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Abstract. The problem of inference of an additive tree from an incomplete dis-
similarity matrix is known to be very delicate. As a solution to this problem, it has
been suggested either to estimate the missing entries of a given partial dissimilarity
matrix prior to tree reconstruction (De Soete, 1984 and Landry et al., 1997) or di-
rectly reconstruct an additive tree from incomplete data (Makarenkov and Leclerc,
1999 and Gu¶enoche and Leclerc, 2001). In this paper, I propose a new method,
that is based on the least-squares approximation, for inferring additive trees from
partial dissimilarity matrices. The capacity of the new method to recover a true
tree structure will be compared to those of three well-known techniques for tree
reconstruction from partial data. The new method will be proven to work better
than widely used Ultrametric and Additive reconstruction techniques, as well as the
recently proposed Triangle method on incomplete dissimilarity matrices of di®erent
sizes and under di®erent noise conditions.

1 Introduction

Incomplete dissimilarity data can arise in a variety of practical situations.
For example, this is often the case in molecular biology, and more precisely
in phylogenetics, where an additive or a phylogenetic tree represents an intu-
itive model of species evolution. The presence of missing data in a distance
or dissimilarity matrix among species or taxa can be due to the lack of bi-
ological material, imprecision of employed experimental methods, or to a
combination of unpredictable factors. Unfortunately, the vast majority of the
widely used additive tree ¯tting techniques, as for example the Neighbor-
Joining (Saitou and Nei, 1987), Fitch (Felsenstein, 1997), or BioNJ (Gascuel,
1997) algorithms, cannot be launched unless a complete dissimilarity matrix
is available. To solve this challenging problem, some methods have been re-
cently proposed.

There exist in the literature two types of methods, using either indirect

or direct estimation of missing values, for inferring additive trees from incom-
plete dissimilarity matrices. The ¯rst type of methods, or indirect estimation,
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relies on the assessing missing cells prior to phylogenetic reconstruction us-
ing the properties of path-length matrices representing trees. An additive tree
can then be inferred from a complete dissimilarity matrix by means of any
available tree-¯tting algorithm. The second type of methods handling missing
values, or direct estimation, consists of reconstructing a tree directly from an
incomplete dissimilarity matrix by using a particular tree-building procedure.
As far as the direct estimation techniques are concerned, I have to mention
the work by De Soete (1984) and Landry et al. (1996), who showed how to
infer additive trees from partial data using either the ultrametric inequality:

d(i; j) ·maxfd(i; k);d(j; k)g; for any i; jand k; (1)

or the four-point condition (Buneman 1971):

d(i; j)+d(k; l) ·maxfd(i; k)+d(j; l); d(i; l)+d(j; k)g; for any i; j; kand l (2)

Using the properties of the ultrametric inequality and the four-point con-
dition, one can ¯ll out incomplete matrices; the missing cells can actually
be estimated through the combinations of the available ones. As to the di-
rect reconstruction, two tree-building algorithms allowing for missing cells
in dissimilarity matrices have been recently proposed by di®erent authors;
the Triangle method of Gu¶enoche and Leclerc (2001), see also Gu¶enoche
and Grandcolas (1999), relies on a constructive approach, whereas the MW
procedure of Makarenkov and Leclerc (1999) is based on a least-squares ap-
proximation.

This paper aims ¯rst at introducing a new original method for direct
reconstruction of additive trees from partial matrices. The second goal con-
sists of proving the e±ciency of the proposed method by comparing it to
the Ultrametric and Additive indirect procedures, as well as to the Triangle
direct reconstruction method. In order to compare the new method to the
three above-mentioned existing approaches, Monte Carlo simulations were
conducted with dissimilarity matrices of di®erent sizes and with di®erent per-
centages of missing cells. The performances of the four methods were assessed
in terms of both metric and topological recovery. The conducted simulations
clearly showed that the new method regularly provided better estimates of
the path-length distances between tree leaves, as well as a better recovery of
the correct tree topology than the three other competing strategies.

2 Brief description of the new method

The new method for reconstructing trees from partial matrices introduced
in this article was inspired by the Method of Weights (MW) proposed in
Makarenkov and Leclerc (1999). The latter method used a stepwise addition
procedure to infer an additive tree from a complete dissimilarity matrix. The
approximation procedure used in the MW was based on a weighted least-
squares model. The new method, called MW-modi¯ed, is an extension of the
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MW approach to partial matrices. The ¯rst attempt to use the MW method
for treatment of partial matrices was made in Levasseur et al.(2000), where
the MW procedure was compared to the Triangle method. However, this
¯rst attempt to employ the least squares for tree reconstruction from partial
matrices showed that the direct MW procedure had to be adjusted to the
treatment of missing data.

LetD be a given dissimilarity matrix on the setX of n taxa. Let us suppose
that some entries of D are missing. The least-squares criterion consists in
minimising the following function:

Q =
X

i<j

(d(i; j)¡ ±(i; j))2 ; (3)

where ±(i; j) is an obtained estimate for an existing entry d(i; j) of D.
The function ± is a tree metric, which is associated with an additive tree; ±
veri¯es the four-point condition.

The following approach was adopted in the MW-modi¯ed procedure to
build an additive tree from a partial dissimilarity matrix D:

Step 1. The taxa i and j are chosen, such that d(i; j) is a present entry
of D. The tree T2 will comprise the only edge ij of length d(i; j).

Step p, (p < n). Let Tp be an additive tree with p leaves constructed
at the previous steps. The leaves of Tp are associated with p taxa from X.
Among the n ¡ p taxa from X that are not represented by the leaves of Tp ,
we have to ¯nd one to be placed in the growing tree. We propose to place in
Tp , the taxon p + 1 such that it provides the maximum number of existing
dissimilarity entries of type d(p+1; l), where l is a taxon of X already placed
in Tp . The exact location of the new leaf p+1 in Tp+1 and the lengths of the
three new edges appearing after addition of a new leaf will be determined
with respect to the MW procedure (see Makarenkov and Leclerc 1999).

The time complexity of such a new procedure is O(n3) for a dissimilarity
matrix D of size (nxn). In order to improve the quality of ¯t in the simu-
lation study described below, I carried out this procedure k times for each
dissimilarity matrix, where k was a number of possible existing pairs of taxa
i and j to be selected at the ¯rst step. Such an exhaustive strategy increases
the algorithmic time complexity up to O(n5), but often enables a substantial
improvement in ¯t.

3 Simulation design

I carried out a series of Monte Carlo simulations to compare the performances

of the four competing methods for tree reconstruction from incomplete dis-
similarities. Each data set was obtained as follows: ¯rst, an unrooted binary

tree topology with n leaves and 2n ¡ 3 edges was randomly generated. For

each such tree topology, the length of each edge was then selected at random

from a uniform distribution on the real interval [0,1], leading to an additive
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tree T. The corresponding tree metric tt was computed and normalized to
have a unit variance. Four normally distributed random noises with mean zero
and, respectively, variances ¾2 = 0.0 (noise-free condition), 0.1, 0.25, and 0.5,
were added to the values of the normalized tree metric tt to obtain variants
of the dissimilarity d. Then, 0 to 50 percent of entries were removed from d

to obtain a partial dissimilarity used as input for the four tree-reconstructing
methods compared in this study. Thus, all considered partial dissimilarity
matrices were simulated according to the "tree metric + noise - missing en-
tries" model. For each combination of values (n;¾2 ;miss), where n (matrix
size) = 8, 16, and 24, and mis (percentage of missing values) = 0, 10, 20,
30, 40, and 50, I generated 100 di®erent data sets. However, only the results
obtained for n = 16 are illustrated in Figures 1 and 2 below.

The metric and a topological recovery provided by each of the four tree-
building methods were assessed using the two following quantities:

1. The proportion of variance accounted for as expressed in the following
formula:

%V ar = 100%£ (1¡

P
i<j

(d(i; j) ¡ ±(i; j))2
P

i<j
(d(i; j) ¡m(d))2

); (4)

where m(d) is the mean value of the initial dissimilarity d, and ± is the
obtained tree metric.

2. The Robinson and Foulds topological distance (Robinson and Foulds
1981) between the true tree T and the solution tree corresponding to the
obtained tree metric d was also considered. This important criterion of tree
similarity is equal to the minimum number of elementary operations, consist-
ing of merging or splitting vertices, necessary to transform one tree into the
other.

In this Monte Carlo study, I used the additive tree generating strategy
that was also employed in Makarenkov and Leclerc (1999), and Makarenkov
and Legendre (2001). Another way of simulating data for the additive model
was suggested by Lausen and Degens (1988).

4 Conclusion

In this paper, the performances of four di®erent tree-building methods for in-
complete dissimilarity matrices were compared. I carried out a Monte Carlo
study to determine which method provides better metric and topological
recoveries under di®erent noise conditions and for di®erent percentages of
missing values. When analyzing curves illustrated in Figures 1 and 2, one can
notice that the proposed MW-modi¯ed procedure generally achieves better
results in terms of both metric and topological recovery than the three other
methods. The new method is particularly good in case of complete absence
of noise (noise = 0, in Figures 1 and 2). A number of interesting trends can
be observed when examining curves behaviour in Figure 1 and 2. As to the
percentage of variance: the Additive procedure becomes very unstable when
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Fig. 1: Metric recovery values obtained for different percentages of missing 

entries and under four different noise conditions. The four competing methods 

[Triangle   , Ultrametric   , Additive   , and MW-modified X] were tested on 

dissimilarity matrices of size (16x16). The abscissa axis represents the 

percentage of existing entries in a given dissimilarity matrix; the ordinate axis 

represents the percentage of variance of a given dissimilarity accounted for by 

an obtained tree metric. For each case, the mean values (over 100 simulated data 

sets) of the percentage of variance are given. Larger values of the percentage of 

variance accounted for point out a better recovery achieved by a tree 

reconstruction method.

   



   

Fig. 2: Topological recovery values obtained for different percentages of missing 

entries and under four different noise conditions. The four competing methods 

[Triangle   , Ultrametric   , Additive   , and MW-modified X] were tested on 

dissimilarity matrices of size (16x16). The abscissa axis represents the percentage of 

existing entries in a given dissimilarity matrix; the ordinate axis represents the 

Robinson and Foulds (RF) topological distance between a given true additive tree 

and an obtained tree. The computed RF distance was normalized by its largest value, 

which is 2n-6 for two binary additive trees with n leaves. For each case, the mean 

values (over 100 data sets) of the topological distance are given. Lower values of 

the RF distance point out a better recovery achieved by a tree reconstruction 
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more than 30 percent of entries are missing in a given dissimilarity matrix;
the results provided by the Triangle method and the Ultrametric procedure
are very close; the MW-modi¯ed procedure slightly outperforms both latter
methods in the most of the situations. As to the normalized Robinson and
Foulds topological distance: the Triangle method does not resist well to the in-
creasing of noise; the best results are regularly obtained by the MW-modi¯ed
method or the Ultrametric procedure; similarly to the percentage of variance,
the Additive procedure can not cope well with big percentage of missing cells
in a given dissimilarity matrix. Surprisingly, the Ultrametric procedure which
does not provide good results for noise-free data, the same conclusion was
also made by Landry at al. (1996) and Gu¶enoche and Grandcolas (1999), be-
comes much more competitive when the noise increases. Similar trends were
observed for additive trees with 8 and 24 leaves, for which the detailed results
were not presented in this paper. Ultimately, I would recommend using the
MW-modi¯ed method for treatment of data that are free of noise and the
MW-modi¯ed method or the Ultrametric procedure for processing "noisy"
data.

5 Software

The four methods compared in the framework of the present study were im-
plemented in T-Rex (tree and reticulogram reconstruction) package intended
for reconstructing additive trees and reticulation networks (Makarenkov, 2001).
This computer application also includes a number of well-known tree ¯tting
methods, as well as some methods for modelling reticulation networks be-
tween considered species or taxa. A tree structure obtained by means of one
of these methods can be visualized using Hierarchical, Radial, or Axial draw-
ing and then manipulated interactively. TheWindows andMacintosh versions
of this software were made freely available for researchers at the T-Rex web
site at http://www.fas.umontreal.ca/biol/casgrain/en/labo/t-rex.
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