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Circular orders of tree metrics, and their uses for the reconstruction and fitting
of phylogenetic trees

Vladimir Makarenkov and Bruno Leclerc

ABSTRACT. The circularordersassociated wittthe planardrawings of anX-tree (or
phylogenetic tree) have been studied by several authors. They allow an encoding of an

tree by 2-3 numbers (whera is the number of elements &), the lengths of some

paths between leaves of the tree. It is shown here that circular orders are the same as those
obtained fromthe table of a tree metric bycanstruction due to Yushman¢28]. It is

also observed that this construction applies to any dissimilarity, tree metric or not. Several

fast algorithms (of complexit(n2)) are derived from these results: for the determination

of a Yushmanov order; fdhe reconstruction of the valuedtree represention of &ee
metric; for the recognition of a tremetric; and forthe fitting of a tree metric to a given
dissimilarity; the fitting method is based on successive local least squares approximations.
Tested on various experimental and real data, it gives satisfactory results.

RESUME. Plusieurs auteurs ont étudié les ordiesilairesassociés aux représentations
planaires deX-arbres (ou arbres phylogénétiques), en particulier pour le catiage-
arbre valué parr23 longueurs de chemimsune feuille aune autre r{ étant lenombre
d'éléments d&X). On montredanscet articleque ces ordresirculairessont lesmémes
gue ceux obtenus a partir detddle d'une distanced'arbre par une construction due a
Yushmanov[28]. De plus, cette constructions'applique &oute dissimilarité, distance
d'arbre ou non. Cegésultats permetterd'obtenir plusieursalgorithmes rapides (de

complexité O(n2)) : pour la déterminationd'un ordre de Yushmanov ; pour la
reconstruction diX-arbre valué représentant une distance d'arbre ; pour la reconnaissance
d'unedistanced'arbre ; et pour I'ajustemediune distanced'arbre aune dissimilaritéd

donnée. Cealernier comportales approximationfcalessuccessives par les moindres
carrés. |l conduit & une procédure d'ajustement qui donne des résultats intéressants sur les
exemples sur lesquels elle a été testée.
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1. Introduction

Let X be a finite set witlm elements. We consider a tr€avith leaves labelled according X0 WhenT is
endowed with a non-negative edge length functidreemetricd on X is defined adollows: for all x, y O X,
d(x,y) is the length of the unique pathDbetween the leavesandy.

The classical representation of a metricoby the matrix of its values for all pairs of elementsXofs
fairly redundant inthe case of a treenetric. Two ways of summarizing taee metric by 2-3 entries, the
minimum possible numbegre presented in Lecleft7]. Thay are both based onminimum spanningrees;
previously, Barthélemy and Guénoche [2], generalizing a result of Chaiken, Dewdney and Slat@rd ghown
the entire matrix of a tree metidcto be defined by its restriction to anotherReif 2n-3 entriesassociatedvith
a so-calledliagonal plane ordeon X. Diagonal plane orders are defined in geometrical terms, in relattbnthe
planar drawings off. On the contrary, thknowledge ofsuch a graphical representationnist neededfor the
determination ofhe linear orders defined byushmanoy28], together withanother way of summarizing teee
metric by 2-3 entries; Yushmanov orders are directly obtained from the mattix of

It is shown here in Section 3 that circular and Yushmanov orders faet iexactlythe same. Thipaper
is devoted tothe study of theserders, and their use in anapproach ofthe problems of recognition,
reconstruction and fitting of tree metrics.

The paper is organized dellows. Basicdefinitionsare recalled infSection 2.1; Section 2.ihcludes a
synthetic presentation of thiéagonaland circular orders associatediith a valued X-tree, with some otheir
properties. Although the results of this sectavanot new, some of theraregiven in new statementsjore
complete than the previous ones, and with simplified proofs. Yushmanov's results, with the presentation of his
orders, argecalled in Section 3.1. It isemphasizedhat the definition of Yushmanowrders extends to all
dissimilarities. Two algorithmsregiven, the first one for theletermination of a Yushmanaarder and the
second for the reconstruction of the valiettee associated with an initial tree dissimilarity. After an illustration
of these algorithms in Section 3.2, it is shown in Section 3.3 that Yushnaadaircular orders aredentical.
Yushmanov orders are used in Section 4 in a new approach of the problem of fittitgeefatric to a given
observeddissimilarity. Both Algorithms 4and 5 of Section 4.1 involve the solution of a leasjuares
approximation problem atachstep. Theproperty that Yushmanowrders arecircular is extensivelyused to
obtain the low time complexities @(n) in the reconstruction algorithm 2 of Secti8rl and O(n?) in the
fitting algorithm 5. The presence of arbitrary initial choices in the lastdeservegurther studies. Presently, a
procedure based on repeated uses of Algorithm 5 is proposed, involving all the possible first choices. In Section
4.2, some examples are presented. The procedure previously defined is compared with sevaigorithous of
the literatureandappears to be aompetitive one. Wesoncludewith some questions appealing flurther
developments.

2. The encoding of a valued tree withn leaves by -3 path lengths

2.1. Dissimilarities and trees. Let X be a set witm elements. Adissimilarity on X is a non-
negative real functiod on X«X satisfying the following two conditions:

o forall x,y O X, d(x,y) = d(y,x);
o forall x,yOX, d(xy) =d(x,x) = 0.
The dissimilarityd is ametricif it satisfies the classical metric triangular inequality:

for all x, ¥, 20O X, d(x,2) < d(x,y) + d(y,2).

A graphG is alsodenoted as\{(G),E(G)), whereV(G) is the vertexsetandE(G) is a set ofunordered
pairs of distinct elements 8(G), the edge set @; for sake of brevity, an edge is denoted instead of ,v'}.
The degre@(v) of a vertexv is the number of edged] E(G) such that O e. A leafis a vertex ofdegreeone.
In a graphG, apathP between two verticegandv' is a sequence of edges;, v,v,, ..., V,_1V,, V,V'. In fact,



since only paths with all edges distinct will be considered here, a path will be generally identified with the set of
its edges. A tre& is a graph with a unique path, denot€dv), between any two distinct verticeandv. A tree
T has exactly\(T)|-1 edges.
Letu be an inner vertex (that is, not a leaf) of a ffeeand an edgeav. Consider thesetY containingu
and all the vertices' of T such thatuv O T(uv'). TheinducedsubtreeTy is said to be &ranch of T at the
vertex uAll the leaves of a branch, exceptare leaves of.

We mainly consider her¢he so-calledX-trees,relatedwith the setX by two properties: (i) the set of
leaves ofT is X; (ii) for any v O V(T)-X, d(v) = 3. According to the terminology in theBarthélemy and
Guénoche book [2], this means that Xagees considered here ae&paratecandfree In such anX-ree, therole
of the inner vertices, called altient verticeds just todeterminethe shape of the tree; thaye often indicated
without labels in figures. AX-tree has at mosin22 vertices and thusn23 edgesthese numbersorresponding
to the non-degenerate case where all the latent vertices have degrear8ciila¢ion vertexa(x) of x 0 X is the
unigue latent vertex adjacentxdthat is such thata(x) 0 E(T)). The number otdges ofT is denoted ag(T)
(or simply ).

We make correspond afitreeT, to any valued tred@", with X as set oleaves by the repetition of the
following operation: choose eertexu of degreetwo in V(T")-X, delete it andeplacethe edgesvu and uv'
incident tou by a uniqueedgevv'; set/(vv) = ¢'(vu)+ ¢'(uv). When no such vertesemains, anX-tree T is
obtained; complete the end length functionTdoy setting/(vv') = ¢'(vv') for all the edges common I andT".
The treesI andT' have the same leaves and all tiigtances between leavesTi). are preserved iif,. We say
thatT, is thereduced X-treeorresponding witf",..

We considevalued X-treed,, whereT is a tree and is a reallength function onE(T). The functions/
considered here ar@n-negative, with null values possible only on duges adjacent tleaves. Thedistance
t(v,v') between two verticesandv' is equal 10} o7 (wy) ((e); it satisfies the metric triangular inequality.

Let X be the class of all thé-treesT,, valued as above. A dissimilarition X is said to be &ree metric
if it is representable by the length of the paths between the leaves of an eleieAt tnée metric is a metric.
A dissimilarity onX satisfies thdour-point conditionif, for all x, y, z, w O X,

d(xy) +d(zw) < max{ d(x,2) +d(y,w) , d(x,w) +d(y,2) }.

THEOREM 2.1 (Zaretskii [29], Buneman[5], Patrinosand Hakimi [22], Dobson[15]). Let d be a
dissimilarity on X . The following two conditions are equivalent:
(i) d is atree metric;
(i) d satisfies the four-point condition.
Moreover, a tree metric admits a unique tree representation.

As recalled in Leclerc [17], a dissimilarity satisfying the four-point condition fodiatinctx, y, z, w O
X is notnecessarily anetric, but is stilluniquely representable by \alued X-tree, possibly withnegative
lengths on the edges adjacent to the leaves. Such a dissimilarity will betresidisssimilarity

Given three distinct verticas v, w of a treeT, there is a unique vertexhich is common to théhree
pathsT(uv), T(vw) and T(uw). This vertex is called the medianvertex of the triple (1,v,w) and denoted as
m(u,v,w). If X, y, z are three leaves @i, thenm(x,y,2) # X, y, z. In a valued tre€ ,, the distance betweer and
the pathT(y2) is equal ta(x,m(x,y,2)) = ({t(x,y)+t(x,2)-t(y,2))/2; this quantity is denoted dsst(x, T(y2)).

a Cc

Figure 1



A triple (x,y,2) of leaves ofT is saidwell-formedif m(x,y,z) = a(y). Equivalently, thevertexa(y) belongs
to the pathl(x2). For instance, in th&gee ofFigure 1, the triplga,c,d) is well-formed, whereda,c,b) isnot.
Note that, ifx andy aretwo leaves suchihat a(x) = a(y), theneverytriple (x,y,2z) is well-formed.Here is a
simple characterization of well-formed triples in terms of distances:

ProOPOSITION2.2. A triple (X,y,2) of leaves of T is well-formed if and only if thguality dist(y,T(x2))
= Minyox, wexy disty, T(xw)) holds.

Proof. If (x,y,2) is a well-formedtriple, then, dist(y,T(x2) = /(ya(y)). For everyw O X, w # X, YV,
considerthe pathT(yv) fromy to the vertexw which is the closest tg¢ on the pathT(xw); the pathT(yv)
includes the edgga(y), and, so, has a length at leagtial to/(ya(y)). Conversely, the quantitgist(y, T(xw)) is

minimized by those leaveg such thag(y) belongs to the paffi(xw). 0
m(x,y,w) a(z) a(z) mxy,w)
w z z w
Figure 2 Figure 3

Bold lines represent paths ; thin ones represent single edges.

PropPOsITION2.3.Let d be a tree metriconthe set X and x , y , zhrbeelements of Xsuch
that, in the X-tree representation df d , the triple(x,zy) is well-formed. Then, thillowing equality holds
for any wi X-{x,y,z}:

d(zw) = max{d(x,w) + d(y,2) , diy,w) +d(x,2) } - d(x,y).

Proof. For eachw O X-{x,y,Z}, the median vertef1(X.y,W) lies either on the path(¥a(2)) (Figure 2), or
on the patil(ya(2)) (Figure 3), or is equal ta(z). The four-point condition expressesdg,y) + d(zw) = d(x,2)
+ d(y,w) = d(x,w) +d(y,2) in the first case, ad(x,y) + d(zw) = d(x,w) + d(y,2) = d(x,2) + d(y,w) in the second,
and agl(x,y) + d(zw) = d(x,2) + d(y,w) = d(x,w) + d(y,2) in the degenerate third case. The result follows.

So, when the triple X,z,y) is well-formed,the distance betweem and any elementw of X may be
computed from the valuekx,y), d(x,2), d(y,2), d(x,w) andd(y,w).

The following notations are used when an indexp.,..., x, of the setX is given. Forthree distinct
leavesx;, X, X O X, we setAikJ = dist(xk,T(xixj)) = % (d(xi,xk)+d(xj X)-d(x; ,xj)). Sinced satisfies the triangular

metric inequality, the quantitieﬁikJ are non negative: moreove(xi,xj) = Aijyk + Aij,k and AikJ > 0 when the
edgexa(x) has a non-null length. We will also wriaginstead of(x).

2.2. Circular and diagonal orders.We now recall an encoding method, proposed in the Barthélemy
and Guénoche [2] book as a generalization of a method given by Chaiken, Dewmdi$gter [7] in thespecial
case of an unvalued tree. An orderx,,..., %, on X is called adiagonal orderof theX-treeT (Dewdney [14]) if,
for any integek (modulon), the triple & _q, X, X+1) is well-formed.

Consider a graphic planar representatiom fvheretwo edgeshave no othecommon points than a
vertex) and an order obtained as follows: first, thexeas arbitrarily chosen; then, the leavare indexed as,
Xo,..., X, @ccording to a circulgfsay, clockwise) scanning of theubsetX of vertices of T. Such anorder,
frequently calledliagonal planen the literature, will be said hecircular. It has the following property, for any
integerk modulon: when moving on the path(x,x,,1) from x, to x,,4, all thebranches athe encountered
vertices are located on the right. A circular order is diagonal; otherwise, asXMpgX,,X+1) # a(X,): there is
a branch of the tree at the vert€x,), the leaves of which being eitheetweenx,_; andx, or betweerx, and
X+1 in the clockwise scanning, eontradictionwith the hypothesis that therder is circular. Hence the



following result holds:

Figure 4
LEMMA 2.4.Any X-tree T admits a diagonal order.

As the following exampleshows,circular ordersconstitute in thegeneral case a propsubclass of the
diagonalones.According to a remarkbove, ifx andy aretwo leaves suclthat a(x) = a(y), then the only
condition on their places in diagonalorder isthat theyare consecutive (modulm). So, in theexample of
Figure 4, the order (123456 7 89 10) is diagonal. A simple investidatide tothe conclusion that it is
not circular.

THEOREM 2.5 (Barthélemy and Guénoche [2]; see Leclerc and Makarenkov [&8]X= { X;, X,,..., X,
} be alinearly ordered set. For any sequengg, @3, dy3,..., &, G i.q,..., dp, &3, Of 2n-3 strictly positive
real numbers, therexists aunique valued X-tree T, such that d; = ZeDT(Xin) /(e) and X, X5,..., X, is a
circular order of T.

As stated in Leclerc and Makarenkov [18], the functiogs non-negative iindonly if the sequencel;,,
di3 dos,..., dyp, di.10n IS extracted from a metric arrafyor acounter-example, considdre X-tree of Figure 5,
whereX = {Xq, X5, X3, X4}. For such a tree, all the linear orders Xrarecircular. Thesequence ofive positive
real numbers given by, , = d;3=d;4 = dy3 = 2 anddy, =10 leads to a system of five linear equations which has
no solution for this treea+B = 2;a+y=2;a+d = 2; B+y= 2; y+d = 10. In fact, thesequence corresponds to
the valued tree of Figure 6. Since the sequence waextrattedfrom a metric arraythis treehas a negatively
valued edge and is the representation of a tree dissimilarity.

® X2

X1 @ 9 ® X3

® X4

Figure 5 Figure 6
3. A combinatorial obtainment of circular orders

3.1. Yushmanov orders.In his 1984 paper[28], Yushmanov shows it possible #ncode a
positively valuedX-treeT, by 2n-3 lengths of paths between leaves. His work@ependent othe Chaikeret
al. one, even thought that, as these authors, he uses his results in a study of unvalued trees. The main results in
Yushmanov'aper aregecalled inthis subsection with extensions to thases of valuedreesand dissimi-
larities. We also provide algorithms corresponding with Yushmanov's approach.
Let d be a treametric onX, his matrixD, andconsiderthe setsP of pairs of elements such that the



knowledge of the entriesl(x,y)), xy 0 P, allows us to recover the entire mathxprovided the tred is already
known; the setglefined by Chaikenet al. and used inTheorem2.5 are of this type. Denote asp(T,) the
minimum cardinality of such a set. In his paper, Yushmanov first observes that every qifmitg a sum of
lengths of edges d&f. So, a subsd? corresponds to a set of linear equations with gk < 2n-3. The equality
o(T,) = u(T) follows; note that this observation remains valid when the edge lengths are no longer assumed to be
positive. Similarly,considerthe setsQ such that th&knowledge ofthe entries d(x,y)), xy O Q, allows us to
recoverD without anyfurther requirements. Denotieir minimum cardinality asd(T,). Obviously, o(T,) <
A(T,). Indeed, Leclerc [17] gives two ways of determining aCeif cardinality -3 = p(T,), thus proving the
equalityp(T,) = &T,). Yushmanov was the first to exhibit such sets, related with lioelrings x;, X,,..., X,
of X such thatfor all k =n, n-1,..., 2, the triple X;,X,,%.;) is well-formed in a current treEX with k
leaves. Such an order, called hereaftéushmanov ordeis obtained by the procedure 1 described below:

Procedure 1

Initialization. Choose arbitrarily two leaves 6f and index them as andx,,. Setv" =0 andT"=T.

Stepl. Choose a leaf, ; in T" in such a way that the vertey lies on the patf™(x,x,_;). Deletethe leaf x,,
and the edga,x, in T" and reduce the resulting tree in order to obtain theTfrégsetV™1 = {x }.

Stepk+1. Assume the firsk stepshaveled to atree T"k the set ofleaves of which isX-VnK wherevnk =
{Xps e Xk 1

If k =n-2, thenV2 = {x,,....xg} and T2 is reduced tothe unique edgex;X,; sincex, is alreadyfixed, the
Yushmanov indexingy, X,..., X, is completely determined.

Otherwise, choose a leaf,, ; in T in such a way that the vertex_, lies on the patiT™k(x;,X,.1); delete
the leafx,, and the edge,, X, in T™; reduce the resulting tree in order to obtain ttiee TNk1; setvn-k1 =
VKO{X )

The choice of the lead, , ; is always possible: the vertex, adjacent ta,_ in T hasdegree ateast
three defining at least three branches. Any leaf which belongsitamachwhich neither contains thieaf x; nor
consists of the edgg, X, may be chosen ag,_, 1.

The remaining problem is the determination of a Yushmamderwithout theknowledge ofthe treeT.
A solution is provided by argumensdready used irthe proof of Propositior2.2: the possiblehoicesare the
elementsx,,., (differentfrom x; andx,.,) such thatdist(x,, ., T(X,.k.1X1)) = Min,ox.ynk distX, ., T(WX;)).
With the expression aflist(x,, T(wx,)) recalled inSection 2.1x,, ; is an elemenw 0 X-V™K minimizing
the differenced(x,, ,w)-d(x{,w). Such an element is chosen directly on the matrkinfthe formal statement of
Algorithm 1 below (see the notations of Section 2.1). In fact, Algorithm 1 works with any dissimilarity matrix,
tree metric or not, as input; so, the definition of a Yushmanov ordeegfends to all dissimilarities.

Algorithm1: construction of a Yushmanov indexing, X,,..., X, of the set X:
Input: a finite setX with n elements ; a dissimilaritgt on X.
Output: a Yushmanov ordex{, X,,..., X,) on X associated witll.

Initialization Choose arbitrarily two leaves andx,; W := X-{x{,x,}; k=10
Repeat
Find x,,,.1 in W such that:

A(XneoXn-k-1)- A% X ie-1) = Miny oy A% W)-d(Xq,W);

W= W-{x.}
k =k+1
Until W=0

In the k-th step of Algorithm 1,n-k-2 elements ofX are examined.So, this algorithm has time
complexityO(n?). A converse procedure allows to reconstructvileed X-tree T, from thetreemetricd and a

Yushmanov ordexy, x,,..., X, obtained by Algorithm 1 applied h Consider thesequenced(x;,%5), d(X;,X3),
d(X5,X3), ..., d(Xq, %), d(X.Xj11)s---, d(X1,X,), d(X,.1.%) with 2n-3 terms. Fork = 2,..., n-1, we are able to

compute the quantitiesﬁﬁ’kﬂ = dist(X), T(X Xt 1)) = %(d(xl,xk) + d(X1Xa1) - d(XeXp1)) and Aﬂl =



dist(X,;1, T(X1X) = % (d(Xq X 1) + A(XeXir1) - d(X1,%)); they areassumed to bpositive, as it is thecase

when the values; are extracted from a distance matrix. A sequence of valued Tfeasith k leavesk = 2,...,
n, is constructed according to the following Procedure 2:

Procedure 2

Step1 (initialization). Tf is the tree reduced to the unique ergg with length/(x;x,) = d(X1,X,).

Stepk (k= 2,...n-1). A tree T€K with the leaves xX,,..., X has been built. Two cases may occur for ghth
TS (X%

Case 1There exists a vertaxon this path such thax,,u) = A%(,kﬂ. In this case, thdeaf x,,, is the only

vertex to add tngk in order to obtainTékJ'l, with the new edgex,, of length/(ux,,) = Aﬂl.

Case 2There exists an edge' on the pathT/k (X1,%) such that(x;,v) < Atkﬂ <t(x4,v"). In this case, a new
inner vertexu is added orthe edgevv', now dividedinto two edgesuv anduv', with lengths/(uv) = Aﬁ‘kﬂ -

t(xq,v) and/(uv) = t(xq,v") - Aﬁ’kﬂ; then, as before, the legf, ; is added toT[k in order toobtain T€k+1, with

the new edgex,; of length/(ux,q) = AK.

Fork =n, the valued tred/ is equal to T.

In the next Algorithm 2, thi-th step consists of the examination from edge to edge (startingxjoot

the pathT(x,x;) until the good place fothe articulation vertes,, ,, depending onA]'fkﬂ, is found. The new

leafx, is then added to thieee T with a newedgea,, (X, Of length Aﬂl. Note that the number @&dges

examined at this step is no more the¥x. )|, the number oédges ofthe pathbetweenx, andx,,4 in the
final treeT". Some edges are recognized as not belonging to a curre®(ppih the next stefxk+1 and in the
sequel; such edges are included in thé&gBt (and their extremities i(T)). This is due to the observation that
any edge excluded fromme linkedlist P(T) will never return irthis list, sinceP(T) is always completedith
one or two new edges. The complexity of Algorithm 2 is presently estima@}as,<,.1 [T"(XX1)]) +O(n),
and will be shown to be in fa€i(n) in Section 3.4 (Corollary 3.7).

Some further notations are used in the following formal statement of Algorithm 2: giveledwesx, y
of anX-treeT, £(i,T(xy)), w(i,T(xy)) andw'(i,T(xy)) = w(i+1,T(xy)) are respectively the length, the initiartex
and the terminal vertex of theth edge (starting from) of the pathrl(xy); P(T) is the linked list of theedges of
the pathT(x,x,) (starting fromx,), andE(P(T)) andV/(P(T)) are, respectively, thedgesetandthe vertexset of

P(T).

Algorithm 2: Reconstructing a valued tree, Trom atree metric d and acorrespondingYushmanovorder on
X

Input: a finite setX with n elements; the23 entriesd(X,y), Xy O {X{X5, X1X3, XoX3, ..., X1Xj, XiXj41,---» XX
Xn.1Xnt corresponding with a Yushmanov orde,(x,,..., X,) for a tree metricl onX.

Output: the valuedX-treeT, = (V(T),E(T),/) associated witll.

n'

Initialization V(M) =0, E(M) =0, k:= L, P(T) := {X;x};
L(XXo) = d(Xq, %)
Repeat
k:=k+1;i:=1;S:=0
if A]'fkﬂ > Othen
S:=1(1,T(XXq))
u = w'(1,T(xXp))
V= WL T(XXq1)) = X
P(T) :=P(T) - {uvt
if  S>AK,, then
V(T) = V(N)+{x}

else u:=x,



whileS < A¥,,; do
V(T) :=V(M)+{uv}
E(T) =EM+Huv
=i+l
u = wW(i, T(XXp))
v = w(i, T(xxq))
S:=SH(i, T(XXp))
P(T) :=P(T) - {uv
if S> A¥,,; then
E(T) := E(D)+{ 8,1}
P(T) = P(MH{ uay, 1 +{ a1 X1}
By qV) = A]'fk+1—s+€(uv)
(Uag) =S Dy
f(ak+1xk+1) = Allf,il
else P(T) :=P(T)+{ux.1}
U(UXerp) = DFE
until (k =n-1)
E(T) := E(M+E(P(T)); V(T) = V(T)+V(P(T))

THEOREM 3.1 (Yushmanov [28]JThe successive uses of Procedures 1 and 2 mapaiugd X-tree T,
on itself.

Proof. The result is true fon = 3: in this case, th&-tree T has one latent vertexadjacent taits three
leaves and every order ¢his Yushmanov. For an arbitrary ordgr x,, X3, the IengthsA%B, Af3 and Afz of

the edgesix;, ax, andax; are determined by Procedure 2.

Assume that the result is true for evéyree,whereX'is a set of cardinalitp-1. Then, let,,..., X, be a
Yushmanov order oX. By the induction hypothesiBrocedure Zonstructsbeforeits last iteration, azalued
tree T/ with n-1 leaves such that: (i) the leavesTt * are the elements;, X,,..., X1; and (ii) thedistances
between these leaves are given by the restrictiahtofX-{x,}. By the ruleusedfor choosingx,_; at the first
iteration of Procedure 10one also knows that the latenértex a, lies on the pati™(x;x,.1); then, the
determination of thelace ofa, on this path isnade inthe last step oProcedure 2 orsuch a way that the
distanced is realized bythe tree T, for the pairsx;X, andx.X,.;. By the proposition 2.3, thénduction
hypothesis, and the unicity of the tree representation recalled in Th@ateri," = T, is theunique valuedX-
tree realizing the distanakon X. o

Many fitting algorithms of the literature transform a given dissimilarity makjizn X into atree metric
one d; this is thecase ofthe decomposition algorithm drossier[4], the algorithmbased onminimum
spanning trees dfeclerc[17], or thereduction methods dRoux [25]and Gascueland Levy [16]. Then, the
problem of the reconstruction of tixetree representation afremains. Methodke ADDTREE (Sattah and
Tversky [27]) or the scoring method of Luong [19] and Barthélemy and Guénochie E2jmetimesproposed in
the literature for determining the corresponditiyee; as their time complexit@(n®) indicates, theseethods
havenot beendesignedor this particularuse. Starting from theistancematrix of d, the successive uses of
Algorithms 1 and 2 provide the valuetree inO(n?) time, which does not exceed the complexity of any fitting
method.

3.2. An example.For an illustration of Algorithms &nd 2, considerthe valuedX-tree of Figure 7.
Let us start from the corresponding tree metric array (Table 1).
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Setxq = a andky = b ; then, Algorithm 1 computes the quantitiesti(b,T(ax)) forx= ¢, d, e, f, g,
which gives:

2dist(b,T(ac)) = 28+25-5 =48  dist(b,T(ad)) = 28+56-48 = 36

2dist(b,T(ae)) = 28+62-54 = 36  dist(b,T(af)) = 28+67-59 = 36

2dist(b,T(ag)) = 28+49-41 = 36

So,xmay be chosen among d, e, f and g; set, for instgrcal and compute
2dis{(d,T(ac)) = 48+45-5 = 88 dist(d,T(ae)) = 48+8-54 = 2

2dist(d,T(af)) = 48+55-59 = 44  dist(d,T(ag)) = 48+37-41 = 44

So,x; = e and, at the next step, we have: distge T(ac)) = 54+51-5 = 100
2dist(e,T(af)) = 54+61-59 =56  dst(e,T(ag)) = 54+43-41 = 56

Choosingx, = f, we compute: dst(f, T(ac)) = 59+56-5 = 110

2dist(f, T(ag)) = 59+30-41 = 48, leadingx@= g andk, = C.

b 28

c 5 25

d 48 56 | 45

e 54 62 51 8

f 59 67 56 | 55 61

g 41 49 38 37 43 30
a b c d e f

Table 1
a a f
4 24
31
5
c C 1 6
7 9
T?
d e
1 7

Figure 8



3.3. Yushmanov and circular orders are the same. As noticedjust above,circular and
Yushmanovorders aralefined ontwo differentways. Both ways seleatell-formed triples. According to the
results of this section, these two ways lead in fact to the same orders.

PrROPOSITION3.2.Every circular order on the leaves of an X-tree T is Yushmanov.

Proof. We prove the result by induction anfor n = 3, all orders oiX are both circular and Yushmanov.

Assume the result is true for alitrees with at mosb-1 leaves. Lefl be anX-tree withn leavesx;,
Xo,..., X, indexed accordingly with a circular order. Consider the péthx, ;) betweenx; andx,_;. Since the
triple (x,.1.X,,Xq) is well-formed, we have the configuration of Figure 9, wilx,,_1,X,.X;) = a,. So, thevertex
a, belongs to the patfi(x;X,.q); it follows that Procedure 1 ofSection 3.1can beperformed toobtain a
Yushmanov indexinyy, Y,.,..., ¥, of X, with choices in Initialization and Step 1 leading/{e= Xy, ¥,,..1 = X1
andy, = X,.

an
X1 Xn-1

w Xn

Figure 9 (with the same conventions as Figures 2-3)

Then, in the tred, delete the vertex, and the edge,x,, and reduce the obtained tree. A new Teavith
the leavexq,..., X,.1 iS obtained. From a planar representatioi atimitting the previousircular indexingx,
Xo,...,Xn, We derive glanar representation 4t with x4,..., X,.q as a circulaindexing.So, by theinduction
hypothesis, thisorder is Yushmanov. It follows that itan be obtained bfProcedure 1with x; andx, ; as
vertices chosen in the initial step; that is, the Initializatiod Step 1mentionedjust above can be continued
according to Procedure 1 in order to obtain the axger., x, onX. 0

® X1 X5

/

A%—l,n §

Xn._a']

{
o\ Xn-2

Figure 10

Xn-1

ProPOSITION3.3.Every Yushmanov order on the leaves of an X-tree T is circular.

Proof. Let T be anX-tree withn leavesxy, x,,..., X, indexed according to a Yushmanonder. Wemust
show that there exists a planar drawind &br which this order is circular. This is obviously true fior 3, and
we proceed again by induction on
Assume the result is true for afitrees with at mosh-1 leavesandlet T be anX-tree withn leaves.
After deletion of the edga,x, and reduction of the obtained tree, a new Tree obtained, with leaves,..., X,
1 still indexed accordingly with a Yushmanov order. By the induction hypothesis, there exists a planar drawing of
T' such that this order is circular. As a consequence, there is no branch on the left when movixyg, ftorm;
on the patiT(x,.;X;). Add the vertex,, on this path at thelace specified byAlgorithm 2; thedrawing of the



edgea, X, on the left of the patf(x,_1X;) givesxy, X,,..., X, as a circular order af (Figure 10).
Propositions 3.2 and 3.3 assemble into the following

THEOREM 3.4 An order %, % ,..., % onthe leaves of arX-tree T iscircular if andonly if it is
Yushmanov.

Now, Yushmanov's algorithm dppears to be purely combinatorialfree of geometric representation,
construction of circular orders. For a dissimiladtgn X, a linear ordeC on X derivedfrom d by Algorithm 1
will be called "circular" ifd is known to be a tree metric, and "Yushmanov" otherwise.

3.4. Further properties of circular orders and recognition of a tree metric. The
following Algorithm 3 decideswhether agiven dissimilarity matrixd is a treemetric. The elements of are
examined in an order provided by Algorithm 1. Whgp is examined, Proposition 2.3 gives a formigiading
to valuest(j,k+1) of thedistance betweethe leavesq andxy,, in thetreeT, for allj = 2,..., k-1, under the
hypothesis thatl is a tree metric. These computed valaes compareavith the actual onesandthe conclusion
follows; in the statement below, the "return" command means the exit from the algorithm.

Algorithm 3: recognition of a tree metric

Input: a finite setX with n elements; a dissimilaritg on X and acorrespondingrushmanovorder §q, X, ...,
Xp) on X.

Output: the answer "Yes" ifl is a tree metric; the answer "No" otherwise.

Initialization
ComputeA3 3, ATz andA7,.
if  (A3320,A320,A7,20)
else print "No"
return
k:=3
repeat
ComputeA i1, Afsp and AKE
it (Okga1= 0, Afu 20, A5 > 0)then
for j=2,...,k-1 do
10K+ 1) =max{d(x,%)+ d04Xe), A0 %)+ A} dXe.%)
if (t(,k+1) # d(xj,xk+1)) then

print "No"
return
else print "No"
return
k:=k+1
until (k=n+1)

print "Yes"

Recall Aik, j = disl(xk,T(xixj)) = %(d(xi,xk)+d(xj,xk)—d(xi,xj)). The time complexity of Algorithm 3 is

O(n?), similar to previous algorithms addressing the same problem (final note in Bandelt [1], Leclerc [17]).

Theorem 3.4 suggests some remarks about circular ofeless. asillustrated in the example of Section
3.2 above, whed is a tree metric, several Yushmanov orders maglainedwith the same initiaverticesx;
andx,, this is due to the fact that tree metrics are strongly constrained, although their regularitieslicitiyot
appear in their matrices. So, arbitrary choices may be needed at every step. This explains why the(mamber
of possible initial choices differs from the number of circuaaters (definednodulon), for instance 22 for an
X-tree with the maximum numbar2 of latent vertices. On the other hand, in the general case of a dissimilarity



d without special properties, ties on the valued(rf ,,w)-d(x;,w) rarely occur in Algorithm 1 andthe number
of different Yushmanov orders is closerim-1). Note also that the choice of the initial verkgxn Algorithm 1
finally does not matter when the purpose is just to obtain a cirotdar, because dhe following consequence
of Theorem 3.4:

COROLLARY 3.5.1f X1, %,..., % is acircular order on the leaves of an X-tree T, then, for anyl k
{1,...,n}, the order X, X1 .,--s %+ X+ % ..., %1 IS again circular.

Another property of circulaorders is relatewvith the induction on the number used inthe proof of
Proposition 3.3. With the remark that the difference betvaéen ,x,)+d(x,.X;) andd(x,.1,X;) is two times the
length of the new edgg x,,, the following Proposition 3.6, already stated by Yushmanov, holds:

PrROPOSITION3.6. The sum/(T) of the lengths of the edges of/aluedX-tree T, is given by2/(T) =
d(X1,:%5) + d(Xo,X3) + d(Xg,X4) +...+d(X,.1.X,) + d(X,,X1), provided X, X,,..., X, is a circular order on X

Especially, in the unvalued case, the silx,x,) + d(X,,X3) +...+ d(X,,X{) is two times the number of
edges of the tree.

COROLLARY 3.7.Algorithm 2 reconstructs a valued X-tree T with n leaves {m) Operations.

Proof. As a consequence dhe previous resultapplied to the unvalued case,the number
Y 1<ken-1 ITN(XX+D)|, which is an uppebound ofthe number of thedges examined ithe algorithm, is two
times the number of edges of the final trée.

4. A fitting method

4.1. Two fitting algorithms. This section isdevoted tothe problemyvery oftenaddressed in the
literature, of fitting atree metrict to a given dissimilarityd. Algorithms of various typeblave beemiven or
recalled, for instance, by De Soete [12], Luong [19], SastodiNei [26], Barthélemyand Guénochd2], Roux
[25], Leclerc[17], De Soeteand Caroll [13], Gascueland Lévy [16]. The best time complexity ofuch
algorithms isO(n?); the algorithms reaching such a complexitg rarelygood forglobal criteria like the least
squares one. In fact, the least square approximation of a dissindlagity tree metritis shown to beéNP-hard
in Day [10] (see also Day [11]). For this problem, the heuristics gisatgfactory resultbaveusually a time
complexity ofO(n%) or O(n%), the Saitouand Nei NJ (nearestjoining) method in O(n3) being anoticeable
exception. For many problems of data analysis, where the purpose is to handle large data sets, a complexity order
of O(n%) or O(nd) is too high. Sinc®(n%) algorithms are still currentlproposed fothe fitting of tree metrics,
it seems that the situation different in many applications of this problem. Vdescribe heréwo algorithms
based on Yushmanov orders. They proceed by successive locadeagtsapproximationsand arebasically in
O(n?). Global approximation and repetitive uses wiltreasethis complexity up toO(n?) or O(n®) in Section
4.2, with seemingly good performances (Section 4.3).

The principle of the algorithm is as follows: at the step< k< n-1, a current valued tre&* hasbeen
determined, with the leaves..., x}. The vertexa,,  is assumed to be on the paifi(x;x,) of this tree and a
reconstruction procedure is introduced to obtain the't'fé*&, with thefurther problem of the determination of
the best place ai,, on the pathTfK (x1x). At the final stem-1, the valueK-tree T, corresponding tdhe tree
metrict is obtained. In the determination of the best placg gf the lengthsa, B andy, of, respectively, the
paths T} (x,a,.,1) and T (a,,1%) and the edge,, %1, are adjusted at each step according to a sepstres
criterion. Two methods are proposed here. In Algorithm 4, the computations at thea&teipased othe only
two valuesd(x;,X1), d(X.X4q) Of the initial dissimilarity, together with the valig,x,) determined at the
previous step; this computatimorrespondsvith ProblemP, . In Algorithm 5, the besplace fora,; is
determined for each edge of the patthK (x1%), taking in account all the initial valuelx;,x,.1), i = 1,...k.
This computation corresponds with ProblBg)(uv). The edge leading to the best fitting is chosen.



Problem P, (see Figure 11)

u &+1 v
S ) (S —
a y B
Xk+1
Figure 11

MINIMIZE (@ + y- d(X1,Xk+1))2 + (B + y - d(Xk,Xk+1))2,
subject to:a+ =t(X1,Xk) (determined at the previous stepk 0; = 0; y= 0.

SetA = d(Xk,Xk+1)-t(X1,Xk)-d(X1,Xk+1) andB = t(X1,Xk)-d(Xk,Xk+1)-d(X1,Xk+1); the problem reduces:as

MINIMIZE a2 + )2 + Aa + By,
subject to:a = 0; y= 0; t(xy,%) - a = 0.

With the use of the Lagrange function (see for instance Ciarlet [8] or Minoux [21]):
F(A1A2A3) = a2 + 2 + Aa + By - A0 - Ay + As(a - t(X1,X),
whereA; = 0 fori = 1, 2, 3, we obtain a necessary conditioroandy for reaching the minimum:a(,y) O {(-
A B A B B

Among these couples, choose the one satisfying the constraints and actually realizing the minimum.

Xp Xp+1
u &+1 v
S S (S
a % B
Xk+1
Figure 12

Problem Py :

Let uv be an edge of the paiff(x,x,), u being its extremity closest tq. Since the ordex;, X,,..., X, on the
leaves ofT[K is circular, there always exists an ingesuch that all the leaves, ..., X, are on the sam&de of
a1, while Xp41s--- 1% @re on the other side (Figure 12). Takingactountthe distanceddist(x;, T(x;x,)) for all
elementsx;, 2<i < k-1, we obtain the following quantity to minimifer the bestplace fora,,; on theedge
uv:

ProblemP,  (uv)

MINIMIZE (@ + - d(X; X 1))2 + (B + Y - A(Xi Xy 1))?

+ Y ocicp (A(Xi X 1) - (@ - dist(xq, T(xx,)) + dist(x;, T(xyx)) + )2

+ 3 prasicke1 (A0 Xer1) - B - distxy, T(xqx)) + dist(x;, T(x;x)) + 02,
subject to:a + B =1t(Xy,X); B2 0; y= 0; t(Xq,u) < a < t(xq,v),

wheret(x,,u) andt(v,x) are the distances between the corresponding vertices in the vaIuE!((j tree
Set A = d(XgXr1), A = d(XieXiern) - 10X %),

A; = d(X,X1) - 1X5%) + t(xq,x) for 2<i<p, and

A; = d(X;, Xy 1) - 1(x1,%) for p+1<i < k-1. After reduction, the problem is now:

MINIMIZE 3 1qicp (+FAD? + T piacick (A-V+A),
subject to:y = 0; t(xq,uU) < a < t(xq,v).



SettingB = 4p-2k, C = 2, 1<i<ck A - 22 1<i<p A @NAD = - 23 1 Aj, One gets:

MINIMIZE ka2 + k)2 + Bay + Ca + Dy,
subject to the same constraints.

Consider the Lagrange function:
F(A1.A2,A3) = ka2+ky2+Bay+Ca+D y+A; (a-t(X1,V)-Ao A5 (t(xg,U)-0).
The necessary conditions for minimum are:
F'g=2ka+By+C+A;-A3=0;
F'y=2ky+Ba +D -2, =0;
Aq(a-t(xq,v)) = 0; A,y = 0; A5(t(xq,u)-a) = 0,
Where)\j >0forj=1, 2, 3.

This system of equations leads to six possible solutions:

1. a =t(xy,Vv), y=0;

Bt(xq,v)+D
2. a =t(Xy,v), y= - —=~L_—-
(XV), ¥ K
C
3. a=-—,y=0;
2k
BD-2kC _ BC-2kD

4, a=2" = 22T
a2-g2' VT a2 g2

5. a =t(xq,u), y=0;

Bt(xq,u) + D

6. a =t(xq,u), y=- K

Among the couplesd,y) above, choose the one satisfying the constraintsactually realizing the
minimum. Endof ProblemP,  (uy).

Among the edges of the palff‘ (x1%), choose the one realizing the minimugmdof ProblemP, .

In the following statement, the notatiomase the same as in Algorithm 2; moreovev(0,T(x;X)) =
W(L,T(X%)) = W'(0,T(X1%)) = Xq.

Algorithm 4: construction of a valued X-tree from a dissimilarity d
Input: a finite setX with n elements; a dissimilaritgt on X.
Output: a valuedX-treeT, = (V(T),E(T),?).

Initialization . Compute a Yushmanov ordex;(Xs,..., X,) onX;
V(T) = {Xq, X5} E(T) 1= XX, £(X1%5) 1= d(Xq,%o); k=1
Repeat
k:=k+1;S:=0;i:=0
The problem is to add the le¥é 1 to the current valuettee TS with leaves<,... Xk.
Solve ProblemP,  (a, y) for the pathT/ (x;x,)
while S<a do
=i+l
S=SH(iI,T(X1%))
u = w(i, T(X%)); v = W'(i, T(X;X,))
if S=athen
V(T) = V(T) D X}
E(T) := E(T)0{ U 1}



(U¥s1) =Y
elseV(T) := V(T)O{ ay1 X 1}
E(T) = E(N-{uV}) O{ U8 Va8 et}
g(ak+1xk+1) =Yy
L(Udyyq) = a - S+ 01, T(X1%))
l(va,q) =S-a
until (k =n)

Algorithm 5: construction of a valued X-tree from a dissimilarity d
This algorithm is identical to Algorithm 4, except the instructiBolve ProblemP; ,", which is replaced with

"Solve ProblemP, ".

4.2. Time complexity and strategies for the use of Algorithms 4 and ZroblemPy, is
solved inO(1) and the obtainment of a Yushmarmder by Algorithm 1 is O(n?). Then, Algorithm 4 has the
same time complexitP(n?). In ProblemP, , using thefact that the Yushmanowrder is circular, we can
proceed to a careful updating from edge to edge on theTpﬁ‘e(ﬂixk): when moving from the edger to the next
edgevw, it is not necessary to compute again all the vafye$his computation has to be done just for Atle
such thatm(x,,x;,x,) =V andi # 1, k; their number is thelegree ofv minus two. The total number sfich
operations related to the paitf (X%, is exactlyk-2, fork = 3,...,n. Finally, though the steps of Algorithm 5
seem more complicated than those of Algorithm 4, each step is aOgdsind this algorithm i©(n?) again.

As reported at the beginning of this section, such a time complexity is very goo@(fyanethods are
proposed in Leclerfl7]. Theyare based omombinatorial properties dfee metrics,andnot relatedwith the
least squares criterion.

Indeed, this time complexit®(n?) is not realistic (at least at thpgesent state dhis study): theinitial
choice ofthe elements,; andx, is important in the use of algorithms 4 or 5, sinceldétermines in fact a
Yushmanov order among all the possible ones. Further studies or experimentationsedédsary to have an
idea ofthe best strategy fdhis choice. In theexperimentakestings of the next subsection, we use the low
complexity of Algorithms 4 and 5 to develop the alternative approach consisting of trying all the possible initial
pairs &;,x,). It gives twoO(n?) methods, called Methods 1 and 2, based on Algorithms 4 and 5, respectively.

Both Methods 1 and 2 are completed with an adjustment of the lengths of the edges, once the topology of
the obtained tree is fixed. Based on a least squares criterion on the differences between the obtained tree metric and
the initial dissimilarity, thisquadraticapproximation isperformedwith the Gauss-Seidel method proposed in
Barthélemyand Guénochg([8], pp. 60-66;see for instanc€iarlet [8]). Since itrequires anO(n?) time, it is
mainly interesting for algorithms having at ledisis complexity. Even with this improvemergpod results
may hardly be expecteffom Method 1,because othe localcharacter ofProblemP, . In Method 2, the
approximation is done on the obtained trees that give the best result for theqleastcriterion. Thenumber
of these trees is a small fixed one in Method M210(@in¥)), and of orden in Method M22 (inO(n®)).

4.3. Experimental results.Algorithms 1, 4 and 5 have been programmed in tf& @ogramming
language and tested on a MS-DOS machine of IBM-PC type.

We use an evaluation metheihilar to that of Pruzanski, Tversky et Caroll [23], De Soete [12] and
Gascuel et Levyl6]. Eachdataset isobtained adollows: first, anX-tree with n leavesand 2-3 arétes is
generated at randoiffior n = 12, 18, 24). The lengths of thelges arechosen atrandomfrom a uniform
distribution on thereal interval [0,1]. Then, the values of tledrresponding treenetric are computed and
normalized to have a unit variance, leading to a valagdeTT. A normal random noise of mean 0 and variance
02 = 0.1, 0.25, 0.5 isdded tothese values to obtain tldistanced; in the rare cases where negativevalue
d(x,y) results from these operations, this value is replaced with 0.01. A number ofatk@@ts isgenerated for
each pair of values afando.

The results obtained from our methods M1 and M2 (with the variants ai@M22 describedabove) are
compared with those of the classical NJ method. We also consider the trli€ whieh, contrary to thease of



observed data, is known in these experimental ones.

The quality of the adjustement is evaluated by the means, computed on all teertesfgonding teach
pair (h,0), of two quantities:
1. The proportion of explained variance, as given by a formula of Pruzanski, Tea&aroll [23], where
m(d) is the mean value afandt is the fitted tree metric:

¥ o2 (A0y) = t(xy))? O
3 o2 (d0) = m(d)?

i
%\Var = 100@—

This quantity is alsaleterminedor the tree metric obtained aftequadraticapproximation (columni'%Var+").
With this approximation, the NJ method become®ét) one.

2. The topologicaldistance ofRobinson and Foulds [24] betweenthe true tree TT and the X-tree
representation df It is a least movelistance the elementarymove betweentwo X-trees being theleletion or
the addition ofthe split correspondingvith an edge;that is, it is the symmetridifferencemetric on X-trees
defined as sets of splits (Buneman [5]; see Barthélemy and Guénoche [2], ch. \d)stihee betweetwo trees
is expressed as a percentage of the maximum velée 3

02=0.1 02 =0.25 02=0.5
M1 | 88.14| 93.54| 12.74 73.9B 84.98 18.p6 6149 7584 2457
M21 | 92.62| 93.66| 10.44 8324 8544 160 73186 76196 2163
n=12] M22 | 92.62| 93.69] 9.80] 83.24 8596 14.J0 7386 77|17 20390
NJ | 92.70| 93.63 10.4‘] 83.3P 8544 16.p7 73149 76175 2463

TT 90.13 | 93.49 78.08| 84.94 64.67| 75.64

M1 | 84.80| 92.26/ 17.54 68.6p 8298 27.J2 51|52 69|89 3448
M21 | 91.33 | 92.57| 12.14 80.8p 83.85 20.fy7 68130 72112 31475
n =18 M22 | 91.33| 92.61| 11.64 80.8p 83.43 19.y3 6830 72|55 2908
NJ | 91.42| 9255 128 81.0p 8391 21.fy5 67)96 7233 3104

TT | 90.17 | 92.46 78.23| 83.28 63.72| 71.80

M1 | 82.74| 91.28]| 23.64 65.4p 80.05 37.B3 46J47 66124 44.92
M21 | 90.42 | 91.83] 16.64 79.04 82.07 28.03 64162 69,65 374.02
n =24 M22 | 90.42| 91.93| 1354 79.04 82.34 28.p8 6462 70124 35.60
NJ J90.67 | 91.89] 1590 7941 82.37 26.p2 66/68 7056 33.79
TT | 90.00] 91.86 78.40| 82.20 64.41| 70.35
% VAR|%VAR4 RF | % VAR %VARt RF | % VAR %VAR} RF

Table 2

The analysis of the results leads to the following observatmmmparedwith the othersMethod M1 is
too elementary togive satisfactory results. Theuadratic approximation is a very efficientool for the
improvement of the variance percentage. When themasid 2 or 18, Method M21 gives globally better results
than NJ, and Method M22 is globally the best one in these tdst@rtheless, method NJ is thest robust
when the size of the data and the variance of the noise both increases Bdrando? = 0.5, it still gives the
best results.

A further experiment is based on tHata of Case [6] (immunologicatlistances betweemnine species of
frogs), frequently used for similar testing (see for instance Saitou and Nei [26] and Gascuel and LéTalls]).
9 gives these distances.



1: Aurora
2: Boylii 10
3: Cascadae 13 7
4. Muscosa 12 7 7
5: Temporaria 57 50 40 45
6: Pretiosa 22 9 11 15 48
7: Catesbiana 86 65 54 48 85 54
8: Pipiens 89 67 66 49 83 55 54
9: Tarahumarae 97 72 79 67 107 60 59 48
Table 3
Catesbiana
Pipiens
Tarahumarae
— Pretiosa
Temporaria
Muscosa
Cascadae
Boylii
Aurora
Figure 13

Five fitting methods are compared here: the methods M21 and M22 of this paper, the NJ method, and two
other methodsecognized togive generallygood results: themethod of scoregMS) of Luong [19] and
Barthélemyand Guénochg?2], based orthe grouping of pairg, y such thatd(x,y) + d(zw) < max{ d(x,2) +
d(y,w) , d(x,w) + d(y,2 } for a maximum number of pairg w (it may beconsidered as e&efinement of the
ADDTREE method of Sattah and Tversky [27]); and the reduction method of Gasulisévy [16], denoted here
GL (it iteratively modifies the values of the dissimilaritpwards adissimilarity satisfying the four point-
condition). These last two methods &@@?®). The bestree obtained by Method.2 andthe correspondingree
metric are given in Figure 13 and Table 4.

Five criteriaare usedfor the comparison of the methods. The combinatorial criterion NI (humber of
inversions) is the number gjuadruplescyzw such that aunique minimum among thehree sumsd(x,y) +
d(zw), d(x,2) + d(y,w) andd(x,w) + d(y,2) disagreesvith the configuration of th@btainedX-tree. Thecriteria
AAD, MAD and MSD respectivelycorrespond tdhe averageabsolutedifference,the maximumabsolute
difference and the mean squared difference betweeratbes of the initial dissimilarity matriandthe obtained
tree metric one. The criterion L, not available here for the reduction method, is the total lengtioléitiesl
valuedX-tree, a short length being in agreement with the "parsimony principle" of phylogenetioit&itien
values given in Table 5 are those obtained after the quadratic approximation of the edge lengths mentioned in the
previous subsection. INethodM21, the approximation is justoneone time, on the bestee forthe least
squarescriterion. Here,Method M22, where n treesare usedor the approximationprovides a significant
improvement to thefew number of trees (herdhree) considered inMethod M21. The obtained tree is
topologically an intermediate between those obtained by Saitou and Nei (also by method M21), orh#re one



and GascuelandLévy, on the othehand: it just differs from the former by the exchange otthe places of
MuscosaandCascadagand from the latter by the exchang& emporariaandPretiosa Contrary to theGascuel
and Lévy method, the quadratic approximation is necessary to obtain a good fit.

1 2 3 4 5 6 7 8
2 13.22
3 16.61 3.39
4 20.88 7.66 4.35
5 60.66 47.43 44.13 39.78
6 28.71 15.49 12.18 7.83 40.78
7 76.03 62.81 59.50 55.15 88.12 50.39
8 79.37 66.15 62.85 59.00 91.47 53.73 50.93
9 90.52 77.30 73.99 69.64 102.61 64.87 62.07 48.00
Table 4
ANl  AAD MAD MSD L
Scores n.a. 4.76 12.25 32.80 172.0
NJ 26 4.71 11.21 30.12 171.9
GL 23 4.52 10.05 28.95 n.a.
M21 26 4.71 11.21 30.12 171.9
M22 23 4.61 9.97 28.27 170.7
Table 5

5. Conclusion

The results and algorithms presented in this paper give evidence that Yuslorders\are amnteresting
tool for the study of tree metrics. Among the questions arising about dhdens,two of them seenespecially
interesting: the possible significance of Yushmanwolersfor other types of dissimilaritiegndtheir relations
with the previously known combinatorial propertiesti@fe metrics orX-trees(for instancethe 4-ary relations
characterized byolonius and Schutze [9], the sets aplits of Buneman [5]andthe relations withminimum
spanning trees in Leclerc [17]).

Concerning the fitting algorithms of Section 4, the natural question dg\ize away of preserving the
low complexity of Algorithms 4 or 5Here, this low complexity justallowed us to generat@any good
candidatetrees,and tolook for the bessolutions among thesmndidatesAnother direction ofresearch is to
generalizethe method to other criteria, for instance theightedleastsquareone. An algorithmbased orthis
criterion andsharing somdeatureswith thosepresentedhere, but without the use ofrcular ordershas been
proposed by Makarenkov [20].

An important fact is the geometric significatiaeJated toplanar representations, of Yushmarmders.
Some uses of these orders for the drawing of trees, possibly directly from a dissimilarityreayalyeexpected:
for instance,circular orders correspond tthe so-calledhierarchical drawings of an X-tree (Barthélemy and
Guénoche [2], p.28). In such a drawing, inspired by the dendrograms of Numerical Taxonomy, theritest
are represented by horizontal lines, the upper one corresponding to the choice of a redge$tathe tree are
represented by vertical lines and no crossergsallowed. These orderthat can be obtained agght-left orders
on the leaves in a hierarchical drawing, have been studied by Brossiertig]dase of dendrogramBjgure 14
shows a hierarchicalrawing ofthe tree ofFigure 4, with the right-leforder 10 9 4 3 6 5 8 7 2 Which is
circular. One may alsexpectthat the algorithmslescribechere could be modified irder to lead to a new
family of low complexity methods of hierarchical classification, very different from the single linkage algorithm,
which is, up to our knowledge, the only onedm?).



Figure 14
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