
1 Département des Sciences Biologiques, Université de Montréal, C.P. 6128, Succ. Centre-Ville,
Montréal, Québec H3C 3J7, CANADA.
e-mail address: makarenv@magellan.UMontreal.CA

2 Centre d'Analyse et de Mathématique Sociales, École des Hautes Études en Sciences Sociales, 54
bd Raspail, F-75270 PARIS CEDEX 06, FRANCE, Bruno.Leclerc@ehess.fr

Journal of Computational Biology

Volume 7, Number 5, 2000

Mary Ann Liebert, Inc.

Pp. 731-744

Comparison of additive trees using circular orders

Authors: Vladimir MAKARENKOV1 and Bruno LECLERC2

Abstract

It has been postulated that existing species have been linked in the past in a way that can be

described using an additive tree structure. Any such tree structure reflecting species relationships is

associated with a matrix of distances between the species considered and called a distance matrix or

a tree metric matrix. A circular order of elements of X corresponds to a circular (clockwise)

scanning of the subset X of vertices of a tree drawn on a plane. This paper describes an optimal

algorithm using circular orders to compare the topology of two trees given by their distance

matrices. This algorithm allows us to compute the Robinson and Foulds topologic distance

between two trees. It employs circular order tree reconstruction to compute an ordered bipartition

table of the tree edges for both given distance matrices. These bipartition tables are then compared

to determine the Robinson and Foulds topologic distance, known to be an important criterion of

tree similarity. The described algorithm has optimal time complexity, requiring O(n2) time when

performed on two n×n distance matrices. It can be generalized to get another optimal algorithm,

which enables the strict consensus tree of k unrooted trees, given their distance matrices, to be

constructed in O(kn2) time.

Key words: additive tree, circular order, Robinson and Foulds distance, strict consensus tree

2

Introduction

A tree is a formal structure of the representation of the process of evolution. The leaves

represent the species under study, the interior nodes represent virtual ancestors and the edges

represent the evolutionary events. In biology this tree is called a phylogenetic tree, or an additive tree

if tree edges have the valuations. The principal goal of phylogenetic reconstruction is to infer an

additive tree from imperfect contemporary data, which do not correspond directly to any tree

topology. Consequently, we should utilize an available fitting method to obtain the data

corresponding to an additive tree.

It is important to be able to compare trees obtained from the observed real data because different

fitting methods may provide different trees even for the same initial data set. When two data sets are

considered, the knowledge of the comparative indices, like the Robinson and Foulds distance, for

example, can give us some ideas about the similarity or dissimilarity of the evolutionary processes

corresponding to these data.

Zaretskii (1965), Buneman (1971), Patrinos and Hakimi (1972) and Dobson (1974) have

proved that a dissimilarity d corresponds to an additive tree if and only if the following statement

holds: for each four elements i, j, k, l of X, we have d(i,j) + d(k,l) ≤ max {d(i,k) + d(j,l); d(i,l) +

d(j,k)}. Moreover, this additive tree is unique considering a strict definition of additive trees (see the

next section). A dissimilarity d fulfilling the above inequality is called a tree metric. Several optimal

algorithms, with time complexity O(n2) for an n×n matrix, for reconstructing an additive tree

corresponding to a given tree metric matrix, have been proposed in the literature. Among the works

addressing this problem, the paper of Waterman et al. (1977) introducing the first optimal

reconstruction algorithm as well as its modified version, presented by Hein (1989) in the case of

binary trees, which takes O(nlogn) time, should be mentioned.

Another type of tree reconstruction procedure consists of algorithms based on circular

(diagonal) orders. A circular order of elements of X corresponds to a circular (clockwise) scanning of

3

the subset X of vertices of a tree drawn on a plane. The first tree reconstruction algorithms using

diagonal and circular orders were independently proposed by Chaiken et al. (1983) and Yushmanov

(1984) respectively. In Makarenkov and Leclerc (1997), we proved that the diagonal and circular

orders introduced in the two above-mentioned articles are indeed the same and also suggested a

manner in which they may be applied to the problems of tree metric recognition and fitting of a tree

metric to a given dissimilarity.

The Robinson and Foulds topologic distance is an important and frequently used tool to

compare additive (phylogenetic) tree structures (see for instance Robinson and Foulds (1981), Saitou

and Nei (1987), Gascuel and Lévy (1996), Gascuel (1997), Makarenkov and Leclerc (1997)). This

distance is equal to the minimum number of elementary operations, consisting of merging or splitting

nodes, necessary to transform one tree into the other. As proved in Robinson and Foulds (1981), it is

also the number of bipartitions, or Buneman’s splits (1971), which belong to exactly one of the two

trees. If we deal with two unrooted trees having no internal vertices labeled according to the elements

of X, the Robinson and Foulds distance on the set X of n elements varies between 0 (when the trees

are isomorphic) and 2n-6 (when all non-trivial bipartitions in two trees are different; a trivial

bipartition corresponds to an edge incident to a leaf), whereas, the maximum value of the Robinson

and Foulds topologic distance between two unrooted trees allowing internal vertices labeled according

to elements of X, is equal to 3n-6 (for the demonstration see Robinson and Foulds (1981)).

An optimal O(n) time complexity algorithm for computing the Robinson and Foulds topologic

distance between two trees, given by their postordered tree representation (PSW) introduced in

Standish (1980), has been proposed by Day (1985). In the same paper this algorithm was generalized

for computing the strict consensus tree of k trees in O(kn) time. Day’s algorithms first transform a

PSW table representations into a special cluster representation from which the Robinson and Foulds

topologic distance and the strict consensus tree can be computed by means of a sufficiently

complicated but optimal, regarding the time required, procedure.

4

Obviously, only the topology of an additive tree is meaningful when computing comparative

indices, as for example the Robinson and Foulds distance or the strict consensus tree, and the values

of edge lengths are not of importance. But often, for instance after performing a heuristic fitting

algorithm or bootstrap and jackknife validation procedures, we have to deal with tree metric matrices

and not with tree structures encoded by their PSW representations, nor bipartition matrices, nor lists

of vertices and edges.

In fact, there are two ways for computing the Robinson and Foulds distance between two

trees given by their tree metric matrices on the set X of n elements. The first proceeds by transforming

each of two matrices into bipartition tables which can be compared line by line in order to detect

matching clusters. It is without doubt the easiest and the most popular approach to compute the

Robinson and Foulds distance and the strict consensus tree, as well as other tree comparative indices

known in the literature. However, such an approach is not optimal because comparing two bipartition

matrices (not specially ordered) takes O(n3) time. The second way to compute the distance should be

optimal for time complexity, but too complicated for implementation due to the three different

algorithms involved. First, starting from two given distance matrices we can infer the two

corresponding trees under the form of their edge lists. It can be done using Waterman’s et al.

algorithm, for instance. Second, an algorithm for transforming an edge list into a PSW table or

directly into Day’s cluster table should be implemented. Such an algorithm is not likely to exist in the

literature and should be sophisticated. Third, Day’s linear time complexity algorithm can be applied to

these transformed data to compute the Robinson and Foulds distance. Such an approach would lead

to the optimal O(n2) time complexity procedure but is very difficult to implement in practice.

In this paper we propose another way to compute the Robinson and Foulds topologic distance

between two trees given by their tree metric matrices as well as the strict consensus tree of k trees and

other tree comparative indices. Thus, we introduce an optimal time complexity algorithm, taking

O(n2) time to compute the Robinson and Foulds distance between two trees and O(kn2) time to

compute the strict consensus tree of k trees, when applied to n×n tree metric matrices. This algorithm

using the combinatorial properties of circular orders, allows for the construction of specially ordered

5

bipartition tables for each tree metric considered. An interesting feature of such tables is that any two

of them can be compared in O(n2) time to detect matching clusters.

We begin this paper by recalling some necessary definitions followed by the presentation of the

algorithm (Algorithm 1) providing a circular order of elements of X given a tree metric matrix. This

algorithm is discussed in greater detail in Yushmanov (1984) and Makarenkov and Leclerc (1997).

We also recall Yushmanov’s result establishing that an additive tree can be encoded by a sequence,

defined through a circular order of elements of X, of 2n-3 distances between its leaves. Furthermore,

the entire additive tree can be inferred from such a sequence in O(n) time (see Makarenkov and

Leclerc (1997) for a demonstration). Algorithm 1 is then used as a base for the design of Algorithm 2,

which computes the Robinson and Foulds distance between two trees in optimal time. This algorithm

is then generalized for computation, still in optimal time, of some other useful tree comparative

indices as well as the strict consensus tree.

Circular orders and their application for encoding and reconstructing of additive

trees

Let X be a set with n elements. A tree metric on X is a non-negative real function d on X×X

satisfying the following conditions: for all x, y, z, w ∈ X, d(x,y) = d(y,x), d(x,y) = 0 if and only if

x = y, and d(x,y) + d(z,w) ≤ max{ d(x,z) + d(y,w) , d(x,w) + d(y,z) }.

A graph G on a finite vertex set V(G) is a pair G = (V(G),E(G)), where E(G), the set of the

edges of G, is a subset of the set V(G)(2) of all unordered pairs of distinct elements of G; an edge is

denoted here vv'. The degree of a vertex v is the number of edges e ∈ E(G) such that v ∈ e. A leaf is

a vertex of degree one. The elements of V(T)-X are the interior vertices. In a graph G, a path P

between two vertices v and v' is a sequence of edges vv1, v1v2,…, vk-1vk, vkv'. If, in the previous

6

definition, v = v', then P is a circuit of G. The graph G is connected if there exists a path between v

and v' for any pair v, v' of distinct vertices of G. The graph G is a tree if it is connected and has no

circuits. A tree T = (V(T),E(T)) has exactly |V(T)|-1 edges; there is a unique path, denoted T(vv'), or

(vv') when there is no risk of ambiguity, between any two distinct vertices v and v' of a tree.

An additive tree (valued tree) is an ordered pair Tl = (T,l), where T is a tree and l is a non-

negative real length function on the edge set E(T) of T. The distance dist(v,v') between two vertices v

and v' of T is equal to ∑e∈ T(vv') l(e); it defines a tree metric. According to a well-known result

recalled in the introduction, any tree metric on X ⊆ V(T) corresponds to a positively valued tree.

Let UX denote the set of unrooted additive trees, some of whose vertices are labeled by the

integers in the set X = {1,...,n}; moreover, all leaves and all interior vertices of degree two are

always labeled by the elements of X. Each element of UX is associated with an unique distance matrix

d of dimensions n×n. In such a matrix every labeled vertex is associated with one row (column) and

the value d(i,j) corresponding to the pair i, j of elements of X is equal to the distance between vertices

i and j in the tree.

Two options are retained throughout the paper for the choice of a class UX of additive trees

providing unicity of the tree representation of any tree metric d. Let L(T) be the set of the leaves of T:

 Option 1 : a tree T of UX has no edges of null length.

 Option 2 : no interior vertex of a tree T of UX has degree 2 and X = L(T).

To obtain a tree T’ of Option 2 type from a tree T of Option 1 type, one can merely replace each

interior vertex x ∈ X of degree 2 (if any) by a new interior vertex u and an edge ux of null length.

In both cases, a tree of UX has at most 2n-2 vertices and 2n-3 edges, these numbers

corresponding to the non-degenerate case (a binary tree) where all the elements of X are leaves and all

the interior vertices have degree 3. The articulation point a(x) of x ∈ X is the vertex v adjacent to x

7

(that is vx ∈ E(T)) if x is a leaf, while (under Option 1) a(x) = x if not; the articulation point of a

vertex indexed as xi is denoted as ai.

We now recall two equivalent definitions of some classes of linear orders on X. First, such a

class is associated with a given non-valued tree T by geometric considerations; it has been proposed

by Chaiken et al. (1983) and generalized by Barthélemy and Guénoche (1988, 1991). Consider a

graphic planar representation of T (where two edges have no common points other than a common

vertex) and an ordering obtained as follows: first, the leaf x1 is arbitrarily chosen; then, the leaves are

indexed as x1, x2,…, xn according to a circular (clockwise) scanning of the subset X of vertices of T.

Such an order, frequently called a diagonal plane order or a circular order in the literature. For

instance, the leaf order 1, 2, 3, 4 in the three trees in Figure 1 is circular.

The second definition is more combinatorial and relies on one of Yushmanov’s (1984) ideas; he

proposed to construct, from the tree metric d on X, an ordering x1, x2,…, xn of X such that: (i) x1

and xn are arbitrarily chosen; (ii) for k = 0, 1,…, n-3, d(xn-k,xn-k-1) - d(x1,xn-k-1) = mini∈ {2,…,n-

k-1} d(xn-k,xi) - d(x1,xi). This property ensures that the tree corresponding to d can be obtained by

sequential grafting of the edge an-kxn-k (or the vertex xn-k) on the path (x1xn-k-1). Such orders have

been studied in more detail in Makarenkov and Leclerc (1997), where the equivalence of the

Yushmanov orders of a tree metric matrix d and the circular orders of the additive tree corresponding

8

to d has been proved. In this paper we recall Yushmanov’s algorithm (Table 1) for computation of a

circular order of elements of X (circular order of leaves of the corresponding additive tree) given a

tree metric matrix.

 Algorithm 1 : Construction of a circular (Yushmanov) order x1, x2,…,xn of the set X

Input: a finite set X with n elements; a dissimilarity d on X.

Output: a circular (Yushmanov) order (x1, x2,…, xn) on X associated with d.

Initialization Choose arbitrarily two leaves x1 and xn; W := X-{ x1,xn}; k = 0

Repeat

Find xn-k-1 in W such that:

d(xn-k,xn-k-1)-d(x1,xn-k-1) = minw∈ W d(xn-k,w)-d(x1,w);

W := W-{ xn-k};

k = k+1

Until W = ∆

Table 1: Algorithm 1 (Construction of a circular order of the set X)

a b

c

d e

f
g

f

d

b

e

c

28
5 25

48 56 45
54 62 51 8
59 67 56 6155
41 49 38 37 43 30

Table 2: Tree matrix d on the set of elements a, b, c, d, e, f, g

Here we demonstrate the implementation of Algorithm 1 on the tree metric d from Table 2. So,

we are looking for a circular order of elements of X ={a, b, c, d, e, f, g}.

9

Let us set x1 = a and x7 = b ; Algorithm 1 computes a quantity: d(b,w) - d(a,w) for w = c,

d, e , f and g , which gives :

d(b,c)-d(a,c)=25-5=20 d(b,d)-d(a,d)=56-48=8 d(b,e)-d(a,e)=62-54=8

d(b,f)-d(a,f)=67-59=8 d(b,g)-d(a,g)=49-41=8

Thus x6 may be chosen from d , e , f and g providing the minimal value of 8; let us set x6 = d

and compute :

d(d,c)-d(a,c)=45-5=40 d(d,e)-d(a,e)=8-54=-46

d(d,f)-d(a,f)=55-59=-4 d(d,g)-d(a,g)=37-41=-4

Which implies that x5 = e and, at the next step, we have :

d(e,c)-d(a,c)=51-5=46 d(e,f)-d(a,f)=61-59=2 d(e,g)-d(a,g)=43-41=2

Let us set x4 = f and compute :

d(f,g)-d(a,g)=30-41=-11 d(f,c)-d(a,c)=56-5=51,

that implies x3 = g and x2 = c.

Therefore, the circular order of elements of X thus obtained is: x1 = a ; x2 = c ; x3 = g ; x4 = f ;

x5 = e ; x6 = d ; x7 = b.

Once a circular order (x1, x2,…, xn) of elements of X is determined, the corresponding additive tree

(the list of edges with their lengths) can be reconstructed from the following sequences of 2n-3 entries

of the given tree metric matrix: d(x1,x2), d(x1,x3), d(x2,x3), ..., d(x1,xi), d(xi-1,xi),..., d(xn-1,xn).

Moreover, this reconstruction can be performed in O(n) time using an appropriate algorithm (see

Yushmanov (1984) or Chaiken et al. (1983) for the case of unvalued trees and Makarenkov and

Leclerc (1997) for the case of additive (valued) trees). This linear time complexity algorithm

reconstructs an additive tree from a sequence of 2n-3 values, adding a new leaf (a new element) at a

time to the growing tree and calculating the lengths of new edges. The reconstructing algorithm starts

from a tree containing only the edge x1x2 of the length d(x1,x2). At each step k (k = 2, ..., n-1) a

new edge ak+1xk+1 of the length (d(x1,xk+1) + d(xk,xk+1) - d(x1,xk))/2 is added to the tree, where the

10

articulation point ak+1 of the new leaf xk+1 is located on the path (x1,xk) at the distance (d(x1,xk) +

d(xk,xk+1) - d(x1,xk+1))/2 from the leaf xk.

The six consecutive additive trees (the number in parenthesis at each edge corresponds to its

length) obtained by this fast reconstructing algorithm from the sequence of 2n-3=11 entries {5, 41,

38, 59, 30, 54, 61, 48, 8, 28, 35} of the tree metric of Table 2 chosen according to the circular order

a c g f e d b determined above, are presented in Figure 2.

So, any such a sequence of 2n-3 entries of the tree matrix d constitutes a linear encoding of

the minimal length of the additive tree T. This sequence may also be used to recover the entire matrix

d using the following recurrence formula found by Leclerc (1995) for all i < j-1, d(xi,xj) = max{

d(x1,xj) + d(xi,xj-1) ; d(x1,xi) + d(xj-1,xj) } - d(x1,xj-1).

Calculation of the topologic distance between two additive trees given by their

distance matrices

In this section we present an algorithm which computes the value of the Robinson and Foulds

topologic distance between two additive trees. The algorithm described here runs in O(n2) time when

starting with two n×n tree metric matrices as the input. In fact, tree valuations have no importance

when calculating the Robinson and Foulds topologic distance, but, often we have to deal with the

situation where the only available information is a tree metric matrix. It is assumed that the elements

of X are labeled as 1,..., n, according to an arbitrary fixed order. Algorithm 2 (Table 10) is given in

the form corresponding to Option 2 (no interior vertex of any tree T of UX has degree 2 and X =

L(T)), whereas Option 1 can be treated in a similar way by introducing slight modifications in the

second part of the algorithm.

We start with an outline of Algorithm 2, which includes three basic parts. The first part consists

of carrying out Algorithm 1 on the tree metric matrices d1 and d2 to determine their corresponding

circular orders on X. We should perform the first part of Algorithm 2 with the same choice of the

11

starting element x1 in both circular orders of d1 and d2. The second part of the algorithm involves

consecutive performing of the following computation procedure on d1 and d2: a modified version of

the reconstruction algorithm mentioned at the end of previous section (a linear time complexity

reconstruction algorithm providing the list of tree edges with their lengths from the sequence of 2n-3

entries of a given tree metric matrix, chosen with respect to a circular order) is applied to get at step k

a reduced tree Tk+1 with k+1 leaves corresponding to the first k+1 elements of a considered circular

order. The ordered bipartition matrix of Tk, built during the previous steps, is updated into the one of

Tk+1 after taking the new edges into account. The third part of Algorithm 2 proceeds by matching

edges, providing the same bipartitions in two ordered bipartition tables and thus, by calculating the

topologic distance.

Here we mainly detail the working principles of the second part of this new algorithm, that is

the construction of two bipartition tables. As these tables are obtained by two independent executions

of the same procedure, we explain how it works on an arbitrary tree metric matrix. The bipartition

table B is a binary matrix, containing only 0 and 1 values. It is composed of n columns and m rows,

where each column corresponds to an element of X (a leaf of the tree) and each row corresponds to an

edge of the additive tree under construction. Let us recall that the number of edges m of an additive

tree with n leaves is comprised between n and 2n-3.

The column order of B is the above-mentioned fixed order on X: the first column of B

corresponds to Element 1, the second to Element 2, and so on. This fixed order should not be

confused with a circular order x1, x2,…, xn on X, obtained in the first part of Algorithm 2 and stored

as a permutation of the fixed order.

The matrix B = (Bij)i=1,…|V(T)|, j=1,…,n , obtained after the first k steps, is organized as follows:

given a row i and a column j, the value of Bij is 0 if the vertex j has not been added to Tk+1 yet, i.e. j

∉ {x1,…,xk+1}; otherwise, B(i,j) = 0 if the vertices x1 and j belong to the same part of the bipartition

created by the edge i in Tk+1; and B(i,j) = 1, if not.

12

Let us consider the classical lexicographic linear order on the rows of B (edges of T): the

row i is said greater than the row i’ if there is a column j such that Bij = 1, Bi’j = 0, and Bij’ = Bi’j’

13

for all j’ > j. For instance, the vector 0010001 is greater than 0000001 which is, in its turn, greater

than 0010000, in Table 4 corresponding to the tree T3 from Figure 2.

Edge a b c d e f g PLACE Path Edge a b c d e f g PLACE Path
1 0 0 1 0 0 0 0 1 1 1 0 0 1 0 0 0 0 1 3

2 0 0 0 0 0 0 1 2 2
3 0 0 1 0 0 0 1 3

Table 3: Bipartition table B of T2 Table 4: Bipartition table B of T3

Edge a b c d e f g PLACE Path Edge a b c d e f g PLACE Path
1 0 0 1 0 0 0 0 1 3 1 0 0 1 0 0 0 0 1 3
2 0 0 0 0 0 0 1 4 5 2 0 0 0 0 0 0 1 6 7
3 0 0 1 0 0 1 1 2 4 3 0 0 1 0 1 1 1 4 6
4 0 0 0 0 0 1 0 5 4 0 0 0 0 0 1 0 2
5 0 0 0 0 0 1 1 3 5 0 0 0 0 0 1 1 5

6 0 0 0 0 1 0 0 7
7 0 0 0 0 1 1 1 3

Table 5: Bipartition table B of T4 Table 6: Bipartition table B of T5

Edge a b c d e f g PLACE Path Edge a b c d e f g PLACE Path
1 0 0 1 0 0 0 0 1 3 1 0 0 1 0 0 0 0 10 3
2 0 0 0 0 0 0 1 8 7 2 0 0 0 0 0 0 1 1 11
3 0 0 1 1 1 1 1 6 9 3 0 1 1 1 1 1 1 8 10
4 0 0 0 0 0 1 0 9 8 4 0 0 0 0 0 1 0 6
5 0 0 0 0 0 1 1 4 5 0 0 0 0 0 1 1 9
6 0 0 0 0 1 0 0 2 6 0 0 0 0 1 0 0 4
7 0 0 0 1 1 1 1 5 7 0 0 0 1 1 1 1 2
8 0 0 0 1 0 0 0 7 8 0 0 0 1 0 0 0 5
9 0 0 0 1 1 0 0 3 9 0 0 0 1 1 0 0 7

10 0 1 0 0 0 0 0 11
11 0 1 0 1 1 1 1 3

Table 7: Bipartition table B of T6 Table 8: Bipartition table B of T7

14

Edge a b c d e f g
10 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
8 0 0 0 1 0 0 0
6 0 0 0 0 1 0 0
9 0 0 0 1 1 0 0
4 0 0 0 0 0 1 0
2 0 0 0 0 0 0 1
5 0 0 0 0 0 1 1
7 0 0 0 1 1 1 1

11 0 1 0 1 1 1 1
3 0 1 1 1 1 1 1

Table 9: Ordered bipartition table B for the final tree T7 Tables 3-9 completely describe the

second part of Algorithm 2 (Stages 2.0 to 2.6 below), which starts with the circular order a c g f e d

b as above and the initial fixed order a b c d e f g. In these tables, the first column gives edge

identifications, whereas the next columns “a” to “g” are presented according to the fixed order. The

meanings of the last two columns, denoted PLACE and Path (see Tables 3-9), are explained in the

description below. This description discusses the full algorithmic diagram presented in Table 10.

We illustrate the steps of Algorithm 2 on the tree associated with the tree metric of Table 2.

Figure 2 shows the six successive additive trees obtained at the respective six steps during the linear

time complexity reconstruction procedure, given the circular order a c g f e d b of elements on X and

the sequence of the corresponding 2n-3 tree metric entries from the example of previous section. Here

we will show how six consecutive ordered bipartition tables corresponding to the six trees from

Figure 2 can be built using some combinatorial properties of circular orders.

Let us set ∆i, j
k = (d(xi,xk) + d(xj,xk) - d(xi,xj))/2. It is worth noting that in an additive tree the

quantity ∆i, j
k is equal to the distance between the vertex xk and the path (xi,xj).

15

 Algorithm 2 Calculation of Robinson and Foulds topologic distance

Input : two tree metrics d1 and d2 on the same finite set X = {1,2,...,n}.

Output : Robinson and Foulds topologic distance between d1 and d2.

1. Perform Algorithm 1 on d1 and d2 in order to obtain a circular order of elements of X for each tree metric,

choosing the same element of X as a starting element x1of both circular orders.

2. Execute independently on d1 and d2 to obtain their bipartition matrices B1 and B2 and the corresponding linked lists

PLACE1 and PLACE2, which provide their edge orders.

2.0 Initialization

B(i,j) = 0; (i = 1,…, 2n-3, j = 1,…, n); MaxCol(i) = 0, (i = 1,…, 2n-3); k = 2;

B(1,x2) = 1; MaxCol(1) = x2; Path(1) = 1; PLACE(1) = 1;

2.1. Run each edge of the path (x1,xk) starting from xk until finding an edge uv such that:

dist(xk,v) ≤ ∆1,k+1
k ≤ dist(xk,u);

Remove edge number of each passed edge, including uv, from the array Path;

2.2. If dist(xk,v) < ∆1,k+1
k < dist(xk,u), then

Add the number of the edge uak+1 in B equal to m(Tk)+2 to Path;

If dist(xk,v) < ∆1,k+1
k < dist(xk,u), then do j = 1, n

B(m(Tk)+2,j) = B(uv,j);

Add the number of the edge ak+1xk+1 in B equal to m(Tk)+1 to Path;

2.3. Do i = 1, |Path|

B(Path(i), xk+1) = 1;

2.4. MaxCol(m(Tk)+2) = MaxCol(uv);

Do i = 1, |Path|

if MaxCol(Path(i)) < xk+1 then MaxCol(Path(i)) = xk+1;

Table 10: Algorithm 2 (Calculation of Robinson and Foulds topologic distance)

16

Table 10 (Continued)

2.5. Insert m(Tk)+1 in PLACE(1);

if (m(Tk)+2 = m(Tk+1)) then do

i = 2;

while (PLACE(i) ≠ uv) do

i = i+1;

Insert m(Tk)+2 in PLACE(i+1);

i = m(Tk+1)-1;

edge = 2;

repeat

if (PLACE(i) = Path(edge)) then do

edge = edge+1;

j = i+1;

 while (xk+1 > MaxCol(PLACE(j))do

j = j+1;

if (j > i+1) then

Move up PLACE(i), putting it just before PLACE(j-1);

i = i-1;

until (i = 0)

2.6. If k < n-1, then k = k+1 and go to Stage 2.1.,

 else if k = n, then sort the bipartition table B subject to the linked list PLACE.

3. Compare the ordered bipartition tables B1 and B2 associated with d1 and d2 to compute the Robinson and Folds

distance.

17

2.0. The tree T2 consists of the edge x1x2. The matrix B (Table 3) is initialized with a unique row

containing value 1 in the case associated with the leaf c = x2 and zero values elsewhere.

A number is assigned to each edge of the current tree (column “Edge” in Tables 3-9); this

column is initialized by assigning number 1 to the unique edge x1x2. Another array listing the edges

of the path (x1,xk), according to their numbers, is denoted here Path. An ordered linked list, denoted

PLACE, provides the lexicographic order on the edges; it is also initialized with the rank number 1

assigned to the unique edge x1x2. This linked list gives edge ranks according to lexicographic

growing order. The statement PLACE(i) corresponds to the i-th element of the list. To update the

array PLACE in optimal time we also need an auxiliary array, denoted MaxCol in Table 10, which

contains maximum column values of each edge of a tree under consideration. For example, in Table

4 associated with the tree T3 we have: MaxCol (2) = MaxCol (3) = g > c = MaxCol(1).

2.1. The element xk+1 has to be added to the growing tree Tk at the current step k. In the array Path,

the i-th entry consists of the number of the i-th edge of the path (x1,xk) starting from x1. We traverse

this path starting from xk until finding an edge uv such that: dist(xk,v) ≤ ∆1,k+1
k ≤ dist(xk,u). This is

accomplished by summing the edge lengths of all the passed edges starting from akxk. According to

our tree representation agreement (Option 2), one or three new edges should be added to the tree Tk

and none or one should be removed to obtain the tree Tk+1. Not all the edges on the path (x1,xk)

belong to the path (x1,xk+1) and those that do not are removed from the array Path.

2.2. At this stage new edges are introduced in the bipartition table B. If there are three new edges to

add in Tk and one to remove to obtain the tree Tk+1, then we complete the matrix B with two new

rows m(Tk)+1 and m(Tk)+2.

If the edge uak+1 is added to the tree, then its binary vector is located in the row m(Tk)+2 of B;

it holds the same values as the row corresponding to the edge uv shared at the current step of the

algorithm. This edge uv is replaced in B by the edge ak+1v. This last operation does not involve any

change in B.

18

2.3. The value 1 is assigned to each entry (i,xk+1) of B such that i is a row associated with an edge of

the path (x1,xk+1) in the new tree Tk+1.

2.4. This is an updating stage for the array of maximum column values MaxCol. The maximum

column value of the row i associated with an edge of the path (x1,xk+1) becomes xk+1 if MaxCol(i) is

smaller than xk+1.

2.5. Let us explain in detail the important and a bit sophisticated procedure used to update the linked

list PLACE providing the lexicographic order of edges.

To incorporate the three new edges uak+1, ak+1v and ak+1xk+1 into the linked list PLACE we

should proceed as follows: the edge ak+1xk+1 will be located at the bottom of PLACE, the edge ak+1v

will replace the shared edge uv and the edge uak+1 will follow ak+1v. If there is only one new added

edge ak+1xk+1, it should be located at the bottom of PLACE.

The addition of the new leaf xk+1 may involve some other modifications in the linked list

PLACE. Let us show how to take them into account. The rank in PLACE of an edge of the path

(x1,xk) of Tk can only increase if this edge belongs to the path (x1,xk+1) of Tk+1. The edge x1a1

always has the greatest rank in PLACE and is located at the top of this list, because all the leaves of

Tk+1, except x1, are located on the side of the vertex a1. It consists of values of 1 in all entries

associated with leaves x2 to xk+1. So, the rank assigned to x1a1 is always equal to the number

m(Tk+1) of edges in the tree Tk+1.

Let us consider an edge uv of the path (x1,xk+1), where u is located on the path (x1,v); its rank

in PLACE is always greater than the rank of any edge located on the side of the new leaf xk+1, i.e.

any edge belonging to the subtree rooted by v and not including the edge uv. In the same way, the

rank of uv is inferior to the rank of any edge of the path (x1,u). As for other edges located on the

same side as the vertex x1 with respect to the edge uv and not belonging to (x1,u), they may have

ranks superior or inferior than that of uv and, when adding the new leaf xk+1, the rank of the edge uv

may become greater than the rank of some of these edges.

19

Thus, at the current step k, we have to update the linked list PLACE by checking each edge of

the path (a1,xk+1) against the possibility of increasing its rank in PLACE. We begin this updating

procedure with the second edge, called here a1u, of the path (x1,xk+1) encoded in the array Path. We

then compare, for the fixed order on X, the leaf xk+1 with the maximum leaf number, available in the

array MaxCol, of each edge located between a1u and x1a1 in PLACE (if such an edge exists). Once

the new rank of a1u in PLACE is found, we check the next edge uv of the path (a1,xk+1) in the same

way. A similar checking procedure is performed on each edge of the path (a1,xk+1) to get the new

linked list of edge numbers PLACE, corresponding to the tree Tk+1.

2.6. If k < n, then we continue the turn of the loop with an incremented value of k and go to Stage

2.1. If k = n, then we sort the bipartition table B subject to the linked list PLACE in order to provide

the ordered bipartition table corresponding to the final tree with n leaves.

To show that the time complexity of Part 2 of Algorithm 2 is O(n2), we notice that the number

of different edges appearing in the array Path does not exceed 2n-3 and also that the rank of any of

these edges belonging to the growing tree at each step of the algorithm cannot rise in the linked list

PLACE more than 3n-6 times.

In fact, PLACE can be organized as an array and not a linked list without increasing the order

of complexity of Part 2 of Algorithm 4, which remains O(n2), but in this case we should carry out at

each step a supplementary recording procedure that makes the algorithm less elegant.

The third part of Algorithm 2 proceeds by comparing ordered bipartition tables B1 and B2,

corresponding to d1 and d2. The minimal rows of B1 and B2 are compared first and so on. The

Robinson and Foulds topologic distance is then equal to 2n-6 minus twice the number of common

non-trivial bipartitions in the matrices B1 and B2. For the estimation of the total complexity of

Algorithm 2, we notice that each of its three basic parts can be performed in O(n2) time. That allows

us to formulate the following theorem:

20

Theorem Algorithm 2 requires O(n2) operations to compute the Robinson and Foulds topologic

distance between two trees given by their distance matrices of dimensions n×n.

Computing the strict consensus tree and some consensus indices

For any k-tuple T* = (T1,…,Tk) of trees in UX, the strict consensus tree C(T*) is that tree in

UX containing exactly those bipartitions common to all the trees of T* . Here we are interested in

reconstructing the strict consensus tree of a tuple of trees given as a tuple d* = (d1,…,dk) of distance

matrices and we also denote it C(d*). It is not difficult to see that the consecutive carrying out of the

first two parts of Algorithm 2, i.e. the determination of circular orders and ordered bipartition tables

of k distance matrices, takes O(kn2) time. We can compare the ordered bipartition tables B1 and B2

corresponding to d1 and d2 to build an ordered bipartition table of C(d1,d2). This table, denoted here

B12, includes only those bipartitions which appear in both B1 and B2 tables. Therefore, the number

of rows of B12 is equal to the number of common clusters in B1 and B2.

In the same way, we compare the ordered bipartition table B12 with the ordered bipartition table

B3 of d3 to build the ordered bipartition table of C(d1,d2,d3), and so on.

Since the comparison of two ordered bipartition tables can be carried out in O(n2), the whole

algorithm computes C(d*) in O(kn2) time. Figure 3 exhibits the strict consensus tree C(T1,T2) of two

trees T1 and T2. In this example there are two common non-trivial bipartitions in T1 and T2, {ac,

bdefghi} and {ach, bdefgi}.

McMorris, Meronk and Neumann (1983) defined a family of consensus functions Ml on the set

of the k-tuples of elements of UX on the following way: let l be an integer such that k/2 + 1 ≤ l ≤ k

(where  k/2 denotes the greatest integer not exceeding k/2): a bipartition of X is a bipartition of

Ml(T*) if and only if it appears in at least l of the Ti’s. It may be shown that such a set of bipartitions

21

corresponds to a tree. Indeed, these authors considered the case of rooted trees (hierarchies, or n-

trees), which are closely related to additive trees by the following one-to-one correspondence (see,

e.g., Day (1985)).

Let x0 ∈ X; a hierarchy H on X-{ x0} is obtained by deleting the edge a0x0 from an additive tree T (in

the Option 2 form) and rooting the obtained tree in a0. A cluster Y of H comes from the bipartition

(Y,X-Y), where x0 ∈ X-Y. The strict consensus C corresponds to l = k, and the majority rule to l =

 k/2 + 1. The latter consensus tree method is considered in Margush and McMorris (1981) for

22

rooted trees and by Barthélemy et al. (1986) in the unrooted case. Other consensus functions Ml are

studied in McMorris and Neumann (1983) and Barthélemy (1988) for hierarchies, and in Barthélemy

and Janowitz (1991) for both kinds of trees (see Leclerc (1998) for a recent review on the consensus

of classification trees). It is easy to see that the consensus tree Ml(d*) of k trees given by a k-tuple d*

of distance matrices can be computed in O(k(k-l+1)n2) time using a variant of Algorithm 2.

Let S(T) be the set of bipartitions of a tree T ∈ UX. Several comparison indices measuring a

degree of agreement among two trees T1 and T2 in UX have been proposed in the literature. They are

often based on the bipartition sets D(T1,T2) = (S(T1)-S(T2))∪ (S(T2)-S(T1)) (distance indices) or

S(C(T1,T2)) (consensus indices); for another paradigm, see Goddard et al. (1995). For instance, as

noted above, the Robinson and Foulds distance between T1 and T2 is the cardinality of D(T1,T2), and

the CIC index of Nelson (1979) is a normalization of the cardinality of S(C(T1,T2)); other indices

take in consideration some parameters related to the blocks of the bipartitions of D(T1,T2) or

S(C(T1,T2)), for instance their cardinalities. Day (1985) surveys eight such indices, sometimes

adapted from comparison indices on hierarchies; other indices are proposed in Barthélemy et al.

(1986), following a study about hierarchies of Leclerc (1985). Shao (1983) and Day (1985)

investigate interrelationships among many of these measures as well as among some other consensus

indices available only for rooted trees. Since Algorithm 2 allows us to determine efficiently the sets

D(T1,T2) and S(C(T1,T2)), it is still an efficient tool for the calculation of almost all these comparison

indices.

Discussion

We described an optimal algorithm (Algorithm 2) designed to compute in O(n2) time the

Robinson and Foulds topologic distance between two trees given by their distance (tree metric)

matrices. This algorithm can be adapted to compute in optimal (O(kn2)) time the strict consensus tree

23

of k trees as well as most of the well-known consensus indices between two trees in O(n2). Our

algorithm consists of three basic parts: the first part proceeds by obtaining a circular order of the

elements of X for both given distance matrices; the second part, performed independently on both

distance matrices, uses this circular order to build an ordered bipartition table of a unique additive tree

associated with distance matrix; the third part proceeds by matching two ordered bipartition tables

and, subsequently computing the Robinson and Foulds distance.

Since optimal procedures for inferring an additive tree in UX from its distance matrix require

O(n2) time to solve this problem, the new algorithm presented in this paper allows us to compare trees

given by their distance matrices without increasing the order of complexity of the tree inferring

procedure.

In this work we emphasize the usefulness of circular orders in the study of additive trees. These

orders may be employed not only for inferring, fitting or drawing additive trees in optimal time, as in

Chaiken et al. (1983), Yushmanov (1984) and Makarenkov and Leclerc (1997), but also for fast

comparisons of two or more tree structures represented by their distance matrices. As has been shown

in the latter work, a circular order determination algorithm (Algorithm 1 of this paper) can be

implemented not only with a given tree metric matrix as the input, but also with any dissimilarity

matrix. So, some new similarity measures between two or more dissimilarities can be defined by the

consecutive performing Algorithms 1 and 2. Such new dissimilarity measures as well as development

of other properties of introduced ordered bipartition tables might be interesting problems for further

investigation.

A computer program (distributed as freeware, for Windows 32-bit, Macintosh and various

versions of UNIX) which performs the computation of the Robinson and Foulds topological distance

between two or more additive tree distance matrices according the Algorithm 2 described here, as well

as its C source code, are available on the World Wide Web at URL

<http://www.fas.umontreal.ca/BIOL/legendre/index.html>. Algorithms 1 and 2 are also part of the

computer package T-REX (Macintosh and Windows versions available at the above-mentioned

URL), which also includes some popular methods of tree reconstruction, such as ADDTREE by

24

Sattath and Tversky (1977), the Neighbor Joining method by Saitou and Nei (1987), the Unweighted

Neighbor Joining method by Gascuel (1997), the Method of Weights by Makarenkov and Leclerc

(1999), and others.

Acknowledgments

This research was supported by NSERC grant no. OGP7738 to P. Legendre. The authors

thank Ph. D. student Matthew B. Norton for his numerous revising suggestions.

References

Barthélemy, J.P. 1988. Thresholded consensus for n-trees, J. of Classification 5 (2), 229-236.

Barthélemy, J.P., and Janowitz, M.F. 1991. A formal theory of consensus, SIAM J. Discr. Math.,

4, 305-322.

Barthélemy, J.P., Leclerc, B, and Monjardet, B. 1986. On the use of ordered sets in problems of

comparison and consensus of classifications, J. of Classification 3, 187-224.

Barthélemy, J.P., and Guénoche, A. 1988. Les arbres et les représentations des proximités, Paris:

Masson, transl. 1991, Trees and proximity representations, New York: Wiley.

Buneman, P. 1971. The Recovery of Trees from Measures of Dissimilarity, 387-395. In Mathematics

in Archaeological and Historical Sciences, eds. F.R. Hodson, D.G. Kendall and P. Tautu,

Edinburgh : Edinburgh University Press.

Chaiken, S., Dewdney, A.K., and Slater, P.J. 1983. An optimal diagonal tree-code, SIAM Journal

on Algebraic and Discrete Methods 4 (1), 42-49.

Day W.H.E. 1985. Optimal Algorithms for Comparing Trees with Labelled Leaves, J. of

Classification 2, 7-28.

Dobson A.J. 1974. Unrooted trees for numerical taxonomy, J. Appl. Prob. 11, 32-42.

25

Gascuel O. 1997. Concerning the NJ algorithm and its unweighted version UNJ, 149-170 In

Mathematical hierarchies and Biology (B. Mirkin et al., eds.), DIMACS Series in Discrete

Mathematics and Theoretical Computer Science 37, Amer. Math. Soc., Providence, R.I.,.

Gascuel O., and Lévy D. 1996. A reduction algorithm for approximating a (nonmetric) dissimilarity

by a tree distance, J. of Classification 13, 129-155.

Goddard W., Kubicka E., Kubicki G., and McMorris F.R. 1995. Agreement subtrees, metrics and

consensus for labeled binary trees, 97-104. In Partitioning Data Sets (I. Cox et al., eds.), DIMACS

Series in Discrete Mathematics and Theoretical Computer Science 19, Amer. Math. Soc.,

Providence, R.I.

Hein J.J. 1989. An optimal algorithm to reconstruct trees from additive distance data, Bull. Math.

Biol. 51 (5), 597-603.

Leclerc B. 1985. La comparaison des hiérarchies : indices et métriques, Math. Sci. hum. 92, 5-40.

Leclerc B. 1995. Minimum spanning trees for tree metrics: abridgements and adjustments, J. of

Classification 12, 207-241.

Leclerc B. 1998. Consensus of classifications: the case of trees, the Proceedings of IFCS-98, Berlin,

Springer-Verlag.

Makarenkov V., and Leclerc B. 1997. Tree metrics and their circular orders: some uses for the

reconstruction and fitting of phylogenetic trees, 183-208. In Mathematical hierarchies and Biology

(B. Mirkin et al., eds.), DIMACS Series in Discrete Mathematics and Theoretical Computer

Science 37, Amer. Math. Soc., Providence, R.I.

Makarenkov V., and Leclerc B. 1999. The fitting of a tree metric to a given dissimilarity with the

weighted least squares criterion, Journal of Classification, 16, 3-26.

Margush T., and Mc Morris F.R. 1981. Consensus n-trees, Bull. Mathematical Biology 43 (2), 239-

244.

McMorris F.R., and Neumann D.A. 1983. Consensus functions defined on trees, Math. Soc. Sci. 4,

131-136.

26

McMorris F.R., Meronk D.B., and Neumann D.A. 1983. A view of some consensus methods for

trees, 122-126. In J. Felsenstein, ed., Numerical Taxonomy, Berlin, Springer-Verlag.

Nelson G. 1979. Cladistic Analysis and Synthesis: principles and definitions, with a historical note

on Adanson's Familles des plantes (1763-1764), Systematic Zoology 28, 1-21.

Patrinos A.N., and Hakimi S.L. 1972. The distance matrix of a graph and its tree realization, Quart.

Appl. Math. 30, 255-269.

Robinson D.R., and Foulds L.R. 1981. Comparison of phylogenetic trees, Mathematical Biosciences

53, 131-147.

Saitou N., and Nei M. 1987. The neighbor-joining method: a new method for reconstructing

phylogenetic trees, Molecular Biology Evolution 4, 406-425.

Sattath S., and Tversky A. 1977. Additive similarity trees, Psychometrika 42, 319-345.

Shao K. 1983. Consensus methods in numerical taxonomy, Ph.D. dissertation, State University of

New York, Stony Brook, New York, U.S.A.

Standish T.A. 1980, Data structures techniques, Addison-Wesley, Reading, Mass.

Waterman M.S., Smith T.F., Singh M., and Beyer W.A. 1977. Additive evolutionary trees, J.

Theor. Biol. 64, 199-213.

Yushmanov S.V. 1984. Construction of a tree with p leaves from 2p-3 elements of its distance

matrix (russian), Matematicheskie Zametki 35, 877-887.

Zaretskii K. 1965. Construction of a tree on the basis of a set of distances between its leaves

(russian), Uspekhi Mat. Nauk. 20, 90-92.

