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ABSTRACT
Motivation: The problem of phylogenetic inference from data-
sets including incomplete or uncertain entries is among the
most relevant issues in systematic biology. In this paper, we
propose a new method for reconstructing phylogenetic trees
from partial distance matrices. The new method combines the
usage of the four-point condition and the ultrametric inequality
with a weighted least-squares approximation to solve the prob-
lem of missing entries. It can be applied to infer phylogenies
from evolutionary data including some missing or uncertain
information, for instance, when observed nucleotide or protein
sequences contain gaps or missing entries.
Results: In a number of simulations involving incomplete
datasets, the proposed method outperformed the well-known
Ultrametric and Additive procedures. Generally, the new
method also outperformed all the other competing approaches
including Triangle and Fitch which is the most popular least-
squares method for reconstructing phylogenies. We illustrate
the usefulness of the introduced method by analyzing two well-
known phylogenies derived from complete mammalian mtDNA
sequences. Some interesting theoretical results concerning
the NP-hardness of the ordinary and weighted least-squares
fitting of a phylogenetic tree to a partial distance matrix are
also established.
Availability:The T-Rex package including this method is freely
available for download at http://www.info.uqam.ca/~makarenv/
trex.html
Contact: makarenkov.vladimir@uqam.ca

INTRODUCTION
In systematic biology, incomplete datasets can arise in a
variety of situations that can be caused by the lack of
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biological material, the imprecision of experimental meth-
ods or a combination of unpredictable factors. For one,
molecular sequences of different genes may contain gaps
or missing entries, which makes them hardly comparable
and difficult to align. Moreover, experimental techniques
like DNA-hybridization (Werman et al., 1996), comparative
serology (Maxson and Maxson, 1990) or microarray hybrid-
ization (Troyanskaya et al., 2001) are limited in terms of
pairwise comparisons and often led to incomplete distance
matrices. Also, the combination of partially overlapping
phylogenetic trees derived from different sources can produce
incomplete matrices that are then used for the computation
of supertrees (Bininda-Emonds et al., 2002). While some
maximum-likelihood and parsimony methods can handle
missing information for estimating trees (Wiens, 1998), the
reconstruction of phylogenies from distance matrices, usually
requires complete matrices (Swofford et al., 1996). Indeed,
the most popular distance-based methods such as Neighbor-
Joining (Saitou and Nei, 1987), BioNJ (Gascuel, 1997), or
UPGMA (Michener and Sokal, 1957) cannot be carried out
unless a complete matrix of pairwise distances among all
species is available.

Different approaches have been proposed to solve the chal-
lenging problem of inferring phylogenies from partial distance
matrices. Whereas indirect methods rely on the estimation of
missing cells prior to phylogenetic reconstruction using the
mathematical properties of ultrametrics or tree metrics, the
direct approach allows to construct a phylogenetic tree directly
from a partial distance matrix using a specific tree-building
algorithm. Two procedures, reported in Tables 1 and 2, can be
defined to estimate missing entries in a partial distance matrix
D on a finite set X of taxa using either the ultrametric inequal-
ity [as was proposed by De Soete (1984) and then by Lapointe
and Kirsch (1995)]:

d(i, j) ≤ Max{d(i, k); d(j , k)}, for all i, j and k in X, (1)
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Table 1. Ultrametric procedure using the ultrametric inequality (1) to
complete a partial distance d

Ultrametric procedure

Input: Partial distance d on the set X of n taxa.
Output: Complete or partial distance d on the set X of n taxa.
1. Count the Number_of_Missing_Entries in d.
2. do

do for each pair of taxa ij, such that d(i, j) is a missing entry of d

MinMax is set to the maximum known entry of d

do for each taxa k, such that d(i, k) and d(j , k) are known entries
of d

Max = Max(d(i, k); d(j , k))

if (Max < MinMax) then MinMax=Max
end do
if there is at least one known pair of entries d(i, k) and d(j , k) then

d(i, j) = MinMax
Number_of_Missing_Entries=Number_of_Missing_Entries −1

end do
end do

3. if Number_of_Missing_Entries has changed then go to Point 2.

Table 2. Additive procedure using the four-point condition (2) to complete
a partial distance d

Additive procedure

Input: Partial distance d on the set X of n taxa.
Output: Complete or partial distance d on the set X of n taxa.
1. Count the Number_of_Missing_Entries in d.
2. do

do for each pair of taxa ij, such that d(i, j) is a missing entry of d

MinMax is set to the maximum known entry of d

do for each pair of taxa k and l, such that d(i, k), d(j , k), d(i, l),
d(j , l), and d(k, l) are known entries
Max = Max(d(i, k) + d(j , l); d(i, l) + d(j , k)) − d(k, l)
if (Max < MinMax) then MinMax=Max

end do
if, at least once, five entries d(i, k), d(j , k), d(i, l), d(j , l),

and d(k, l) are known then
d(i, j) = MinMax
Number_of_Missing_Entries=Number_of_Missing_Entries −1

end do
end do

3. if Number_of_Missing_Entries has changed then go to Point 2.

or the additive inequality, i.e. the four-point condition [as was
proposed by Landry et al. (1996) and Landry and Lapointe
(1997)]:

d(i, j) + d(k, l) ≤ Max{d(i, k) + d(j , l); d(i, l) + d(j , k)},
for all i, j , k and l in X. (2)

For ultrametric distances (1), a missing value in a triangle is
equal to the greatest of the two others if and only if they are
different. However, if the two available distances are equal,

one cannot estimate the missing value. Similarly for additive
distances (2), the four-point condition proposes a value if and
only if the two available sums are not equal.

On the other hand, three tree-building algorithms allow-
ing missing cells in distance matrices have been proposed.
The Triangle method (Guénoche and Leclerc, 2001; see also
Guénoche and Grandcolas, 2000) relies on an iterative pro-
cedure having some interesting combinatorial properties, the
Fitch program from the PHYLIP package (Felsenstein, 1997)
uses a weighted least-squares optimization for the tree topo-
logy rearrangement and the MW method (Makarenkov and
Leclerc, 1999) is also based on a weighted least-squares
criterion.

The main objective of this paper is to present a new efficient
method for inferring phylogenies from incomplete distance
matrices. This method is compared with the Ultrametric
(Table 1) and Additive (Table 2) estimation procedures as well
as to the Fitch and Triangle direct reconstruction algorithms.
Monte Carlo simulations have been carried out to assess
the performance of the new method using two phylogenies
derived from complete mammalian mtDNA sequences (see
Cao et al., 1998; Reyes et al., 2000; Li et al., 2001). Our res-
ults show that the method introduced in this paper, along with
Fitch, are usually the most accurate for inferring phylogenies
from incomplete distance matrices.

METHODS
Fitting a phylogenetic tree to a partial distance
matrix
For the sake of mathematical convenience, the discussion in
this section is conducted in terms of a dissimilarity. A dis-
similarity on X is a real function d on X × X satisfying
d(x, y) = d(y, x) and d(x, y) ≥ d(x, x) = 0 for all x, y ∈ X.

Two computational problems are considered in this study.
The first one is defined as follows: let D be a partial dissimil-
arity matrix on the set X of n taxa. The least-squares criterion
consists in minimizing the following function:

Q =
∑

i,j∈X

[d(i, j) − δ(i, j)]2, (3)

where a tree metric δ(i, j) is an estimate of a known entry
d(i, j) in D.

In the next paragraph, we will show how the above-stated
problem can be solved by defining the following computa-
tional problem: let W be a matrix of weights associated with
a partial dissimilarity matrix D on the set X of n taxa. The
weighted least-squares criterion consists in minimizing the
following function:

Qw =
∑

i,j∈X

w(i, j)[d(i, j) − δ(i, j)]2, (4)

where the sum is taken over all existing pairs of entries in D.
We will prove that both optimization problems described by
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Equations (3) and (4) are NP-hard. Therefore, the solutions
of the optimization problems 3 and 4 are not ‘likely’ to be
found in polynomial time. Efficient heuristic algorithms have
to be developed to solve them.

Problems of phylogenetic inference are often stated as
optimization problems. To prove their NP-hardness, one has to
consider decision problems associated with them. An optim-
ization problem is at least as hard as the associated decision
problem and is usually harder.

Fitting additive trees to a partial dissimilarity (FAT_PD)

Instance: Partial dissimilarity matrix D on the set X of n

taxa; non-negative integer k.

Question: Is there a tree metric δ such that:
∑

i,j∈X

[d(i, j) − δ(i, j)]2 ≤ k, (5)

where the sum is taken over all existing pairs of
entries in D.

Fitting additive trees to a partial dissimilarity with weights
(FAT_PDW)

Instance: Partial dissimilarity matrix D on the set X of n

taxa, matrix of weights W on X, non-negative
integer k.

Question: Is there a tree metric δ such that:
∑

i,j∈X

w(i, j)[d(i, j) − δ(i, j)]2 ≤ k, (6)

where the sum is taken over all existing pairs of
entries in D.

The decision problem 5 is associated with the optimization
problem 3, whereas the decision problem 6 is associated with
the optimization problem 4 (for more details, see Barthélemy
and Brucker, 2001; Day, 1987). In the seminal paper, Day
(1987) defined the FAT decision problem, which is slightly
different from FAT_PD: a complete dissimilarity matrix and
a positive integer k were considered in FAT. It is easy to see
that allowing k to take a 0 value does not complicate the FAT
problem. When k is set to 0, the FAT problem is equivalent to
the following question: is d a tree metric? This question can
be answered in a polynomial time. However, in FAT_PD the
case k = 0 is not trivial and should be considered.

Theorem 1. (Farach et al., 1995). The following decision
problem (Matrix Completion to Additive, MCA) is NP-
complete: given a partial dissimilarity d on a finite set X,
is there a tree metric extending d to all pairs of elements of X?

This theorem was first formulated but not proved, due to
space limitation, in Farach et al. (1995). For the technical
proof of Theorem 1 the reader is referred to Chepoi and Fichet
(2000).

Theorem 2. The problem of an optimal least-squares fit-
ting of a tree metric to a partial dissimilarity [Equation (3)]
is NP-hard.

Proof. First, we have to prove that the decision problem
FAT_PD associated with the optimization problem 3 is con-
tained in NP, i.e. any claimed solution can be verified in
polynomial time. There exist polynomial time algorithms
allowing one to check that a given dissimilarity d is a tree
metric [see for instance an O(n2) algorithm by Makarenkov
and Leclerc (1997)]. The correctness of Inequality 5 can be
also verified in polynomial time for a given tree metric δ.

Second, we have to show that an NP-complete problem can
be reduced to an instance of FAT_PD in polynomial time.
Consider the MCA problem defined in Theorem 1. The MCA
problem is equivalent to the following one: is there a tree
metric δ, such that:

∑
i,j∈X

[d(i, j) − δ(i, j)]2 ≤ 0, (7)

where the sum is taken over all pairs of known values
d(i, j). Indeed, the problem described by Equation (7) is an
instance of FAT_PD. Thus, the decision problem FAT_PD is
NP-complete and the associated optimization problem 3 is
NP-hard.

Theorem 3. The problem of an optimal weighted least-
squares fitting of a tree metric to a partial dissimilarity
[Equation (4)] is NP-hard.

Proof. The decision problem FAT_PDW associated with
the optimization problem 4 is obviously in NP. Similar to the
previous theorem, we can exhibit a polynomial time algorithm
allowing one to check that a given dissimilarity is a tree metric
and that Inequality 6 is satisfied.

Second, we have to show that an NP-complete prob-
lem can be reduced in polynomial time to an instance of
FAT_PDW. According to Theorem 2, the problem FAT_PD is
NP-complete. Indeed, FAT_PD is an instance of FAT_PDW
in which all the values w(i, j) of the weight matrix W are set
to 1. Thus, the decision problem FAT_PDW is NP-complete
and the associated optimization problem 4 is NP-hard.

Description of the new method
The method described in this paper takes advantages of the
properties of indirect and direct approaches. It uses both the
Ultrametric [Equation (1)] and the Additive [Equation (2)]
estimation procedures, followed by a weighted least-squares
fitting algorithm to infer phylogenetic trees from partial dis-
tance matrices. The new method, called MW∗, is an extension
of the Method of Weights (MW) introduced in Makarenkov
and Leclerc (1999). MW was originally developed to build
phylogenies from complete distance matrices using differ-
ent weighting schemes. The first attempts to use it with
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incomplete matrices were made by Levasseur et al. (2000,
2003). In these studies, binary weights were used to dis-
tinguish missing cells (weight of zero) from known entries
(weight of one) in a partial distance matrix. The results of sim-
ulations showed, however, that MW was not always accurate
in such instances. The MW∗ method is an attempt to improve
on these results.

The new method proceeds in two main steps. In Step A,
either the Ultrametric procedure (Table 1) or the Additive pro-
cedure (Table 2), is carried out to fill missing entries in a partial
distance matrix. It is worth noting that the Ultrametric and the
Additive procedures defined in Tables 1 and 2 do not always
permit to obtain a complete distance matrix. For instance,
they are unable to proceed when only one known value exists
by row and by column of a given distance matrix. Moreover,
when a complete distance matrix can be obtained by applying
the Ultrametric or Additive procedure, the resulting distance is
not necessarily an ultrametric or additive distance; in general,
the returned distance does not verify the ultrametric inequality
or the four-point condition. The smallest possible value used in
the Additive and Ultrametric procedures (Tables 1 and 2) gen-
erally provides better results than the average or the greatest
values; indeed the minimax option was proved to be efficient
by Landry and Lapointe (1997) and Makarenkov (2002). In
Step B, a stepwise addition procedure using a weighted least-
squares criterion is carried out to complete the tree-building
process.

The procedure, Ultrametric or Additive, to apply in Step A
depends on the dimension of the given partial distance matrix
and on the percentage of missing entries. The use of ultramet-
ric estimates is recommended for small distance matrices
with high percentages of missing distances. It is worth not-
ing that the performances of the Additive and Ultrametric
procedures significantly depend on the matrix dimension n

(Makarenkov, 2001b). While increasing n, the performance
of the four-point condition compared with the ultrametric
inequality should also increase. This has been confirmed by
a number of simulation studies including the current one (for
details, see also Makarenkov, 2001b, 2002) as well as by
the following theoretical considerations: for a given ratio of
missing distances α, varying from 0 to 1, the mean num-
ber of estimates of a given unknown distance obtained using
the ultrametric inequality is (1 − α)2 ∗ (n − 2), whereas the
mean number of estimates obtained using the four-point con-
dition is (1 − α)5 ∗ (n − 2)(n − 3)/2. Therefore, for a given
missing ratio α, more estimates of a particular missing value
are expected to be found using the four-point condition when
n > 3 + 2/(1 − α)3. For example, with 30% of missing
distances, the four-point condition should be preferred when
n > 9. However, as shown by Makarenkov (2001b), the fol-
lowing thresholds can be defined depending on the matrix size:
the Additive procedure should be used with <20% of miss-
ing entries for matrices of size (8 × 8), <30% for matrices
of size (16 × 16) and <40% for matrices of size (24 × 24).

In cases where Ultrametric and Additive procedures yield
similar results, one should use the latter because, in gen-
eral, phylogenetic trees do not satisfy the molecular clock
hypothesis characterizing ultrametric trees.

Let D be a symmetric partial distance matrix on the set X

of n taxa. The MW∗ method proceeds as follows:

Step A. The Ultrametric procedure (Table 1) is applied to
estimate missing cells in D, if the distance matrix has more
than a pre-fixed percentage of missing entries (this percentage
should be chosen depending on the matrix dimension, see the
discussion above); otherwise the Additive procedure (Table 2)
is applied. In the T-Rex program (Makarenkov, 2001a), the
thresholds suggested in the previous paragraph are used to
decide which technique, Ultrametric or Additive, will be car-
ried out. Both procedures can stop when no more estimations
can be made using Equations (1) or (2). A weight matrixW
associated with D is then computed as follows:

w(i, j)=




1, if d(i, j) is a known distance in

D prior to Step A,

1/2, if d(i, j) is an estimated distance in

D in Step A,

0, if d(i, j) is missing in D following Step A.
(8)

The main reason for choosing the weight of 0.5 for an estim-
ated entry d(i, j) is based on simulations; the other possible
weights which we tried were 0.25, 0.75 and p/N , where p

is the number of the iteration in which the distance d(i, j)

was estimated and N is the total number of iterations in the
Ultrametric or Additive procedures. Note that the Ultramet-
ric and Additive procedures are not combined here, either
the Ultrametric or Additive strategy is used at this step. The
time complexity of one loop of the Ultrametric procedure is
O(n3) and of the Additive procedure is O(n4). Thus, the
time complexity of Step A is O(kn3) for the Ultrametric and
O(kn4) for the Additive procedure, where k is a number of
loops necessary for completing a partial distance matrix. In
the simulation study described below, k never exceeded 5 for
34 × 34 distance matrices even with 50% of entries missing.
In practice, the time complexity of Step A is O(n3) when
the Ultrametric procedure is carried out and O(n4) when the
Additive procedure is used.

Step B. The weighted least-squares criterion Qw consists
in minimizing the function defined by Equation (4), where
the function δ is a tree metric associated with a phylogenetic
tree T ; thus, δ satisfies the four-point condition. Using the
matrices D and W computed in Step A, the tree T can be
obtained by applying a stepwise addition procedure:
Step 1 (Fig. 1a). The taxa i and j are chosen, such that d(i, j)

is a known distance in D. The corresponding tree T2 comprises
only the edge ij of length d(i, j).
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l

Fig. 1. The first three steps of the stepwise addition procedure used
to infer a phylogenetic tree from a partial distance matrix.

Step 2 (Fig. 1b) and 3 (Fig. 1c, d and e). A third taxon k can
now be placed into the tree. This taxon k ∈ X − {i, j} is
chosen to maximize the sum of weights w(i, k) + w(j , k). If
two or more taxa yield this maximum, the taxon k providing
the smallest value of the weighted least-squares function Qw

is selected. This taxon is not always unique, however. If two
or more taxa yield the minimum of the objective function Qw,
the one that has the greatest possible score over all taxa in X,
defined by Equation (9), is selected for addition to T2.

Score(k, X) =
∑
l∈X

w(l, k). (9)

A fourth taxon l is then placed into the tree at the Step 3. This
taxon l ∈ X − {i, j , k} is chosen to maximize the following
sum w(i, l) + w(j , l) + w(k, l). If two or more taxa yield the
maximum of this sum, the taxon l providing the smallest value
of the weighted least-squares criterion Qw and, if necessary,
the greatest possible score over all taxa in X, is selected.
Step p (with p < n). Let Tp be a phylogenetic tree with p

leaves constructed at the previous steps. The leaves of Tp are
associated with p taxa from X. Among the n − p taxa in X

that are not represented by the leaves of Tp, the next taxon
p + 1 is selected to maximize the following score function:

Score(p + 1, L) =
∑

l∈L(Tp)

w(l, p + 1), (10)

where L(Tp) is the set of leaves of the tree Tp. As in the
previous steps, if two or more taxa yield the maximum score
[Equation (10)], the taxon p + 1 providing the smallest value
of the weighted least-squares criterion Qw [Equation (4)]
and, if necessary, the greatest possible score over all taxa
in X [Equation (9)], is selected. Thus, the score function
[Equation (10)] allows to select first the taxa whose values
are the most certain. The exact location of the new leaf p + 1
in Tp+1 and the lengths of the three new edges are found
by a weighted least-squares procedure (see Makarenkov and
Leclerc, 1999). The best grafting point of the new leaf on each

edge in Tp, according to the objective function 4, is determ-
ined and, then, the location providing the overall minimum
of the objective function over all edges of Tp is retained for
grafting. When the location of the new leaf p+1 is not unique,
the optimization procedure has to select one possible location
from a set of possible ones. Note that the latter case cannot
take place when the next leaf to be added to the tree Tp has
no missing distances to the other leaves added to Tp in the
previous steps.

The time complexity of the Step B is O(n3) for a given
partial distance matrix D of size (n×n). Such a low-time com-
plexity is due to a number of computational tricks used in the
implementation of the MW procedure (for more details, see
Makarenkov and Leclerc, 1999). In the simulations presen-
ted below, we carried out this procedure for all possible pairs
of taxa ij selected at Step 1 of the algorithm; this exhaust-
ive strategy increases the algorithmic time complexity up to
O(n5), but it often enables a substantial improvement in fit.
The only limitation for the new method is that the given dis-
tance matrix should not have rows or columns entirely filled
with missing distances. As will be proven in the Results sec-
tion, the use of weights makes the MW∗ procedure more
efficient than a simple combination of Ultrametric or Additive
techniques and MW method.

RESULTS
Application of MW∗ to whole genome phylogenies
Two phylogenies built from complete mammalian mtDNA
sequences (see Cao et al., 1998; Reyes et al., 2000; Li
et al., 2001) were analyzed to assess the relative perform-
ance of the new strategy relatively to four other meth-
ods for inferring phylogenetic trees from partial distance
matrices. To do so, we used the information-based dis-
tances computed by Li et al. (2001) and available at www.
math.uwaterloo.ca/~mli/distance.html. The first phylogeny
(Fig. 2a) depicts evolutionary relationships among 20 species
representing three main groups of placental mammals (Cao
et al., 1999; Li et al., 2001). This tree inferred with the MW
method (Makarenkov and Leclerc, 1999) is identical to the
Neighbor-Joining (NJ) tree (Saitou and Nei, 1987) computed
from the same data. The second phylogeny (Fig. 2b) illus-
trates evolutionary relationships among 34 taxa, including 19
species from Figure 2a and 15 additional taxa. In this case, the
tree obtained with the MW method differs from the NJ tree and
from the phylogenies derived with maximum-likelihood and
minimum evolution methods (see Reyes et al., 2000). How-
ever, it is very similar to the consensus tree in Li et al. (2001),
except for the position of the cat, dog and rabbit.

Monte Carlo simulations were carried out with the phylo-
genies in Figure 2. In a series of experiments, the accuracy
of three direct and two indirect methods of phylogenetic
inference was evaluated in presence of missing distances.
The direct methods considered were Triangle (Guénoche and
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(b)

(a)

Fig. 2. Phylogenetic tree built from the complete mammalian mtDNA sequences of the species analyzed in (a) Cao et al. (1998) and (b)
Reyes et al. (2000). These trees were inferred with the MW method of Makarenkov and Leclerc (1999), using the information-based distances
from Li et al. (2001).
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Fig. 3. (a, b) Topological recovery values obtained for different percentages of missing entries by the five competing methods (Triangle, open
triangles; Ultrametric, open diamonds; Additive, open squares; Fitch, open circles; and MW∗, multiplication symbol). The distance matrix
computed by Li et al. (2001) were used in the simulations. The abscissa represents the percentage of known entries in the distance matrix; the
ordinate represents the RF topological distance between the correct trees in Figure 2a and b, respectively, and the trees derived from partial
distances using the above mentioned methods. Lower RF values indicate a better recovery of the correct tree.

Leclerc, 2001), Fitch (Felsenstein, 1997) and MW∗. The Fitch
program was used with the replicates option: the number
of replicates was set to 0 for missing entries and to 1 for
known ones. The indirect estimation approaches compared
were the Ultrametric (De Soete, 1984) and Additive (Landry
et al., 1996) procedures. Because the Ultrametric and Additive
procedures do not always provide a tree metric, they were fol-
lowed by the MW method with all weights set to 1. Moreover,
as was discussed above, the Ultrametric and Additive proced-
ures do not always allow one to obtain a complete distance
matrix. In our simulation study, all considered partial distance
matrices were generated in such a way that no missing values
were left in them after the application of the Ultrametric or
Additive procedure. Thus, the MW algorithm were always
applied to a complete distance matrix.

Inferring phylogenies from incomplete distance
matrices
The experiment involved random deletion of pre-fixed
numbers of entries from D. For each case (n = 20 and
n = 34), 100 replicates of a partial distance matrix were gener-
ated with different percentages of missing values ranging from
0 to 50%, and phylogenies were estimated from the partial
distances matrices. The topological recovery of the five meth-
ods was then quantified with the Robinson and Foulds (RF)
distance (see Robinson and Foulds, 1981; Makarenkov and
Leclerc, 2000) computed between the correct trees (Fig. 2a
and b) and the trees obtained from partial distances. This
measure of tree similarity is equal to the minimum number
of elementary operations, consisting of merging and splitting

vertices, necessary to transform one tree into another. Lower
RF values indicate a better recovery of the correct tree; the RF
distance equals 0 when the recovery is perfect. To compare the
results obtained for trees of different sizes, the computed RF
distances were normalized by its largest possible value, which
is 2n − 6 for two binary trees with n leaves. The simulation
results obtained for the two complete genome phylogenies
(Fig. 2a and b) are presented in Figure 3. In each case, the
mean RF values computed over 100 replicates are reported.

The results of the simulations show that the MW∗ method
provides better results in terms of topological recovery for
the (20 × 20) distance matrix compared with the four other
algorithms (Fig. 3a). For the (20×20) matrix, the new method
is particularly good when partial distance matrices contain
50–90% of known entries. However, when analyzing the
(34 × 34) distance matrix the Fitch algorithm slightly out-
performs MW∗ (Fig. 3b). Because of a large number of the
tree topologies being examined by Fitch, it provides better
results for large distance matrices but remains the slowest of
the five competing strategies. However, when analyzing the
(20 × 20) distance matrix, the Fitch procedure is among the
worst ones, sitting behind MW∗, Additive and Ultrametric.
For the (20 × 20) distance matrix, the second best approach
is the indirect estimation based on the Additive procedure,
but its performance decreases rapidly with the increase in
the percentage of missing cells. Thus, with >30% of miss-
ing entries for the (20 × 20) matrix and >40% of missing
entries for the (34 × 34) matrix, the Ultrametric procedure
outperforms the Additive procedure. The worst of the five
methods compared is clearly Triangle, which never recovered
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Fig. 4. Average computational time, for 100 datasets, required by
the five tree inferring methods (Triangle, open triangles; Ultramet-
ric, open diamonds; Additive, open squares; Fitch, open circles; and
MW∗, multiplication symbols) to process (34 × 34) partial distance
matrices with different percentages of missing entries. The partial
distance matrices were generated by removing entries from the ori-
ginal complete distance matrix provided by Li et al. (2001). The
abscissa represents the percentage of known entries in the distance
matrix; the ordinate represents the computational time, in seconds,
taken to infer the tree.

the correct trees, even for complete distance matrices (Fig. 3a
and b).

Figure 4 illustrates the average computational time required
by the five tree inferring methods considered in this study to
process (34×34) datasets with different percentages of miss-
ing entries. The experiments were carried out using a Ciara
computer equipped with Intel Pentium IV (CPU 1.6 GHz) pro-
cessor. For the (20 × 20) distance matrices considered in this
study, the computing time of the five method was not graphed
because it was similar for the majority of methods: the Tri-
angle method took <0.2 s on average, Fitch (version 3.573c
used with global optimization option) 1.8 s, and MW∗ and
Ultrametric and Additive procedures followed by MW∗ ∼2 s.
The difference appears when analyzing (34×34) matrices. We
can conclude that the Fitch computing time highly depends
on the percentage of missing values. This time increases, on
average, from 7.1 s for a complete (34 × 34) distance matrix
to 22.3 s for a partial distance matrix with 50% of missing
entries. Fitch is slightly faster than MW∗ for small datasets,
but it is much slower than MW∗ for big data matrices, espe-
cially with big percentage of missing entries. It seems that
the global optimization in Fitch works better for big distance
matrices. The Triangle method is very fast but not very reli-
able. As explained above, in the simulations presented in this
paper we carried out MW∗ for all possible pairs of taxa ij selec-
ted at the first step of the algorithm; this exhaustive strategy
increases the algorithmic time complexity up to O(n5). MW∗
works faster when the percentage of missing entries increases.

This paradox is due to the fact that at its first step MW∗ con-
siders only pairs of taxa ij such that d(i, j) is a known entry of
the given partial distance matrix D; while increasing the per-
centage of missing entries, the number of taxa available at the
first step of the algorithm (and so the number of iterations of
the algorithm) decreases. The Additive and Ultrametric pro-
cedures (Tables 1 and 2) are very fast, but because they were
followed by MW their computing time was very close to that
of MW∗.

CONCLUSIONS
We compared the relative performances of five different
methods of phylogenetic inference intended to deal with
incomplete distance matrices. We proved that the problem
of fitting a phylogenetic tree to a partial distance matrix is
NP-hard for both the ordinary least-squares and weighted
least-squares models. Thus, to solve these problems new
efficient heuristics should be proposed and tested through
simulations. We described the MW∗ method which is based
on a combination of indirect and direct tree reconstruction
approaches. Simulation studies showed that the new method,
along with Fitch, provides the best tree recovery among the
competing approaches. As such, this technique can be use-
ful to derive phylogenies from distance matrices including
incomplete or uncertain entries; this problem is among the
most relevant issues in systematic biology.

Two more applications of the MW∗ method can also be
considered. First, MW∗ can be used to combine trees bear-
ing overlapping sets of leaves in a supertree setting. Indeed,
a supertree defined for all species can be obtained by com-
bining the submatrices representing the partially overlapping
subtrees. All the five methods considered in this paper can
be useful for building supertrees from the gene distance
data that are not affected by horizontal gene transfer events.
However, the analysis of the supertree problem necessitates
simulations involving genes with different rates of evolution.
Further experiments will be needed to compare MW∗ with
other methods of supertree construction (see Bininda-Emonds
et al., 2002). Second, the weighted least-squares approach
employed in this paper can also be applied to phylogenetic
inference from complete distance matrices. For instance, the
weight matrix can be used to indicate either the precision of
distance measurements or the confidence levels of distance
values. Future simulations will be necessary to compare the
performance of MW∗ with other distance methods of phylo-
genetic inference [e.g. NJ: Saitou and Nei (1987); BioNJ:
Gascuel (1997); Fitch: Felsenstein (1997)] in case of sequence
data with different percentages of gaps and missing bases.
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