dissimilarity.

The Robinsonand Foulds topologicdistanceis an important and frequentlysed tool to
compare additive (phylogenetic) tree structures (see for instance Robinsbaudaisl (1981) Saitou
and Nei(1987), Gascuel and Lévy1996), Gascuel1997), Makarenkov and.eclerc(1997)). This
distance is equal to the minimum number of elementary operations, consisting of merging or splitting
nodes, necessary to transform one tree into the other. As proved in Robinson and Foulds (1981), it is
also the number of bipartitions, or Buneman'’s splits (1971), whebbng toexactlyone of the two
trees. If we deal with two unrooted trees having no internal veftibeted according to the elements
of X, the Robinson and Foulds distance on th&Xsgtn elements varies between(Whenthe trees
are isomorphic) and 26 (whenall non-trivial bipartitions intwo trees are different; drivial
bipartition corresponds to an edge incident tead), whereasthe maximum value of thRobinson
and Foulds topologic distance between two unrooted trees allowing internal vertices labeled according
to elements 0K, is equal to B-6 (for the demonstration see Robinson and Foulds (1981)).

An optimal O(n) time complexity algorithmfor computing theRobinson and-ouldstopologic
distance betweetwo trees,given by theirpostorderediree representatioPSW) introduced in
Standish (1980), has been proposed by Day (1985). In the same paper this algoritienenazed
for computing thestrict consensudree of k trees inO(kn) time. Day’s algorithms first transform a
PSW table representations into a special cluster representationviiaimthe Robinson and-oulds
topologic distance and the striconsensustree can be computed by means of a sufficiently

complicated but optimal, regarding the time required, procedure.



Obviously, onlythetopology of an additiveree is meaningfulvhen computing comparative
indices, as for example the Robinson and Foulds distartbe strictconsensus tre@nd the values
of edge lengths are not ahportance. Bubften, forinstance after performing a heuristic fitting
algorithm or bootstrap and jackknife validation procedures, we hadeatwith tree metric matrices
and not with tree structures encoded by tREW representations, nbipartition matricesnor lists
of vertices and edges.

In fact, there ardwo ways for computing theRobinson and~oulds distance between two
trees given by their tree metric matrices on theXs#tn elements. Thérst proceeds by transforming
each oftwo matrices into bipartition tablewhich can be compared line by line order todetect
matchingclusters. It is without doulthe easiest and thmost popular approach to compute the
Robinson and Foulds distance and the strict consensus tree, as well asetbemparative indices

known in the literature. However, such an approach is not optimal because corparigartition

matrices (not specially ordered) tak®®?3) time. Thesecond wayo compute the distanahould be
optimal for time complexity, but toocomplicatedfor implementationdue to the three different
algorithms involved. First, starting from twogiven distance matrices we can infer the two
corresponding trees unddre form of their edgelists. It can bedone usingWaterman’set al
algorithm, for instance. Second, algorithm for transforming aredge list into aPSW table or
directly into Day’s cluster table should be implemented. Such an algorithm is not likely to exist in the
literature and should be sophisticated. Third, Day’s linear time complexity algorithm can be applied to

these transformed data to compute Robinson androulds distance. Such approach wouldead

to the optimalO(n?) time complexity procedure but is very difficult to implement in practice.
In this paper we propose anothegly to compute theRobinson androuldstopologic distance
between two trees given by their tree metric matrices as well as the strict consensus tieesoand

other tree comparativimdices. Thus, wentroduce an optimatime complexity algorithm, taking

O(n?) time to compute theRobinson and-oulds distance betweetwo trees andO(kr?) time to
compute the strict consensus tre& tiees, when applied to<n tree metriamatrices. Thisalgorithm
using the combinatorial properties of circutaders, allows fothe construction of specially ordered
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bipartition tables for each tree metric considered. An interesting featstetofables is thaany two

of them can be compared®{n?) time to detect matching clusters.

We begin this paper by recalling some necessary definitions followed by the presentation of the
algorithm (Algorithm 1) providing a circulasrder ofelements ofX given a treanetric matrix. This
algorithm isdiscussed imgreater detail ilYushmanov (1984) anilakarenkov and.eclerc (1997).

We alsorecall Yushmanov’s result establishirtigat an additive tree can be encoded Isequence,
defined through a circular order of elementXpbf 2n-3 distances between isaves. Furthermore,

the entire additive tree can be inferfedm such a sequence @(n) time (see Makarenkov and
Leclerc (1997) for a demonstration). Algorithm 1 is then used as a base for the design of Algorithm 2,
which computes the Robinson and Foulds distance between two togesnal time. Thisalgorithm

is then generalizetbr computationstill in optimal time, of some other usefutee comparative

indices as well as the strict consensus tree.

Circular orders and their application for encoding and reconstructing of additive

trees

Let X be a set witm elements. Aree metricon X is a non-negative real functi@hon XxX

satisfying the following conditions: for atl y, z, w [0 X, d(x,y) = d(y,x), d(x,y) = 0 if and only if

x =y, andd(x,y) + d(z,w) £ max{ d(x,2) + d(y,w) , d(x,w) + d(y,2) }.

A graph G on a finitevertex seV(G) is a pairG = (V(G),E(G)), whereE(G), the set of the
edgef G, is a subset of the s¥(G)@ of all unordered pairs afistinct elements ofs; an edge is

denoted hergv'. Thedegreeof a vertexv is the number of edged] E(G) such thav [J e. A leafis

a vertex of degreene. The elements ofV(T)-X are theinterior vertices In a graphG, a path P

between two verticesandVv' is a sequence of edges;, ViV,,..., Vi1V, VV'. If, in the previous
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definition,v = V', thenP is acircuit of G. The graphG is connectedf thereexists a path between
andv' for any pairv, v' of distinct vertices 06G. The graphG is atreeif it is connected antias no
circuits. A treel = (V(T),E(T)) has exacti(T)|-1 edges; there is a unigpath, denotedT(vv’), or
(vv) when there is no risk of ambiguity, between any two distinct vertiaeslv' of a tree.

An additivetree (valuedtree) is an ordered paify = (T,/), whereT is a treeand/ is a non-
negative realengthfunction on the edge si{T) of T. The distancdist(v,Vv') between two vertices

andv' of T is equal to} e(1T(vv) 4(€); it defines aree metric. According to avell-known result

recalled in the introduction, any tree metric>onl V(T) corresponds to a positively valued tree.

Let Ux denote the set afnrooted additivdrees, some of whoseertices are labeled by the
integers in the seX = {1,...,n}; moreover,all leaves andill interior vertices of degreavo are

always labeled by the elementsXofEach element dfi is associated with an unique distance matrix
d of dimensionsxn. In such a matrix every labeled vertex is associated withramécolumn) and

the valued(i,j) corresponding to the paijrj of elements oK is equal to the distance between vertices
i andj in the tree.

Two optionsare retainedhroughoutthe papeffor the choice of alassUyx of additive trees
providing unicity of the tree representation of any tree mdtidiet L(T) be the set of the leavesTf
Option1: a treeTl of Uy has no edges of null length.

Option2: no interior vertex of a trekof Ux has degree 2 anki=L(T).

To obtain a tred’ of Option 2 typerom atree T of Option 1ltype, one can merely replacach
interior vertexx [J X of degree 2 (if any) by a new interior verteand an edgax of null length.

In both cases, dree of Ux has at most ri22 vertices and 23 edges,these numbers
corresponding to the non-degenerate cabin@ay treg where all the elements Xfare leaves and all

the interior vertices have degree 3. Hntculation point a(x) of x [J X is the vertex adjacent to



(that isvx O E(T)) if x is a leaf,while (underOption 1)a(x) = x if not; the articulation point of a

vertex indexed ag is denoted as;.

We nowrecall two equivalent definitions of somgasses ofinear orders onX. First, such a
class is associated with a given non-valtred T by geometric considerations;hisbeenproposed
by Chaikenet al. (1983) andgeneralized by Barthélemy and Guéno¢h@88, 1991). Consider a
graphic planar representation Df(where two edgelBave no common points other tham@mmon
vertex) and an ordering obtained as follows: first, thexgef arbitrarily chosen; theithe leaves are
indexed a4, X, ..., X, according to a circular (clockwise) scanning of the suksetvertices ofT.

Such an orderfrequently called adiagonal plane order or a circular ordein the literature. For
instance, the leaf order 1, 2, 3, 4 in the three trees in Figure 1 is circular.

1

1 4 . 1 2
®

3 4 3
2 3

Figure 1: Three free topologies for which 1, 2, 3, 4 is acircular leaf order

The second definition is more combinatorial and relies on one of Yushmanov’s (1984) ideas; he

proposed to construct, from the tr@etricd on X, an orderingky, X»,..., X, of X suchthat: (i) x;
andx; are arbitrarily chosen; (ii) fdt=0, 1,...,n-3,  d(Xy.kXn.k-1) - (X1 X)) = MiNigo o
k-13 A(XnieXi) - d(X1,%;). This property ensurethat the treecorresponding tal can be obtained by
sequential grafting of the edgg_ X, (or the vertexx,,,) on the pathX;x,.,.1).- Such orderfhave

been studied in mordetail in Makarenkovand Leclerc (1997), wherethe equivalence of the

Yushmanov orders of a tree metric mattiand the circulaorders ofthe additive treeorresponding
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to d has been proved. In this paper ieall Yushmanov's algorithngTable 1)for computation of a

circular order ofelements ofX (circular order of leaves dhe correspondingdditivetree) given a

tree metric matrix.

Algorithm 1: Construction of a circular (Yushmanov) ordgy, x,,..., X, of the set X

Input: a finite setX with n elements; a dissimilaritgt on X.

Output: a circular (Yushmanov) ordex4( X, ..., X,) onX associated witll.

Initialization Choose arbitrarily two leaves; andx,; W := X-{Xq,Xx,}; k=0
Repeat

Find Xn_k.1 in W such that:

d(Xn-koXn-k-1)-d(X1,Xn-k-1) = Minyow d(Xq.0W)-d(xq,W);

W = W-{xn.kh

k=k+1

Until W =A

Table 1: Algorithm 1 (Construction of a circular order of thexget

28

48 56 45
54 62 51 8
59 67 56 | 55 61
41 49 38 37 43 30

Q|| |a|o |T

Table 2: Tree matrid on the set of elements a, b, c, d, e, f, g

Here we demonstrate the implementation of Algorithm 1 on tharie#ec d from Table 2. So,

we are looking for a circular order of elementXaf{a, b, c, d, e, f, g}.



Let us sek; = a andk; = b; Algorithm 1 computes a quantit(b,w) -d(a,w) forw = c,
d, e, f and g, which gives :
d(b,c)-d(a,c)=25-5=20 d(b,d)-d(a,d)=56-48=8 d(b,e)d(a,e)=62-54=8
d(b,f)-d(a,/)=67-59=8 d(b,g)-d(a,g)=49-41=8
Thusxg may be chosen from d, e, f and g providivegminimal value of 8let ussetxg = d
and compute :
d(d,c)d(a,c)=45-5=40 d(d,e)d(a,e)=8-54=-46
d(d,f)-d(a,f)=55-59=-4 d(d,g)d(a,g)=37-41=-4
Which implies thak; = e and, at the next step, we have :
d(e,c)d(a,c)=51-5=46 d(e,f)-d(a,)=61-59=2 d(e,g)d(a,g)=43-41=2
Let us setx, = f and compute :
d(f,g)-d(a,g)=30-41=-11d(f,c)-d(a,c)=56-5=51,
that impliesxg = g andx, = c.
Therefore, the circular order of elementsXothusobtained isx; = a ;X = C ;X3 =09 ;X4 = f;
Xs =€ ;X =d;X;=D.
Once a circular ordex{, X, ..., X,) of elements oK is determinedthe correspondingdditive tree
(the list of edges with their lengths) can be reconstructed from the following sequencéseasftées
of the given tree metric matrixi(x;,X,), d(X1,X3), d(X2,X3), ..., dAX1,%), A(Xi.1,%),---, dXp-1.Xn)-
Moreover, this reconstructiocan be performed i®(n) time using anappropriate algorithm (see
Yushmanov (1984) o€haikenet al (1983) forthe case of unvalued trees and Makarenkov and
Leclerc (1997) forthe case of additive (valuedjees). Thislinear time complexity algorithm
reconstructs an additive tree from a sequencene® Yalues,adding a neweaf (anew element) at a
time to the growing tree and calculating the lengths of @edges.The reconstructing algorithistarts
from a tree containing onlyhe edgex;x, of the lengthd(x,,x,). At eachstepk (k = 2, ..., n-1) a

new edgeny 1%, 1 Of the length d(x1,%+1) + d(Xk,Xk+1) - d(X1,X%4))/2 is added tdhe tree, where the



articulation pointy, 1 of the new leaf xx+1 is located on the pathx{,xx) at the distanced(x1,xx) +
d(Xk,Xk+1) - d(X1,Xk+1))/2 from the leafX,.

The six consecutive additive trees (the number in parenthegiacht edgecorresponds to its
length) obtained by this fast reconstructing algorithm ftbensequence oin23=11 entries{5, 41,
38, 59, 30, 54, 61, 48, 8, 28, 35} of the tree metric of Table 2 chosen accordingitaulas order
acgfedb determined above, are presented in Figure 2.

So, any such aequence of i3 entries of the tree matrtk constitutes a linear encoding of
the minimal length of the additive tr&eThis sequence may also be used to recover the erdirex

d usingthe following recurrence formuléound by Leclerc(1995) for alli <j-1, d(x;,X;) = max{

d(Xq,%) +d(x;, %) 5 d(Xq, %) + d(X.1,%) } - d(X1,%}.1).

Calculation of the topologic distance between two additive trees given by their

distance matrices

In this section we present an algorithm which comptitessalue of thdRobinson androulds

topologic distance between two additive trees. The algorithm describeclheranO(n?) time when
starting with twonxn tree metric matrices as thgput. In fact,tree valuations have no importance
when calculating theRobinson and-ouldstopologic distancehut, often we have to deatith the
situation where the only available information is a tresric matrix. It is assumethat the elements
of X are labeled as 1,.n, according to amrbitraryfixed order. Algorithm 2 (Tablel0) isgiven in
the form corresponding t®ption 2(no interior vertex of anyreeT of Uyx hasdegree 2 anK =
L(T)), wherea®Option 1 can be treated in a similaay by introducing slightnodifications in the
second part of the algorithm.

We start with an outline of Algorithm 2, which includes three basic parts. The firstopsists
of carrying out Algorithm 1 on th&#ee metric matriced; andd, to determine theicorresponding

circular orders onX. We should perfornthe first part of Algorithm 2 with the same choice of the
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startingelementx; in both circularorders ofd; andd,. Thesecond part othe algorithm involves
consecutive performing of the following computation proceduréd;oandd,: a modified version of
the reconstruction algorithm mentioned at the endrevious section (dinear time complexity
reconstruction algorithm providing the list of tree edges with their lengthstfrersequence ofn23
entries of a given tree metric matrix, chosen with respect to a circular order) is applied tstet at
a reduced tre@,+1 with k+1 leaves corresponding toe first k+1 elements of a considereticular
order. The ordered bipartition matrix ©f, built during the previous steps, is updated thtoone of
Ty+1 after taking thenew edgesnto account.The third part of Algorithm Zoroceeds bymatching
edges, providinghe same bipartitions itwo orderedbipartition tables anthus, bycalculating the
topologic distance.

Here wemainly detail theworking principles of thesecond part of thisew algorithm that is
the construction of two bipartition tables. As these tables are obtainedobgdependent executions
of the sameprocedure, weexplainhow it works on ararbitrary treemetric matrix. The bipartition
tableB is a binary matrix, containing only 0 and 1 values. It is compos@&dcofumns andn rows,
where each column corresponds to an elemeXt(afleaf of the tree) and each row corresponds to an
edge of the additive traender constructionLet us recall that thaumberof edgesm of an additive
tree withn leaves is comprised betweeand 2-3.

The columnorder of B is the above-mentioned fixeorder onX: the first column of B
corresponds tdelement 1, thesecond toElement 2,and soon. This fixed ordershould not be
confused with a circular ordeg, x,,..., X, onX, obtained in the first part of Algorithm 2 and stored
as a permutation of the fixed order.

The matrixB = (Bjj)i=1,...v(m),j=1,...n » Obtained after the firkt steps, isorganized as follows:

given a rowi and a colum, the value oB; is O if the vertex has not been added Q.1 yet, i.e.]
O {x1,... Xk+1}; otherwise,B(i,j) = 0O if the verticex; andj belong to the same part tife bipartition

created by the edgen Ty.1; andB(i,j) = 1, if not.
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Figure 2 : Valued trees obtained by the reconstruction algonthm on the tree metric of Table 1
and then used to build an ordered bipartition table Zm Part 2 of Algonthm 2 (the munbers in
parentheses corespond to edge lengths; edges are numbered according to their positions in the
bipartition table & building by Algonthm 2)

Let usconsiderthe classical lexicographic linearder onthe rows of B (edges ofl): the

rowi is said greater than the rowif there is a columpsuch thaBj = 1,B;; = 0, andBj; = By
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for allj” >j. For instance, the vector 0010001 is greater than 0000001 ishichts turn, greater
than 0010000, in Table 4 corresponding to theTsdeom Figure 2.

Edgej alblcldle] flg PLACE | Path Edge] al bjc]ld]lel|flg PLACE ] Path
1 J0f0j1]j0]0|0|0O 1 1 1 Jojo|1|j0(0|O|O 1 3
2 Jojo|o|0f0]0 |1 2 2
3 J0]0]1]0]0]O {1 3
Table 3: Bipartition tableB of T2 Table 4. Bipartition tableB of T3
| Edgej albjcldlel fla PLACE | Path [FdgeJalblcldlelfla PLACE | Path
1 J0f0oj1j0]0|0{0 1 3 1 Jof0]1)0]0O]0O 1 3
2 10]0]0)0J0|0O]1 4 5 2 10]0J0J0f0]0]1 6 7
3 J0j0|1]|0|0|1]1 2 4 3 jJojof1(of1]1]|1 4 6
4 J0(0J0]0]0O]1]0 5 4 Jof0ofoj0]0O0]1]0 2
5 ]0]0]0|0fOf1]1 3 5 J0|0|0|0|O 1|1 5
6 J0]0|0fO0f1]0]0 7
7 JO0JjOJOJOf1]1]1 3
Table 5: Bipartition tableB of T4 Table 6: Bipartition tableB of Tg
| Edge] alblcldle]l flg]l |PLACE]Path [Fdge]alblcldle{flg] |PLACE]Path
1 Jof0j1]j0]0|0|0O 1 3 1 Jofo0]1]0]|0|O]O 10 3
2 J0]0]0]0|0|O]1 8 7 2 JO0jOJO|O0f0]0]|1 1 11
3 J0j0|1]11]|1]1 6 9 3 JOoj1|1f2(f1]1])1 8 10
4 Jo|0j0|0|0O]|1]|O0O 9 8 4 Jofofofojo|1]0 6
5 J0]0]|]0]J0JO|1]1 4 5 JOjOJO|O0f0O]1]1 9
6 J0]0|0]0|1]0]0O 2 6 JOJO|OfOf1]0]0 4
7 J0]0|O 1111 5 7 JOjOJOf1f1]1]1 2
8 J]0]0]0]1]0]|0]0O 7 8 JO0jO|Of1[{0]0]0 5
9 J0]0]0]1]1]0]0O 3 9 Jojo|of1f1]0]|0 7
10 j0Jj1)0]jO0fO O |O 11
11 JOj1)0J1 |21 ]1]1 3
Table 7: Bipartition tableB of Tg Table 8: Bipartition tableB of Ty
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Edgelalbfc|dle]|f]lg
10 Jof1]0]|0|0|0O]O
1 JofoJ1{ofo]oO]|0O
8 |ojojof1fo]0]0O
6 |Jojojofof1]|0]|0O
9 Jojojof1f1]|0]|0
4 |ojofofjojof1fo0
2 |ojojofojo|of1
5 Jojo|ofo]jo|1|1
7 Jofojoj1f1)1f1
11 J0of1(0j2f1]2(1
3 Jojijaf1j1]1f2

Table 9: Ordered bipartition tabl® for the final treeT7 Tables 3-9completely describe the
second part of Algorithm 2 (Stages 2.0 to 2.6 below), which starts witlir¢kéar order acg fe d
b as above and thaitial fixed order a b ¢ d e f g. In thesebles,the first column givesedge
identifications, whereas the next columas to “g” are presented according to the fixedder. The
meanings of the lastvo columns,denotedPLACE andPath (see Table8-9), are explained in the

description below. This description discusses the full algorithmic diagram presented in Table 10.

We illustrate thesteps ofAlgorithm 2 on the tree associatedth the tree metric of Table 2.
Figure 2 shows the six successive additive trees obtairted sgspectiveix steps duringhe linear
time complexity reconstruction procedure, given the circular orderacgfe d b of elem&nendn
the sequence of the corresponding32ree metric entries from the example of previous section. Here
we will show how sixconsecutive ordered bipartition tablesrresponding tdhe six trees from

Figure 2 can be built using some combinatorial properties of circular orders.

Let us sem'if j = @(xix) +d(X,%) - d(x,%))/2. It is worthnoting that in an additive tree the

quantityA'if j is equal to the distance between the vexgeand the pathx(,x;).
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Algorithm 2 Calculation of Robinson and Foulds topologic distance

Input : two tree metricgl; andds on the same finite sét= {1,2,...n}.

Output: Robinson and Foulds topologic distance betwsyeanddo.

1. PerformAlgorithm 1 ondq anddy in order toobtain acircular order of elements ofX for each treemetric,

choosing the same elementoés a starting elemerjof both circular orders.

2. Execute independently @l anddy to obtain their bipartition matricd® and B> andthe corresponding linkedists
PLACE; andPLACE, which provide their edge orders.

2.0 Initialization

B(i,)=0;(=1,..., 2-3,j =1,...,n); MaxColi) =0, { = 1,..., 2»-3); k= 2;

B(1,x0) = 1;MaxCol[1) =xo; Path(1) = 1;PLACH1) = 1,

2.1. Run each edge of the pat,kk) starting fromxy until finding an edgev such that:
distixV) < A5 a1 < dist(xu);
Remove edge number of each passed edge, includifigm the arraypath

2.2, If distqv) < A5 41 < dist(xu), then

Add the number of the edgey.+1 in B equal tom(Ty)+2 toPath

If distqev) < A5 41 < dist(xu), then doj = 1,n
B(M(Ti)+2j) = B(uv,j);
Add the number of the ed@g+1Xk+1 in B equal tom(Tk)+1 to Path
2.3. Doi=1,Path
B(Path(i), xc+1) = 1;
2.4. MaxColm(Ty)+2) =MaxColuv);
Doi =1, Path

if MaxColPath(i)) < xk+1 then MaxCoPath(i)) = Xk+1;

Table 10: Algorithm 2 (Calculation of Robinson and Foulds topologic distance)
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Table 10 (Continued)

2.5. Insertm(Ty)+1 in PLACH1);
if (M(T+2 =m(Tk+1)) then do
i =2;
while (PLACH() # uv) do
i =i+1;
Insertm(Ty)+2 in PLACKi+1);
I =m(Tk+1)-1;
edge= 2;
repeat
if (PLACH(i) = Path(edgg) then do
edge=edge-1;
j =i+l
while (xk+1 > MaxCol(PLACH;j))do
=i+l
if § >i+1) then
Move upPLACKH(i), putting it just before?LACHj-1);
i =i-1;
until (i = 0)
2.6.1f k <n-1, then k =k+1 andgo to Stage 2.1.,

else ifk = n, then sort the bipartition tabl® subject to the linked liFPLACE

3. Compare theorderedbipartition tablesB1 andB> associateavith dq andds to compute the Robinsoand Folds

distance.

16



2.0. The treeT, consists othe edgexix,. The matrixB (Table 3) is initializedvith a unique row
containing value 1 in the case associated with the leap @sd zero values elsewhere.

A number is assigned teach edge of the current tree (column “Edge” in TaBi®3; this
column is initialized by assigning number 1 to the unique edgge Another array listing thedges
of the pathX1,xy), according to their numbers, is denoted ath An ordered linkedist, denoted
PLACE providesthe lexicographiorder onthe edges; it islsoinitialized with the rank number 1
assigned tdhe unique edgeix,. This linked list gives edgeanks according to lexicographic
growing order.The statemenPLACH() corresponds tthei-th element of théist. To update the
array PLACE in optimal time wealso need an auxiliargrray, denotedMaxCol in Table10, which
contains maximum column values of each edge of a tree under considefatioaxample, iMable
4 associated with the trdgwe haveMaxCol(2) =MaxCol(3) = g > ¢ sMaxCol1).

2.1. The element.; has to be added to the growing tigeat the currenstepk. In the arrayPath

thei-th entry consists of the number of ik edge of the pathx{,xy) starting fromx,. We traverse

this path starting fromy until finding an edgev such thatdist(xy,v) < A'ikﬂ < dist(x,u). This is
accomplished by summing the edge lengthallothe passed edges starting fragxx. According to
our tree representation agreement (Option 2), one or tiewwesdges should Blded to the tre@y
and none or one should bemoved to obtain the trég.1. Not all the edges orthe path X1,xk)
belong to the pathx{,x1) and those that do not are removed from the d&edly
2.2. At this stage new edges are introduced in the bipar#imeB. If there are threeew edges to
add inTyx and one to remove to obtain tinee Ty, 1, then we complete the matik with two new
rows m(Ty)+1 andm(Ty)+2.

If the edgeuac+; is added to the tree, then its binary vector is located imothvem(Ty)+2 of B;
it holdsthe same values as thew corresponding tthe edgeuv shared athe currentstep of the
algorithm. This edgav is replaced ifB by the edgey.1v. This last operatiodoes noinvolve any

change irB.
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2.3. The value 1 is assigned to each enjxy.¢) of B such that is a row associated with an edge of
the path X1,Xk+1) in the new tredy.1.

2.4. This is an updating stager the array of maximum columwmaluesMaxCol The maximum
column value of the rowassociated with an edge of the pathix(+1) becomes.1 if MaxColi) is
smaller thanks.

2.5. Let us explain in detail the important anoitasophisticated procedutesed toupdate the linked
list PLACEproviding the lexicographic order of edges.

To incorporate the thremew edgesiax+1, ax+1V anday+1Xk+1 into the linked listPLACE we
should proceed as follows: the edgeixk+1 will be located at the bottom BLACE the edgeay+1v
will replace the shared edge and the edgaac.; will follow ax+qv. If there is only onenew added
edgeay+1Xk+1, it should be located at the bottomRIfACE

The addition of thenew leaf xx+7; may involvesome other modifications ithe linked list
PLACE Let usshow how tatake them intcaccount.Therank in PLACE of an edge of the path
(x1,xk) of Ty canonly increase if this edge belongstte path X1,Xk+1) Of Tk+1. The edgexia;
always has the greatest rankPbACEand islocated at theéop of thislist, becausall the leaves of
Tk+1, €xceptx,, are located on thside ofthe vertexa;. It consists of values of 1 iall entries
associated with leaves to xk+1. So, the rank assigned ta;a; is alwaysequal to the number
mM(Ty+1) of edges in the treB. 1.

Let us consider an edgw of the path X;,x+1), whereu is located orthe path X3,v); its rank
in PLACEis always greater thathe rank of any edgéocated on theide ofthe new leaf xy+1, i.e.
any edge belonging to the subtree rooteds land not including the edgev. In the samavay, the
rank ofuv is inferior to therank of any edge ahe path X1,u). As for other edge$ocated on the
same side athe vertexx; with respect tdhe edgeuv and not belonging tax(,u), they may have
ranks superior or inferior than thatwf and, when adding the new le@f;, the rank of theedgeuv

may become greater than the rank of some of these edges.
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Thus, at the current sté&pwe have to update the linked IBLACE by checking each edge of
the path &1,xk+1) against the possibility of increasing renk in PLACE We begin this updating
procedure with the second edge, called heueof the pathX;,x+1) encoded irthe arrayPath We
then compare, for the fixed order Enthe leafx.1 with the maximum leaf numbeayailable in the
arrayMaxCol of each edge located betwemn andx;a; in PLACE (if such anedgeexists).Once
the new rank o&;u in PLACEIs found, we check the next edgeof the path &;,xk+1) in the same
way. Asimilar checking procedure is performed esch edge of the path;(xx+1) to get the new
linked list of edge numbeRLACE, corresponding to the trdg. ;.

2.6. Ifk <n, then wecontinue theturn of the loop with an incremented value bfand go to Stage
2.1. Ifk =n, then we sort the bipartition tatBesubject to the linketist PLACE in order to provide

the ordered bipartition table corresponding to the final treeriéhves.

To show that the time complexity of Part 2 of Algorithm Di®?), we notice that the number
of different edges appearing in the arRgth does noexceed B-3 and alsdhat therank of any of
these edges belonging to thewing tree at eaclstep ofthe algorithm cannatise inthe linked list
PLACEmore than B-6 times.

In fact, PLACEcan be organized as an array and not a linked list without increbsiogler

of complexity of Part 2 of Algorithm 4, which remai®n?), but in this case wehouldcarry out at

each step a supplementary recording procedure that makes the algorithm less elegant.

The third part of Algorithm Zoroceeds by comparing ordered bipartition talidesand Bo,
corresponding tal; andd,. The minimalrows of B; and B, are comparedirst and soon. The
Robinson androuldstopologic distance is then equal to-@ minus twicethe number of common

non-trivial bipartitions in the matriceB; andB,. For the estimation of the total complexity of

Algorithm 2, we notice that each of its three basic parts can be perforrﬁﬂdzbntime. Thatallows

us to formulate the following theorem:
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Theorem Algorithm 2 requires O(R) operations tocompute theRobinsonand Foulds topologic

distance between two trees given by their distance matrices of dimensions n

Computing the strict consensus tree and some consensus indices

For anyk-tuple T* = (Tq,...,Tx) of trees inUyx, thestrict consensusree C(T*) is that tree in
Ux containing exactlyhose bipartitions common tall the trees of T*. Here weare interested in
reconstructing the strict consensus tree of a tuple of trees given as d*tapld;,...,dyx) of distance
matrices and we also denot€(d*). It is not difficult to seghat the consecutivearrying out of the
first two parts of Algorithm 2j.e. the determination of circularders and orderedipartition tables
of k distance matrices, tak€{kn?) time. Wecan compare the ordered bipartition tatBgsand B,
corresponding td; andd, to build an ordered bipartitiotable of C(d1,d>). This table, denotelere
B1o, includes only thoseipartitions which appear in boBy andB, tables. Thereforahe number
of rows ofB12 is equal to the number of common clusterBirandB,.

In the same way, we compare the ordered bipartition Bableith the ordered bipartitiotable

B3 of ds to build the ordered bipartition table ©fd,,d,,d3), and so on.
Since the comparison ofvo orderedbipartition tables can be carried out@(n?), the whole

algorithm compute€(d*) in O(kr?) time. Figure 3 exhibits the strict consensus €€8;,T,) of two
treesT; andT,. In thisexample there arfevo common non-trivial bipartitions i, and T, {ac,
bdefghi} and {ach, bdefgi}.

McMorris, Meronk and Neumann (1983) defined a family of consensus funtioos the set

of thek-tuples of elements dfy on the following way: let be an integer such th@/2[+ 1< / < k

(wherek/20denotes the greatest integer not exceeli@) a bipartition ofX is a bipartition of

M,(T*) if and only if it appears in at leasbf theT;’s. It may be shown that such a set of bipartitions
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corresponds to a tree. Indedidese authors considerdte case of rooted treekidrarchies or n-
trees), whichare closely related to additive trees by tbkowing one-to-one corresponden(see,

e.g., Day (1985)).

b
d & d\./.e
] \/. f . ,
& e »
d C
¢ h *b h i ¢
tree 4 tree &
a d f
e |
¢ e 9
h
b
tree (1 7, E)

Figue 3 : The trees 7 and % and their strict consensus tree ({ 74, &)

Let xg [ X; a hierarchyH on X-{xg} is obtained by deleting the edggxp from an additivareeT (in
the Option 2form) and rootinghe obtained tree iay. A clusterY of H comes fronthe bipartition

(Y,X-Y), wherexg [ X-Y. The strict consensus corresponds té = k, andthe majority ruleto ¢/ =

[(k/20+ 1. The latterconsensudree method isonsidered in Margush and McMorr{8981) for

21



rooted trees and by Barthélemiyal. (1986) inthe unrooted caseDtherconsensus functiord, are

studied in McMorris and Neumann (1983) and Barthélemy (1988) for hierarchies, Barthiélemy
and Janowitz (1991) for both kinds of trees (see Leclerc (1998)rémreat review on theonsensus

of classification trees). It is easy to see that the consensid {9 of k trees given by &-tuple d*

of distance matrices can be compute®(k(k-1+1)n?) time using a variant of Algorithm 2.

Let T) be the set of bipartitions ofteee T [1 Uy. Several comparison indices measuring a
degree of agreement among two trégandT, in Uy have beemproposed irthe literature. They are
often based orhe bipartitionsetsD(T1,T2) = (S(T1)-YT2))I(ST2)-T1)) (distance indices) or

S(C(T4,T»)) (consensus indices); fanother paradigm, ségoddardet al. (1995). For instance, as
noted above, the Robinson and Foulds distance beflyesmdT is the cardinality oD(T4,T>), and

the Clc index ofNelson (1979) is aormalization of the cardinality dC(T1,T»)); other indices
take in consideration some parameteedated to theblocks of the bipartitions ofD(Tq,T2) or
S(C(T1,T2)), for instance their cardinalitiefay (1985) surveyseight such indices,sometimes
adapted from comparison indices on hierarchies; other indieeproposed inBarthélemyet al.
(1986), following a studyabout hierarchies oteclerc (1985). Shao (1983pnd Day (1985)
investigate interrelationships among many of these measures as well as among socoms#hsus
indices availablenly for rootedtrees.Since Algorithm 2allows us todetermine efficiently thaets
D(T1,T2) andS(C(T4,Ty)), it is still an efficient tool for the calculation of almost all these comparison

indices.

Discussion

We described amptimal algorithm (Algorithm 2)designed to compute i®(n?) time the

Robinson and~oulds topologic distance betweetwo trees given by their distance (treeetric)

matrices. This algorithm can be adapted to compute in optidglaid)) time thestrict consensusree
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of k trees as well as most tfie well-known consensuidices betweernwo trees inO(n?). Our
algorithmconsists ofthree basic parts: thirst part proceeds by obtainingcacular order of the
elements oX for bothgiven distance matrices; tismcond partperformed independently on both
distance matrices, uses this circular order to build an ordered bipartition table of a unique taelelitive
associated with distanceatrix; the third parproceeds by matchinggvo orderedbipartition tables
and, subsequently computing the Robinson and Foulds distance.

Since optimabprocedures for inferring aadditive tree inJy from its distancematrix require

O(n?) time to solve this problem, the new algorithm presented in this paper allows us to compare trees
given by their distance matrices without increasing dhder of complexity of the tree inferring
procedure.

In this work we emphasize the usefulness of circular orders in the study of additive trees. These
orders may be employed not only for inferring, fitting or drawing additive treeptimal time, as in
Chaikenet al. (1983), Yushmanov (1984) anakarenkov and_eclerc (1997), but also for fast
comparisons of two or more tree structures represented by their distance matrices. As has been shown
in the latterwork, a circular order determination algorithm (Algorithm 1 of this papedn be
implementedhot only with a givertree metric matrix as thmput, but also with any dissimilarity
matrix. So, some new similarity measures between two or more dissimileatidse defined by the
consecutive performing Algorithms 1 and 2. Such new dissimilarity measures as well as development
of other properties of introduced ordered bipartition tables might be interesting prdtteonsher
investigation.

A computer program (distributed &®eware, for Windows 32-bitMacintosh andvarious
versions of UNIX) which performs the computation of the Robinson and Ftagdkgical distance
between two or more additive tree distance matrices according the Algorithm 2 described here, as well
as its C source code, are available on the World Wide Web at URL
<http://www.fas.umontreal.ca/BlOL/legendre/index.html>. Algorithms 1 arateZalso part of the
computer package T-REX (Macintosh awindows versionsavailable at the above-mentioned
URL), which also includes some popular methoddreé reconstruction, such a8DDTREE by
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Sattath and Tversky (1977), the Neighbor Joining method by Saitou and Nei {t@87pweighted
Neighbor Joiningnethod by Gascugll997),the Method of Weights by Makarenkov ahdclerc
(1999), and others.
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