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Circular orders of tree metrics, and their uses for the reconstruction and fitting
of phylogenetic trees
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ABSTRACT. The circular orders associated with the planar drawings of an X-tree (or

phylogenetic tree) have been studied by several authors. They allow an encoding of an X-

tree by 2n-3 numbers (where n is the number of elements of X), the lengths of some

paths between leaves of the tree. It is shown here that circular orders are the same as those

obtained from the table of a tree metric by a construction due to Yushmanov [28]. It is

also observed that this construction applies to any dissimilarity, tree metric or not. Several

fast algorithms (of complexity O(n2)) are derived from these results: for the determination

of a Yushmanov order; for the reconstruction of the valued X-tree represention of a tree

metric; for the recognition of a tree metric; and for the fitting of a tree metric to a given

dissimilarity; the fitting method is based on successive local least squares approximations.

Tested on various experimental and real data, it gives satisfactory results.

RÉSUMÉ. Plusieurs auteurs ont étudié les ordres circulaires associés aux représentations

planaires des X-arbres (ou arbres phylogénétiques), en particulier pour le codage d'un X-

arbre valué par 2n-3 longueurs de chemins d'une feuille à une autre (n étant le nombre

d'éléments de X). On montre dans cet article que ces ordres circulaires sont les mêmes

que ceux obtenus à partir de la table d'une distance d'arbre par une construction due à

Yushmanov [28]. De plus, cette construction s'applique à toute dissimilarité, distance

d'arbre ou non. Ces résultats permettent d'obtenir plusieurs algorithmes rapides (de

complexité O(n2)) : pour la détermination d'un ordre de Yushmanov ; pour la

reconstruction du X-arbre valué représentant une distance d'arbre ; pour la reconnaissance

d'une distance d'arbre ; et pour l'ajustement d'une distance d'arbre à une dissimilarité d

donnée. Ce dernier comporte des approximations locales successives par les moindres

carrés. Il conduit à une procédure d'ajustement qui donne des résultats intéressants sur les

exemples sur lesquels elle a été testée.
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1. Introduction

Let X be a finite set with n elements. We consider a tree T with leaves labelled according to X. When T is
endowed with a non-negative edge length function, a tree metric d on X is defined as follows: for all x, y ∈  X,
d(x,y) is the length of the unique path of T between the leaves x and y.

The classical representation of a metric on X by the matrix of its values for all pairs of elements of X is
fairly redundant in the case of a tree metric. Two ways of summarizing a tree metric by 2n-3 entries, the
minimum possible number, are presented in Leclerc [17]. Thay are both based on minimum spanning trees;
previously, Barthélemy and Guénoche [2], generalizing a result of Chaiken, Dewdney and Slater [7], have shown
the entire matrix of a tree metric d to be defined by its restriction to another set R of 2n-3 entries associated with
a so-called diagonal plane order on X. Diagonal plane orders are defined in geometrical terms, in relation with the
planar drawings of T. On the contrary, the knowledge of such a graphical representation is not needed for the
determination of the linear orders defined by Yushmanov [28], together with another way of summarizing a tree
metric by 2n-3 entries; Yushmanov orders are directly obtained from the matrix of d.

It is shown here in Section 3 that circular and Yushmanov orders are in fact exactly the same. This paper
is devoted to the study of these orders, and their use in an approach of the problems of recognition,
reconstruction and fitting of tree metrics.

The paper is organized as follows. Basic definitions are recalled in Section 2.1; Section 2.2 includes a
synthetic presentation of the diagonal and circular orders associated with a valued X-tree, with some of their
properties. Although the results of this section are not new, some of them are given in new statements, more
complete than the previous ones, and with simplified proofs. Yushmanov's results, with the presentation of his
orders, are recalled in Section 3.1. It is emphasized that the definition of Yushmanov orders extends to all
dissimilarities. Two algorithms are given, the first one for the determination of a Yushmanov order and the
second for the reconstruction of the valued X-tree associated with an initial tree dissimilarity. After an illustration
of these algorithms in Section 3.2, it is shown in Section 3.3 that Yushmanov and circular orders are identical.
Yushmanov orders are used in Section 4 in a new approach of the problem of fitting of a tree metric to a given
observed dissimilarity. Both Algorithms 4 and 5 of Section 4.1 involve the solution of a least squares
approximation problem at each step. The property that Yushmanov orders are circular is extensively used to
obtain the low time complexities of O(n) in the reconstruction algorithm 2 of Section 3.1 and O(n2) in the
fitting algorithm 5. The presence of arbitrary initial choices in the last one deserves further studies. Presently, a
procedure based on repeated uses of Algorithm 5 is proposed, involving all the possible first choices. In Section
4.2, some examples are presented. The procedure previously defined is compared with several good algorithms of
the literature, and appears to be a competitive one. We conclude with some questions appealing for further
developments.

2. The encoding of a valued tree with n  leaves by 2n -3 path lengths

2.1. Dissimilarities and trees. Let X be a set with n elements. A dissimilarity on X is a non-
negative real function d on X∞X satisfying the following two conditions:

• for all x, y ∈  X, d(x,y) = d(y,x);
• for all x, y ∈  X, d(x,y) ≥ d(x,x) = 0.

The dissimilarity d is a metric if it satisfies the classical metric triangular inequality:

for all x, y, z ∈  X, d(x,z) ≤ d(x,y) + d(y,z).

A graph G is also denoted as (V(G),E(G)), where V(G) is the vertex set and E(G) is a set of unordered
pairs of distinct elements of V(G), the edge set of G; for sake of brevity, an edge is denoted vv' instead of {v,v'}.
The degree ∂(v) of a vertex v is the number of edges e ∈  E(G) such that v ∈  e. A leaf is a vertex of degree one.
In a graph G, a path P between two vertices v and v' is a sequence of edges vv1, v1v2, …, vk-1vk, vkv'. In fact,



since only paths with all edges distinct will be considered here, a path will be generally identified with the set of
its edges. A tree T is a graph with a unique path, denoted T(uv), between any two distinct vertices u and v. A tree
T has exactly |V(T)|-1 edges.

Let u be an inner vertex (that is, not a leaf) of a tree T, and an edge uv. Consider the set Y containing u
and all the vertices v' of T such that uv ∈  T(uv'). The induced subtree TY is said to be a branch of  T  at the
vertex  u. All the leaves of a branch, except u, are leaves of T.

We mainly consider here the so-called X-trees, related with the set X by two properties: (i) the set of
leaves of T is X; (ii) for any v ∈  V(T)-X, ∂(v) ≥ 3. According to the terminology in the Barthélemy and
Guénoche book [2], this means that the X-trees considered here are separated and free. In such an X-tree, the role
of the inner vertices, called also latent vertices is just to determine the shape of the tree; they are often indicated
without labels in figures. An X-tree has at most 2n-2 vertices and thus 2n-3 edges, these numbers corresponding
to the non-degenerate case where all the latent vertices have degree 3. The articulation vertex a(x) of x ∈  X is the
unique latent vertex adjacent to x (that is such that xa(x) ∈  E(T)). The number of edges of T is denoted as µ(T)
(or simply µ).

We make correspond an X-tree Tl to any valued tree T'l' with X as set of leaves by the repetition of the
following operation: choose a vertex u of degree two in V(T')-X, delete it and replace the edges vu and uv'
incident to u by a unique edge vv'; set l(vv') = l'(vu)+ l'(uv'). When no such vertex remains, an X-tree T is
obtained; complete the end length function on T by setting l(vv') = l'(vv') for all the edges common to T and T'.
The trees T and T' have the same leaves and all the distances between leaves in T'l' are preserved in Tl. We say
that Tl is the reduced X-tree corresponding with T'l'.

We consider valued X-trees Tl, where T is a tree and l is a real length function on E(T). The functions l
considered here are non-negative, with null values possible only on the edges adjacent to leaves. The distance
t(v,v') between two vertices v and v' is equal to ∑e∈ T(vv') l(e); it satisfies the metric triangular inequality.

Let X  be the class of all the X-trees Tl, valued as above. A dissimilarity d on X is said to be a tree metric
if it is representable by the length of the paths between the leaves of an element of X . A tree metric is a metric.
A dissimilarity on X satisfies the four-point condition if, for all x, y, z, w ∈  X,

d(x,y) + d(z,w) ≤ max{ d(x,z) + d(y,w) , d(x,w) + d(y,z) }.

THEOREM 2.1 (Zaretskii [29], Buneman [5], Patrinos and Hakimi [22], Dobson [15]). Let  d  be a
dissimilarity on  X . The following two conditions are equivalent:
(i) d  is a tree metric;
(ii) d  satisfies the four-point condition.
Moreover, a tree metric admits a unique tree representation.

As recalled in Leclerc [17], a dissimilarity satisfying the four-point condition for all distinct x, y, z, w ∈
X is not necessarily a metric, but is still uniquely representable by a valued X-tree, possibly with negative
lengths on the edges adjacent to the leaves. Such a dissimilarity will be said a tree dissimilarity.

Given three distinct vertices u, v, w of a tree T, there is a unique vertex which is common to the three
paths T(uv), T(vw) and T(uw). This vertex is called the median vertex of the triple (u,v,w) and denoted as
m(u,v,w). If x, y, z are three leaves of T, then m(x,y,z) ≠ x, y, z. In a valued tree Tl, the distance between x and
the path T(yz) is equal to t(x,m(x,y,z)) = (t(x,y)+t(x,z)-t(y,z))/2; this quantity is denoted as dist(x,T(yz)).
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A triple (x,y,z) of leaves of T is said well-formed if m(x,y,z) = a(y). Equivalently, the vertex a(y) belongs
to the path T(xz). For instance, in the tree of Figure 1, the triple (a,c,d) is well-formed, whereas (a,c,b) is not.
Note that, if x and y are two leaves such that a(x) = a(y), then every triple (x,y,z) is well-formed. Here is a
simple characterization of well-formed triples in terms of distances:

PROPOSITION 2.2. A triple (x,y,z) of leaves of  T  is well-formed if and only if the equality  dist(y,T(xz))
= minw∈ X, w≠x,y dist(y,T(xw)) holds.

Proof. If (x,y,z) is a well-formed triple, then, dist(y,T(xz)) = l(ya(y)). For every w ∈  X, w ≠ x, y,
consider the path T(yv) from y to the vertex v which is the closest to y on the path T(xw); the path T(yv)
includes the edge ya(y), and, so, has a length at least equal to l(ya(y)). Conversely, the quantity dist(y,T(xw)) is
minimized by those leaves w such that a(y) belongs to the path T(xw). ◊

x

w
z

y x

z w

y
m(x ,y ,w ) m(x ,y ,w )a(z) a(z)

Figure 2 Figure 3
Bold lines represent paths ; thin ones represent single edges.

PROPOSITION 2.3. Let  d  be a tree metric on the set  X  and  x ,  y ,  z  be three elements of  X  such
that, in the  X-tree representation Tl of  d , the triple (x,z,y) is well-formed. Then, the following equality holds
for any  w ∈  X-{ x,y,z} :

d(z,w) = max{ d(x,w) + d(y,z) , d(y,w) + d(x,z) } - d(x,y).

Proof. For each w ∈  X-{ x,y,z}, the median vertex m(x,y,w) lies either on the path T(xa(z)) (Figure 2), or
on the path T(ya(z)) (Figure 3), or is equal to a(z). The four-point condition expresses as d(x,y) + d(z,w) = d(x,z)
+ d(y,w) ≥ d(x,w) + d(y,z) in the first case, as d(x,y) + d(z,w) = d(x,w) + d(y,z) ≥ d(x,z) + d(y,w) in the second,
and as d(x,y) + d(z,w) = d(x,z) + d(y,w) = d(x,w) + d(y,z) in the degenerate third case. The result follows.

So, when the triple (x,z,y) is well-formed, the distance between z and any element w of X may be
computed from the values d(x,y), d(x,z), d(y,z), d(x,w) and d(y,w).

The following notations are used when an indexing x1, x2,…, xn of the set X is given. For three distinct

leaves xi, xj, xk ∈  X, we set ∆i l
k
,  = dist(xk,T(xixj)) = 

1

2
 (d(xi,xk)+d(xj,xk)-d(xi,xj)). Since d satisfies the triangular

metric inequality, the quantities ∆i l
k
,  are non negative: moreover, d(xi,xj) = ∆ j k

i
,  + ∆i k

j
,  and ∆i l

k
,  > 0 when the

edge xka(xk) has a non-null length. We will also write ak instead of a(xk).

2.2. Circular and diagonal orders. We now recall an encoding method, proposed in the Barthélemy
and Guénoche [2] book as a generalization of a method given by Chaiken, Dewdney and Slater [7] in the special
case of an unvalued tree. An order x1, x2,…, xn on X is called a diagonal order of the X-tree T (Dewdney [14]) if,
for any integer k (modulo n), the triple (xk-1, xk, xk+1) is well-formed.

Consider a graphic planar representation of T (where two edges have no other common points than a
vertex) and an order obtained as follows: first, the leaf x1 is arbitrarily chosen; then, the leaves are indexed as x1,
x2,…, xn according to a circular (say, clockwise) scanning of the subset X of vertices of T. Such an order,
frequently called diagonal plane in the literature, will be said here circular. It has the following property, for any
integer k modulo n: when moving on the path T(xkxk+1) from xk to xk+1, all the branches at the encountered
vertices are located on the right. A circular order is diagonal; otherwise, assume m(xk-1,xk,xk+1) ≠ a(xk): there is
a branch of the tree at the vertex a(xk), the leaves of which being either between xk-1 and xk or between xk and
xk+1 in the clockwise scanning, a contradiction with the hypothesis that the order is circular. Hence the



following result holds:
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LEMMA 2.4. Any  X-tree  T  admits a diagonal order.

As the following example shows, circular orders constitute in the general case a proper subclass of the
diagonal ones. According to a remark above, if x and y are two leaves such that a(x) = a(y), then the only
condition on their places in a diagonal order is that they are consecutive (modulo n). So, in the example of
Figure 4, the order (1 2 3 4 5 6 7 8 9 10) is diagonal. A simple investigation leads to the conclusion that it is
not circular.

THEOREM 2.5 (Barthélemy and Guénoche [2]; see Leclerc and Makarenkov [18]). Let  X = { x1, x2,…, xn
}  be a linearly ordered set. For any sequence  d12, d13, d23,…, d1i, di,i+1,…, d1n, dn–1,n of  2n-3 strictly positive
real numbers, there exists a unique valued  X-tree  Tl  such that  dij = ∑e∈ T(xixj)

 l(e) and  x1, x2,…, xn  is a
circular order of  T .

As stated in Leclerc and Makarenkov [18], the function l is non-negative if and only if the sequence d12,
d13, d23,…, d1n, dn-1,n is extracted from a metric array. For a counter-example, consider the X-tree of Figure 5,
where X = {x1, x2, x3, x4}. For such a tree, all the linear orders on X are circular. The sequence of five positive
real numbers given by d12 = d13 = d14 = d23 = 2 and d34 =10 leads to a system of five linear equations which has
no solution for this tree: α+β = 2; α+γ = 2; α+δ = 2; β+γ = 2; γ+δ = 10. In fact, the sequence corresponds to
the valued tree of Figure 6. Since the sequence was not extracted from a metric array, this tree has a negatively
valued edge and is the representation of a tree dissimilarity.
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3. A combinatorial obtainment of circular orders

3.1. Yushmanov orders. In his 1984 paper [28], Yushmanov shows it possible to encode a
positively valued X-tree Tl by 2n-3 lengths of paths between leaves. His work is independent of the Chaiken et
al. one, even thought that, as these authors, he uses his results in a study of unvalued trees. The main results in
Yushmanov's paper are recalled in this subsection with extensions to the cases of valued trees and dissimi-
larities. We also provide algorithms corresponding with Yushmanov's approach.

Let d be a tree metric on X, his matrix D, and consider the sets P of pairs of elements such that the



knowledge of the entries (d(x,y)), xy ∈  P, allows us to recover the entire matrix D, provided the tree T is already
known; the sets defined by Chaiken et al. and used in Theorem 2.5 are of this type. Denote as ρ(Tl) the
minimum cardinality of such a set. In his paper, Yushmanov first observes that every quantity d(x,y) is a sum of
lengths of edges of T. So, a subset P corresponds to a set of linear equations with rank µ(T) ≤ 2n-3. The equality
ρ(Tl) = µ(T) follows; note that this observation remains valid when the edge lengths are no longer assumed to be
positive. Similarly, consider the sets Q such that the knowledge of the entries (d(x,y)), xy ∈  Q, allows us to
recover D without any further requirements. Denote their minimum cardinality as δ(Tl). Obviously, ρ(Tl) ≤
δ(Tl). Indeed, Leclerc [17] gives two ways of determining a set Q of cardinality 2n-3 = ρ(Tl), thus proving the
equality ρ(Tl) = δ(Tl). Yushmanov was the first to exhibit such sets, related with linear orderings  x1, x2,…, xn
of  X  such that, for all  k = n,  n-1,…, 2, the triple (x1,xk,xk-1) is well-formed in a current tree Tk with k
leaves. Such an order, called hereafter a Yushmanov order, is obtained by the procedure 1 described below:

Procedure 1
   Initialization   . Choose arbitrarily two leaves of Tl and index them as x1 and xn. Set Vn = ∅  and Tn = T.
    Step       1   . Choose a leaf xn-1 in Tn in such a way that the vertex an lies on the path Tn(x1xn-1). Delete the leaf xn
and the edge anxn in Tn and reduce the resulting tree in order to obtain the tree Tn-1; set Vn-1 = {xn}.
    Step       k       +1   . Assume the first k steps have led to a tree Tn-k the set of leaves of which is X-Vn-k, where Vn-k =
{ xn,…,xn-k+1}.
If k = n-2, then V2 = {xn,…,x3} and T2 is reduced to the unique edge x1x2; since x1 is already fixed, the
Yushmanov indexing x1, x2,…, xn is completely determined.
Otherwise, choose a leaf xn-k-1 in Tn-k in such a way that the vertex an-k lies on the path Tn-k(x1,xn-k-1); delete
the leaf xn-k and the edge an-kxn-k in Tn-k; reduce the resulting tree in order to obtain the tree Tn-k-1; set Vn-k-1 =
Vn-k∪ { xn-k}.

The choice of the leaf xn-k-1 is always possible: the vertex an-k adjacent to xn-k in Tn-k has degree at least
three, defining at least three branches. Any leaf which belongs to a branch which neither contains the leaf x1 nor
consists of the edge an-kxn-k may be chosen as xn-k-1.

The remaining problem is the determination of a Yushmanov order without the knowledge of the tree T.
A solution is provided by arguments already used in the proof of Proposition 2.2: the possible choices are the
elements xn-k-1 (different from x1 and xn-k) such that dist(xn–k,T(xn-k-1x1)) = minw∈ X-Vn-k dist(xn-k,T(wx1)).
With the expression of dist(xn-k,T(wx1)) recalled in Section 2.1, xn-k-1 is an element w ∈  X-Vn-k minimizing
the difference d(xn-k,w)-d(x1,w). Such an element is chosen directly on the matrix of d in the formal statement of
Algorithm 1 below (see the notations of Section 2.1). In fact, Algorithm 1 works with any dissimilarity matrix,
tree metric or not, as input; so, the definition of a Yushmanov order of X extends to all dissimilarities.

    Algorithm              1   : construction of a Yushmanov indexing  x1, x2,…, xn  of the set  X:
Input:  a finite set X with n elements ; a dissimilarity d on X.
Output:  a Yushmanov order (x1, x2,…, xn) on X associated with d.

Initialization Choose arbitrarily two leaves x1 and xn; W := X-{ x1,xn}; k = 0
Repeat

Find xn-k-1 in W such that:
d(xn-k,xn-k-1)-d(x1,xn-k-1) = minw∈ W d(xn-k,w)-d(x1,w);
W := W-{ xn-k};
k = k+1

Until  W = ∅

In the k-th step of Algorithm 1, n-k-2 elements of X are examined. So, this algorithm has time
complexity O(n2). A converse procedure allows to reconstruct the valued X-tree Tl from the tree metric d and a

Yushmanov order x1, x2,…, xn obtained by Algorithm 1 applied to d. Consider the sequence (d(x1,x2), d(x1,x3),

d(x2,x3),…, d(x1,xi), d(xi,xi+1),…, d(x1,xn), d(xn-1,xn)) with 2n-3 terms. For k = 2,…, n-1, we are able to

compute the quantities ∆ +k k, 1
1  = dist(x1,T(xkxk+1)) = 

1

2
(d(x1,xk) + d(x1,xk+1) - d(xk,xk+1)) and ∆ +

1
1

,k
k  =



dist(xk+1,T(x1xk)) = 
1

2
 (d(x1,xk+1) + d(xk,xk+1) - d(x1,xk)); they are assumed to be positive, as it is the case

when the values dij  are extracted from a distance matrix. A sequence of valued trees   T
k
l  with k leaves, k = 2,…,

n, is constructed according to the following Procedure 2:

Procedure 2
    Step       1       (initialization)   .   Tl

2  is the tree reduced to the unique edge x1x2 with length l(x1x2) = d(x1,x2).
    Step       k    (k = 2,…,n-1). A tree   T

k
l  with the leaves x1, x2,…, xk has been built. Two cases may occur for the path

  T
k
l (x1xk):

Case 1. There exists a vertex u on this path such that t(x1,u) = ∆ +k k, 1
1 . In this case, the leaf xk+1 is the only

vertex to add to   T
k
l  in order to obtain   T

k
l

+1, with the new edge uxk+1 of length l(uxk+1) = ∆ +
1

1
,k

k .

Case 2. There exists an edge vv' on the path   T
k
l  (x1,xk) such that t(x1,v) < ∆ +k k, 1

1  < t(x1,v'). In this case, a new

inner vertex u is added on the edge vv', now divided into two edges uv and uv', with lengths l(uv) = ∆ +k k, 1
1  -

t(x1,v) and l(uv') = t(x1,v') - ∆ +k k, 1
1 ; then, as before, the leaf xk+1 is added to   T

k
l  in order to obtain   T

k
l

+1, with

the new edge uxk+1 of length l(u,xk+1) = ∆ +
1

1
,k

k .

For k = n, the valued tree   T
k
l  is equal to Tl.

In the next Algorithm 2, the k-th step consists of the examination from edge to edge (starting from xk) of

the path T(xkx1) until the good place for the articulation vertex ak+1, depending on ∆ +1 1,k
k , is found. The new

leaf xk+1 is then added to the tree T with a new edge ak+1xk+1 of length ∆ +
1

1
,k

k . Note that the number of edges

examined at this step is no more than |Tn(xkxk+1)|, the number of edges of the path between xk and xk+1 in the

final tree Tn. Some edges are recognized as not belonging to a current path P(T) in the next step k+1 and in the
sequel; such edges are included in the set E(T) (and their extremities in V(T)). This is due to the observation that
any edge excluded from the linked list P(T) will never return in this list, since P(T) is always completed with
one or two new edges. The complexity of Algorithm 2 is presently estimated as O(∑1≤k≤n-1 |Tn(xkxk+1)|) + O(n),

and will be shown to be in fact O(n) in Section 3.4 (Corollary 3.7).
Some further notations are used in the following formal statement of Algorithm 2: given two leaves x, y

of an X-tree T, l(i,T(xy)), w(i,T(xy)) and w'(i,T(xy)) = w(i+1,T(xy)) are respectively the length, the initial vertex
and the terminal vertex of the i–th edge (starting from x) of the path T(xy); P(T) is the linked list of the edges of
the path T(x1xk) (starting from x1), and E(P(T)) and V(P(T)) are, respectively, the edge set and the vertex set of
P(T).

    Algorithm              2   : Reconstructing a valued tree  Tl  from a tree metric  d  and a corresponding Yushmanov order on
X .
Input:  a finite set X with n elements; the 2n-3 entries d(x,y), xy ∈  { x1x2, x1x3, x2x3,…,x1xi, xixi+1,…, x1xn,
xn-1xn} corresponding with a Yushmanov order (x1, x2,…, xn) for a tree metric d on X.
Output:  the valued X-tree Tl = (V(T),E(T),l) associated with d.

Initialization V(T) := ∅ ; E(T) := ∅ ; k := 1; P(T) := {x1x2};
l(x1x2) := d(x1,x2)

Repeat
k := k+1; i := 1; S := 0
i f  ∆ +1 1,k

k  > 0 then

S := l(1,T(xkx1))
u := w'(1,T(xkx1))
v := w(1,T(xkx1)) = xk
P(T) := P(T) - {uv}
i f S ≥ ∆ +1 1,k

k   then

V(T) := V(T)+{xk}
else u := xk



whi leS < ∆ +1 1,k
k  do

V(T) := V(T)+{u,v}
E(T) := E(T)+{uv}
i := i+1
u := w'(i,T(xkx1))
v := w(i,T(xkx1))
S := S+l(i,T(xkx1))
P(T) := P(T) - {uv}

if  S > ∆ +1 1,k
k  then

E(T) := E(T)+{ak+1v}
P(T) := P(T)+{uak+1}+{ ak+1xk+1}
l(ak+1v) := ∆ +1 1,k

k -S+l(uv)

l(uak+1) := S- ∆ +1 1,k
k

l(ak+1xk+1) := ∆ +
1

1
,k

k

else P(T) := P(T)+{uxk+1}
l(uxk+1) := ∆ +

1
1

,k
k

until  (k = n-1)
E(T) := E(T)+E(P(T)); V(T) := V(T)+V(P(T))

THEOREM 3.1 (Yushmanov [28]). The successive uses of Procedures 1 and 2 map any valued  X-tree  Tl
on itself.

Proof. The result is true for n = 3: in this case, the X-tree T has one latent vertex a adjacent to its three
leaves and every order on X is Yushmanov. For an arbitrary order x1, x2, x3, the lengths ∆2 3

1
, , ∆1 3

2
,  and ∆1 2

3
,  of

the edges ax1, ax2 and ax3 are determined by Procedure 2.

Assume that the result is true for every X'-tree, where X' is a set of cardinality n-1. Then, let x1,…, xn be a
Yushmanov order on X. By the induction hypothesis, Procedure 2 constructs, before its last iteration, a valued
tree   T

n
l

−1 with n-1 leaves such that: (i) the leaves of   T
n
l

−1 are the elements x1, x2,…, xn-1; and (ii) the distances
between these leaves are given by the restriction of d to X-{ xn}. By the rule used for choosing xn-1 at the first
iteration of Procedure 1, one also knows that the latent vertex an lies on the path Tn–1(x1xn-1); then, the
determination of the place of an on this path is made in the last step of Procedure 2 on such a way that the
distance d is realized by the tree   T

n
l  for the pairs x1xn and xnxn-1. By the proposition 2.3, the induction

hypothesis, and the unicity of the tree representation recalled in Theorem 2.1,   T
n
l  = Tl is the unique valued X-

tree realizing the distance d on X. ◊

Many fitting algorithms of the literature transform a given dissimilarity matrix d0 on X into a tree metric
one d; this is the case of the decomposition algorithm of Brossier [4], the algorithm based on minimum
spanning trees of Leclerc [17], or the reduction methods of Roux [25] and Gascuel and Levy [16]. Then, the
problem of the reconstruction of the X-tree representation of d remains. Methods like ADDTREE (Sattah and
Tversky [27]) or the scoring method of Luong [19] and Barthélemy and Guénoche [2] are sometimes proposed in
the literature for determining the corresponding X-tree; as their time complexity O(n5) indicates, these methods
have not been designed for this particular use. Starting from the distance matrix of d, the successive uses of
Algorithms 1 and 2 provide the valued X-tree in O(n2) time, which does not exceed the complexity of any fitting
method.

3.2. An example. For an illustration of Algorithms 1 and 2, consider the valued X-tree of Figure 7.
Let us start from the corresponding tree metric array (Table 1).
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Set x1 =  a  and x7 =  b ; then, Algorithm 1 computes the quantities dist(b,T(ax)) for x =  c ,  d ,  e ,  f ,  g ,
which gives:
2dist(b,T(ac)) = 28+25-5 = 48 2dist(b,T(ad)) = 28+56-48 = 36
2dist(b,T(ae)) = 28+62-54 = 36 2dist(b,T(af)) = 28+67-59 = 36
2dist(b,T(ag)) = 28+49-41 = 36
So, x6 may be chosen among  d ,  e ,  f  and  g ; set, for instance, x6 =  d  and compute:
2dist(d,T(ac)) = 48+45-5 = 88 2dist(d,T(ae)) = 48+8-54 = 2
2dist(d,T(af)) = 48+55-59 = 44 2dist(d,T(ag)) = 48+37-41 = 44
So, x5 =  e  and, at the next step, we have: 2dist(e,T(ac)) = 54+51-5 = 100
2dist(e,T(af)) = 54+61-59 = 56 2dist(e,T(ag)) = 54+43-41 = 56
Choosing x4 =  f , we compute: 2dist(f,T(ac)) = 59+56-5 = 110
2dist(f,T(ag)) = 59+30-41 = 48, leading to x3 =  g  and x2 =  c .
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3.3. Yushmanov and circular orders are the same. As noticed just above, circular and
Yushmanov orders are defined on two different ways. Both ways select well-formed triples. According to the
results of this section, these two ways lead in fact to the same orders.

PROPOSITION 3.2. Every circular order on the leaves of an  X-tree  T  is Yushmanov.

Proof. We prove the result by induction on n; for n = 3, all orders on X are both circular and Yushmanov.
Assume the result is true for all X-trees with at most n-1 leaves. Let T be an X-tree with n leaves x1,

x2,…, xn, indexed accordingly with a circular order. Consider the path T(x1xn-1) between x1 and xn-1. Since the
triple (xn-1,xn,x1) is well-formed, we have the configuration of Figure 9, with m(xn-1,xn,x1) = an. So, the vertex
an belongs to the path T(x1xn-1); it follows that Procedure 1 of Section 3.1 can be performed to obtain a
Yushmanov indexing y1, y2,…, yn of X, with choices in Initialization and Step 1 leading to y1 = x1, yn-1 = xn-1
and yn = xn.

w xn

xn-1
an

x1

Figure 9 (with the same conventions as Figures 2-3)

Then, in the tree T, delete the vertex xn and the edge anxn and reduce the obtained tree. A new tree T' with
the leaves x1,…, xn-1 is obtained. From a planar representation of T admitting the previous circular indexing x1,
x2,…,xn, we derive a planar representation of T' with x1,…, xn-1 as a circular indexing. So, by the induction
hypothesis, this order is Yushmanov. It follows that it can be obtained by Procedure 1, with x1 and xn-1 as
vertices chosen in the initial step; that is, the Initialization and Step 1 mentioned just above can be continued
according to Procedure 1 in order to obtain the order x1,…, xn on X. ◊

∆n-1,n
1

xn an

xn-1
xn-2

x2

x3

x1

Figure 10

PROPOSITION 3.3. Every Yushmanov order on the leaves of an  X-tree  T  is circular.

Proof. Let T be an X-tree with n leaves x1, x2,…, xn, indexed according to a Yushmanov order. We must
show that there exists a planar drawing of T for which this order is circular. This is obviously true for n = 3, and
we proceed again by induction on n.

Assume the result is true for all X-trees with at most n-1 leaves, and let T be an X-tree with n leaves.
After deletion of the edge anxn and reduction of the obtained tree, a new tree T' is obtained, with leaves x1,…, xn-

1 still indexed accordingly with a Yushmanov order. By the induction hypothesis, there exists a planar drawing of
T' such that this order is circular. As a consequence, there is no branch on the left when moving from xn-1 to x1
on the path T(xn-1x1). Add the vertex an on this path at the place specified by Algorithm 2; the drawing of the



edge anxn on the left of the path T(xn-1x1) gives x1, x2,…, xn as a circular order of T (Figure 10).

Propositions 3.2 and 3.3 assemble into the following

THEOREM 3.4. An order  x1 ,  x2 ,…,  xn  on the leaves of an  X-tree  T  is circular if and only if it is
Yushmanov.

Now, Yushmanov's algorithm 1 appears to be a purely combinatorial, free of geometric representation,
construction of circular orders. For a dissimilarity d on X, a linear order C on X derived from d by Algorithm 1
will be called "circular" if d is known to be a tree metric, and "Yushmanov" otherwise.

3.4. Further properties of circular orders and recognition of a tree metric. The
following Algorithm 3 decides whether a given dissimilarity matrix d is a tree metric. The elements of X are
examined in an order provided by Algorithm 1. When xk+1 is examined, Proposition 2.3 gives a formula leading
to values t(j,k+1) of the distance between the leaves xj and xk+1 in the tree T, for all j  = 2,…, k-1, under the
hypothesis that d is a tree metric. These computed values are compared with the actual ones and the conclusion
follows; in the statement below, the "return" command means the exit from the algorithm.

    Algorithm       3   : recognition of a tree metric
Input:  a finite set X with n elements; a dissimilarity d on X and a corresponding Yushmanov order (x1, x2,…,
xn) on X.
Output:  the answer "Yes" if d is a tree metric; the answer "No" otherwise.

Initialization
Compute ∆2 3

1
, , ∆1 3

2
,  and ∆1 2

3
, .

i f ( ∆2 3
1

,  ≥ 0, ∆1 3
2
,  ≥ 0, ∆1 2

3
,  ≥ 0)

else print "No"
return

k := 3
repeat

Compute ∆ +k k, 1
1 , ∆ +1 1,k

k  and ∆ +
1

1
,k

k

i f ( ∆ +k k, 1
1 ≥ 0, ∆ +1 1,k

k  ≥ 0, ∆ +
1

1
,k

k   ≥ 0) then

for j = 2,…, k-1  do
t(j,k+1) := max{d(x1,xj)+ d(xk,xk+1), d(x1,xk+1)+ d(xk,xk)}-  d(x1,xk)
i f (t(j,k+1) ≠ d(xj,xk+1)) then

print "No"
return

e lse print "No"
return

k := k+1
unt i l (k = n+1)
print "Yes"

Recall ∆i j
k
,  = dist(xk,T(xixj)) = 

1

2
(d(xi,xk)+d(xj,xk)-d(xi,xj)). The time complexity of Algorithm 3 is

O(n2), similar to previous algorithms addressing the same problem (final note in Bandelt [1], Leclerc [17]).

Theorem 3.4 suggests some remarks about circular orders. First, as illustrated in the example of Section
3.2 above, when d is a tree metric, several Yushmanov orders may be obtained with the same initial vertices x1
and xn; this is due to the fact that tree metrics are strongly constrained, although their regularities do not directly
appear in their matrices. So, arbitrary choices may be needed at every step. This explains why the number n(n-1)
of possible initial choices differs from the number of circular orders (defined modulo n), for instance 2n-2 for an
X-tree with the maximum number n-2 of latent vertices. On the other hand, in the general case of a dissimilarity



d without special properties, ties on the values of d(xn-k,w)-d(x1,w) rarely occur in Algorithm 1 and the number
of different Yushmanov orders is close to n(n-1). Note also that the choice of the initial vertex x1 in Algorithm 1
finally does not matter when the purpose is just to obtain a circular order, because of the following consequence
of Theorem 3.4:

COROLLARY 3.5. If  x1 ,  x2 ,…,  xn  is a circular order on the leaves of an  X-tree  T, then, for any  k ∈
{1,…,n} , the order  xk ,  xk+1 ,…,  xn ,  x1 ,  x2 ,…,  xk-1  is again circular.

Another property of circular orders is related with the induction on the number n used in the proof of
Proposition 3.3. With the remark that the difference between d(xn–1,xn)+d(xn,x1) and d(xn-1,x1) is two times the
length of the new edge anxn, the following Proposition 3.6, already stated by Yushmanov, holds:

PROPOSITION 3.6. The sum  l(T) of the lengths of the edges of a valued X-tree  Tl  is given by 2l(T) =
d(x1,x2) + d(x2,x3) + d(x3,x4) +…+ d(xn-1,xn) + d(xn,x1), provided  x1, x2,…, xn  is a circular order on  X .

Especially, in the unvalued case, the sum d(x1,x2) + d(x2,x3) +…+ d(xn,x1) is two times the number of
edges of the tree.

COROLLARY 3.7. Algorithm 2 reconstructs a valued  X-tree  T  with  n  leaves in  O(n) operations.

Proof.  As  a  consequence  of  the  previous  result  applied  to  the  unvalued  case,  the  number
∑1≤k≤n-1 |Tn(xkxk+1)|, which is an upper bound of the number of the edges examined in the algorithm, is two
times the number of edges of the final tree.  ◊

4. A fitting method

4.1. Two fitting algorithms. This section is devoted to the problem, very often addressed in the
literature, of fitting a tree metric t to a given dissimilarity d. Algorithms of various types have been given or
recalled, for instance, by De Soete [12], Luong [19], Saitou and Nei [26], Barthélemy and Guénoche [2], Roux
[25], Leclerc [17], De Soete and Caroll [13], Gascuel and Lévy [16]. The best time complexity of such
algorithms is O(n2); the algorithms reaching such a complexity are rarely good for global criteria like the least
squares one. In fact, the least square approximation of a dissimilarity d by a tree metric t is shown to be NP-hard
in Day [10] (see also Day [11]). For this problem, the heuristics giving satisfactory results have usually a time
complexity of O(n4) or O(n5), the Saitou and Nei NJ (nearest joining) method in O(n3) being a noticeable
exception. For many problems of data analysis, where the purpose is to handle large data sets, a complexity order
of O(n4) or O(n5) is too high. Since O(n5) algorithms are still currently proposed for the fitting of tree metrics,
it seems that the situation is different in many applications of this problem. We describe here two algorithms
based on Yushmanov orders. They proceed by successive local least squares approximations and are basically in
O(n2). Global approximation and repetitive uses will increase this complexity up to O(n4) or O(n5) in Section
4.2, with seemingly good performances (Section 4.3).

The principle of the algorithm is as follows: at the step k, 2 ≤ k ≤ n-1, a current valued tree   T
k
l  has been

determined, with the leaves {x1,…, xk}. The vertex ak+1 is assumed to be on the path   T
k
l (x1xk) of this tree and a

reconstruction procedure is introduced to obtain the tree   T
k
l

+1, with the further problem of the determination of
the best place of ak+1 on the path   T

k
l (x1xk). At the final step n-1, the valued X-tree Tl corresponding to the tree

metric t is obtained. In the determination of the best place of ak+1, the lengths α , β and γ, of, respectively, the
paths   T

k
l

+1(x1ak+1) and   T
k
l

+1(ak+1xk) and the edge ak+1xk+1, are adjusted at each step according to a least squares
criterion. Two methods are proposed here. In Algorithm 4, the computations at the Step k are based on the only
two values d(x1,xk+1), d(xk,xk+1) of the initial dissimilarity, together with the value t(x1,xk) determined at the
previous step; this computation corresponds with Problem P1,k. In Algorithm 5, the best place for ak+1 is
determined for each edge uv of the path   T

k
l (x1xk), taking in account all the initial values d(xi,xk+1), i  = 1,…,k.

This computation corresponds with Problem P2,k(uv). The edge leading to the best fitting is chosen.



Problem P1,k (see Figure 11):

α γ β

u v
x1 xk

xk+1

ak+1

Figure 11

MINIMIZE    (α  + γ - d(x1,xk+1))2 + (β + γ - d(xk,xk+1))2,
subject to: α+β = t(x1,xk) (determined at the previous step); α ≥ 0; β ≥ 0; γ ≥ 0.

Set A = d(xk,xk+1)-t(x1,xk)-d(x1,xk+1) and B = t(x1,xk)-d(xk,xk+1)-d(x1,xk+1); the problem reduces as:

MINIMIZE    α2 + γ2 + Aα  + Bγ,
subject to: α  ≥ 0; γ ≥ 0; t(x1,xk) - α  ≥ 0.

With the use of the Lagrange function (see for instance Ciarlet [8] or Minoux [21]):

F(λ1,λ2,λ3) = α2 + γ2 + Aα  + Bγ - λ1α  - λ2γ + λ3(α  - t(x1,xk)),

where λ i ≥ 0 for i = 1, 2, 3, we obtain a necessary condition on α and γ for reaching the minimum: (α ,γ) ∈  {(-
A

2
,- 

B

2
); (-

A

2
,0); (t(x1,xk),- 

B

2
); (t(x1,xk),0); (0,- 

B

2
); (0,0)}.

Among these couples, choose the one satisfying the constraints and actually realizing the minimum.

α γ β

u v
x1

xk+1

ak+1
xk

xp+1xp

Figure 12

Problem P2,k:
Let uv be an edge of the path   T

k
l (x1xk), u being its extremity closest to x1. Since the order x1, x2,…, xk on the

leaves of   T
k
l  is circular, there always exists an index p such that all the leaves x1,…, xp are on the same side of

ak+1, while xp+1,…,xk are on the other side (Figure 12). Taking in account the distances dist(xi,T(x1xk)) for all
elements xi, 2 ≤ i ≤ k-1, we obtain the following quantity to minimize for the best place for ak+1 on the edge
uv:
    Problem        P        2,       k       (      uv      )   

MINIMIZE (α  + γ - d(x1,xk+1))2 + (β + γ - d(xk,xk+1))2

+ ∑2≤i≤p (d(xi,xk+1) - (α - dist(x1,T(xixk)) + dist(xi,T(x1xk)) + γ))2

+ ∑p+1≤i≤k-1 (d(xi,xk+1) - β - dist(xk,T(x1xi)) + dist(xi,T(x1xk)) + γ)2,
subject to: α  + β = t(x1,xk); β ≥ 0; γ ≥ 0; t(x1,u) ≤ α  ≤ t(x1,v),

where t(x1,u) and t(v,xk) are the distances between the corresponding vertices in the valued tree Tl
k
.

Set A1 = d(x1,xk+1), Ak = d(xk,xk+1) - t(x1,xk),
Α i = d(xi,xk+1) - t(xi,xk) + t(x1,xk) for 2 ≤ i ≤ p, and
Α i = d(xi,xk+1) - t(x1,xi) for p+1 ≤ i ≤ k-1. After reduction, the problem is now:

MINIMIZE    ∑1≤i≤p (α+γ-Α i)
2 + ∑p+1≤i≤k (α-γ+Α i)

2,
subject to: γ ≥ 0; t(x1,u) ≤ α  ≤ t(x1,v).



Setting B = 4p-2k, C = 2∑p+1≤i≤k Ai - 2∑1≤i≤p Ai and D = - 2∑1≤i≤k Ai, one gets:

MINIMIZE    kα2 + kγ2 + Bαγ + Cα  + Dγ,
subject to the same constraints.

Consider the Lagrange function:

F(λ1,λ2,λ3) = kα2+kγ2+Bαγ+Cα+Dγ+λ1(α-t(x1,v))-λ2γ+λ3(t(x1,u)-α).

The necessary conditions for minimum are:

F'α = 2kα  + Bγ + C + λ1 - λ3 = 0;

F'γ = 2kγ + Bα  + D - λ2 = 0;

λ1(α-t(x1,v)) = 0; λ2γ = 0; λ3(t(x1,u)-α) = 0,

where λ j ≥ 0 for j = 1, 2, 3.
This system of equations leads to six possible solutions:

1. α  = t(x1,v), γ = 0;

2. α  = t(x1,v), γ = - 
Bt x v D

k

( , )1

2

+
;

3. α  = - 
C

k2
, γ = 0;

4. α  = 
BD kC

k B

−
−
2

4 2 2 , γ = 
BC kD

k B

−
−
2

4 2 2 ;

5. α  = t(x1,u), γ = 0;

6. α  = t(x1,u), γ = - 
Bt x u D

k

( , )1

2

+
.

Among the couples (α ,γ) above, choose the one satisfying the constraints and actually realizing the
minimum.     End       of        Problem        P        2,       k       (      uv      )   .

Among the edges of the path   T
k
l (x1xk), choose the one realizing the minimum.     End       of        Problem        P        2,       k    .

In the following statement, the notations are the same as in Algorithm 2; moreover, w(0,T(x1xk)) =
w(1,T(x1xk)) = w'(0,T(x1xk)) = x1.

    Algorithm       4   : construction of a valued X-tree from a dissimilarity d
Input:  a finite set X with n elements; a dissimilarity d on X.
Output:  a valued X-tree Tl = (V(T),E(T),l).

Initialization . Compute a Yushmanov order (x1, x2,…, xn) on X;
V(T) := {x1, x2}; E(T) := x1x2; l(x1x2) := d(x1,x2); k := 1
Repeat

k := k+1; S := 0; i := 0
The problem is to add the leaf xk+1 to the current valued tree   T

k
l  with leaves x1,…, xk.

Solve Problem P1,k (α , γ) for the path   T
k
l (x1xk)

while S < α  d o
i := i+1
S = S+l(i,T(x1xk))

u := w(i,T(x1xk)); v := w'(i,T(x1xk))
if  S = α  then

V(T) := V(T)∪ { xk+1}
E(T) := E(T)∪ { uxk+1}



l(uxk+1) := γ
else V(T) := V(T)∪ { ak+1,xk+1}

E(T) := (E(T)-{ uv}) ∪ { uak+1,vak+1,ak+1xk+1}
l(ak+1xk+1) := γ
l(uak+1) := α - S + l(i,T(x1xk))
l(vak+1) := S - α

until  (k = n)

    Algorithm       5   : construction of a valued X-tree from a dissimilarity d
This algorithm is identical to Algorithm 4, except the instruction "Solve Problem P1,k", which is replaced with

"Solve Problem P2,k".

4.2. Time complexity and strategies for the use of Algorithms 4 and 5. Problem P1,k is
solved in O(1) and the obtainment of a Yushmanov order by Algorithm 1 is O(n2). Then, Algorithm 4 has the
same time complexity O(n2). In Problem P2,k, using the fact that the Yushmanov order is circular, we can
proceed to a careful updating from edge to edge on the path   T

k
l (x1xk): when moving from the edge uv to the next

edge vw, it is not necessary to compute again all the values Ai. This computation has to be done just for the Ai's
such that m(x1,xi,xk) = v and i  ≠ 1, k; their number is the degree of v minus two. The total number of such
operations related to the path   T

k
l (x1xk) is exactly k-2, for k = 3,…, n. Finally, though the steps of Algorithm 5

seem more complicated than those of Algorithm 4, each step is at most O(k) and this algorithm is O(n2) again.
As reported at the beginning of this section, such a time complexity is very good. Two O(n2) methods are

proposed in Leclerc [17]. They are based on combinatorial properties of tree metrics, and not related with the
least squares criterion.

Indeed, this time complexity O(n2) is not realistic (at least at the present state of this study): the initial
choice of the elements x1 and xn is important in the use of algorithms 4 or 5, since it determines in fact a
Yushmanov order among all the possible ones. Further studies or experimentations will be necessary to have an
idea of the best strategy for this choice. In the experimental testings of the next subsection, we use the low
complexity of Algorithms 4 and 5 to develop the alternative approach consisting of trying all the possible initial
pairs (x1,xn). It gives two O(n4) methods, called Methods 1 and 2, based on Algorithms 4 and 5, respectively.

Both Methods 1 and 2 are completed with an adjustment of the lengths of the edges, once the topology of
the obtained tree is fixed. Based on a least squares criterion on the differences between the obtained tree metric and
the initial dissimilarity, this quadratic approximation is performed with the Gauss-Seidel method proposed in
Barthélemy and Guénoche ([8], pp. 60-66; see for instance Ciarlet [8]). Since it requires an O(n4) time, it is
mainly interesting for algorithms having at least this complexity. Even with this improvement, good results
may hardly be expected from Method 1, because of the local character of Problem P1,k. In Method 2, the
approximation is done on the obtained trees that give the best result for the least squares criterion. The number
of these trees is a small fixed one in Method M21 (in O(n4)), and of order n in Method M22 (in O(n5)).

4.3. Experimental results. Algorithms 1, 4 and 5 have been programmed in the C++ programming
language and tested on a MS-DOS machine of IBM-PC type.

We use an evaluation method similar to that of Pruzanski, Tversky et Caroll [23], De Soete [12] and
Gascuel et Levy [16]. Each data set is obtained as follows: first, an X-tree with n leaves and 2n-3 arêtes is
generated at random (for n = 12, 18, 24). The lengths of the edges are chosen at random from a uniform
distribution on the real interval [0,1]. Then, the values of the corresponding tree metric are computed and
normalized to have a unit variance, leading to a valued X-tree TT. A normal random noise of mean 0 and variance
σ2 = 0.1, 0.25, 0.5 is added to these values to obtain the distance d; in the rare cases where a negative value
d(x,y) results from these operations, this value is replaced with 0.01. A number of 100 data sets is generated for
each pair of values of n and σ.

The results obtained from our methods M1 and M2 (with the variants M21 and M22 described above) are
compared with those of the classical NJ method. We also consider the true tree TT which, contrary to the case of



observed data, is known in these experimental ones.

The quality of the adjustement is evaluated by the means, computed on all the tests corresponding to each
pair (n,σ), of two quantities:
1. The proportion of explained variance, as given by a formula of Pruzanski,Tversky and Caroll [23], where
m(d) is the mean value of d and t is the fitted tree metric:
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This quantity is also determined for the tree metric obtained after quadratic approximation (column "%Var+").
With this approximation, the NJ method becomes an O(n4) one.
2. The topological distance of Robinson and Foulds [24] between the true tree TT and the X-tree
representation of t. It is a least move distance, the elementary move between two X-trees being the deletion or
the addition of the split corresponding with an edge; that is, it is the symmetric difference metric on X-trees
defined as sets of splits (Buneman [5]; see Barthélemy and Guénoche [2], ch. V). The distance between two trees
is expressed as a percentage of the maximum value 3n-6.

= 0.25σ2 = 0.5σ2= 0.1σ2

= 12

= 18

= 24

n

n

n

M1

M21

M22

NJ

TT

M1

M21

M22

NJ

TT

M1

M21

M22

NJ

TT

88.14 93.54 12.76 73.93 84.98 18.06 61.49 75.84 26.57

92.62 93.66 10.47 83.24 85.44 16.00 73.86 76.96 21.63

92.62 93.69 9.80 83.24 85.56 14.70 73.86 77.17 20.90

92.70 93.63 10.47 83.32 85.44 16.27 73.49 76.75 22.63

64.67 75.6478.08 84.9490.13 93.49

84.80 92.26 17.58 68.65 82.58 27.12 51.52 69.89 37.48

91.33 92.57 12.19 80.89 83.55 20.77 68.30 72.12 31.75

91.33 92.61 11.64 80.89 83.73 19.73 68.30 72.55 29.08

91.42 92.55 12.81 81.06 83.51 21.75 67.96 72.33 31.04

63.72 71.8078.23 83.2890.17 92.46

82.74 91.28 23.64 65.46 80.05 37.83 46.47 66.24 46.92

90.42 91.83 16.62 79.04 82.07 28.13 64.62 69.65 37.02

90.42 91.93 13.54 79.04 82.34 28.08 64.62 70.24 35.60

90.67 91.89 15.91 79.41 82.27 26.82 66.68 70.56 33.79

64.41 70.3578.40 82.2090.00 91.86

% VAR %VAR+ RF % VAR %VAR+ RF % VAR %VAR+ RF

Table 2

The analysis of the results leads to the following observations: compared with the others, Method M1 is
too elementary to give satisfactory results. The quadratic approximation is a very efficient tool for the
improvement of the variance percentage. When the rank n is 12 or 18, Method M21 gives globally better results
than NJ, and Method M22 is globally the best one in these tests. Nevertheless, method NJ is the most robust
when the size of the data and the variance of the noise both increase. For n = 24 and σ2 = 0.5, it still gives the
best results.

A further experiment is based on the data of Case [6] (immunological distances between nine species of
frogs), frequently used for similar testing (see for instance Saitou and Nei [26] and Gascuel and Lévy [16]). Table
9 gives these distances.



1 2 3 4 5 6 7 8
1: Aurora
2: Boylii 10

3: Cascadae 13 7

4: Muscosa 12 7 7

5: Temporaria 57 50 40 45

6: Pretiosa 22 9 11 15 48

7: Catesbiana 86 65 54 48 85 54

8: Pipiens 89 67 66 49 83 55 54

9: Tarahumarae 97 72 79 67 107 60 59 48

Table 3
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Tarahumarae
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Temporaria

Muscosa

Cascadae

Aurora

Boylii

Figure 13

Five fitting methods are compared here: the methods M21 and M22 of this paper, the NJ method, and two
other methods recognized to give generally good results: the method of scores (MS) of Luong [19] and
Barthélemy and Guénoche [2], based on the grouping of pairs x, y such that d(x,y) + d(z,w) <  max{ d(x,z) +
d(y,w) , d(x,w) + d(y,z) } for a maximum number of pairs z, w (it may be considered as a refinement of the
ADDTREE method of Sattah and Tversky [27]); and the reduction method of Gascuel and Lévy [16], denoted here
GL (it iteratively modifies the values of the dissimilarity towards a dissimilarity satisfying the four point-
condition). These last two methods are O(n5). The best tree obtained by Method 2.2 and the corresponding tree
metric are given in Figure 13 and Table 4.

Five criteria are used for the comparison of the methods. The combinatorial criterion NI (number of
inversions) is the number of quadruples xyzw such that a unique minimum among the three sums d(x,y) +
d(z,w), d(x,z) + d(y,w) and d(x,w) + d(y,z) disagrees with the configuration of the obtained X-tree. The criteria
AAD ,  MAD  and  MSD  respectively correspond to the average absolute difference, the maximum absolute
difference and the mean squared difference between the values of the initial dissimilarity matrix and the obtained
tree metric one. The criterion  L , not available here for the reduction method, is the total length of the obtained
valued X-tree, a short length being in agreement with the "parsimony principle" of phylogenetics. The criterion
values given in Table 5 are those obtained after the quadratic approximation of the edge lengths mentioned in the
previous subsection. In Method M21, the approximation is just done one time, on the best tree for the least
squares criterion. Here, Method M22, where n trees are used for the approximation, provides a significant
improvement to the few number of trees (here, three) considered in Method M21. The obtained tree is
topologically an intermediate between those obtained by Saitou and Nei (also by method M21), on the one hand,



and Gascuel and Lévy, on the other hand: it just differs from the former by the exchange of the places of
Muscosa and Cascadae, and from the latter by the exchange of Temporaria and Pretiosa. Contrary to the Gascuel
and Lévy method, the quadratic approximation is necessary to obtain a good fit.

1 2 3 4 5 6 7 8
2 13.22

3 16.61 3.39

4 20.88 7.66 4.35

5 60.66 47.43 44.13 39.78

6 28.71 15.49 12.18 7.83 40.78

7 76.03 62.81 59.50 55.15 88.12 50.39

8 79.37 66.15 62.85 59.00 91.47 53.73 50.93

9 90.52 77.30 73.99 69.64 102.61 64.87 62.07 48.00

Table 4

ANI AAD MAD MSD L
Scores n.a. 4.76 12.25 32.80 172.0

NJ 26 4.71 11.21 30.12 171.9

GL 23 4.52 10.05 28.95 n.a.

M21 26 4.71 11.21 30.12 171.9

M22 23 4.61 9.97 28.27 170.7

Table 5

5. Conclusion

The results and algorithms presented in this paper give evidence that Yushmanov orders are an interesting
tool for the study of tree metrics. Among the questions arising about these orders, two of them seem especially
interesting: the possible significance of Yushmanov orders for other types of dissimilarities; and their relations
with the previously known combinatorial properties of tree metrics or X-trees (for instance the 4-ary relations
characterized by Colonius and Schutze [9], the sets of splits of Buneman [5] and the relations with minimum
spanning trees in Leclerc [17]).

Concerning the fitting algorithms of Section 4, the natural question is to device a way of preserving the
low complexity of Algorithms 4 or 5. Here, this low complexity just allowed us to generate many good
candidate trees, and to look for the best solutions among these candidates. Another direction of research is to
generalize the method to other criteria, for instance the weighted least square one. An algorithm based on this
criterion and sharing some features with those presented here, but without the use of circular orders, has been
proposed by Makarenkov [20].

An important fact is the geometric signification, related to planar representations, of Yushmanov orders.
Some uses of these orders for the drawing of trees, possibly directly from a dissimilarity array, may be expected:
for instance, circular orders correspond to the so-called hierarchical drawings of an X-tree (Barthélemy and
Guénoche [2], p.28). In such a drawing, inspired by the dendrograms of Numerical Taxonomy, the latent vertices
are represented by horizontal lines, the upper one corresponding to the choice of a root. The edges of the tree are
represented by vertical lines and no crossings are allowed. These orders, that can be obtained as right-left orders
on the leaves in a hierarchical drawing, have been studied by Brossier [3] in the case of dendrograms; Figure 14
shows a hierarchical drawing of the tree of Figure 4, with the right-left order 10 9 4 3 6 5 8 7 2 1, which is
circular. One may also expect that the algorithms described here could be modified in order to lead to a new
family of low complexity methods of hierarchical classification, very different from the single linkage algorithm,
which is, up to our knowledge, the only one in O(n2).
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