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Abstract. High-throughput screening (HTS) is an efficient technological tool for
drug discovery in the modern pharmaceutical industry. It consists of testing thou-
sands of chemical compounds per day to select active ones. This process has many
drawbacks that may result in missing a potential drug candidate or in selecting in-
active compounds. We describe and compare two statistical methods for correcting
systematic errors that may occur during HTS experiments. Namely, the collected
HTS measurements and the hit selection procedure are corrected.

1 Introduction

High-throughput screening (HTS) is an effective technology that allows for
screening thousands of chemical compounds a day. HTS provides a huge
amount of experimental data and requires effective automatic procedures to
select active compounds. At this stage, active compounds are called hits;
they are preliminary candidates for future drugs. Hits obtained during pri-
mary screening are initial elements for the determination of activity, speci-
ficity, physiological and toxicological properties (secondary screening), and for
the verification of structure-activity hypotheses (tertiary screening) (Heyse
(2002)).

However, the presence of random and systematic errors has been recog-
nized as one of the major hurdles for successful implementing HTS technolo-
gies (Kaul (2005)). HTS needs reliable data classification and quality control
procedures. Several methods for quality control and correction of HTS data
have been recently proposed in the scientific literature. See for example the
papers of Zhang et al. (1999), Heyse (2002), Heuer et al. (2003), and Brideau
et al. (2003).

There are several well-known sources of systematic error (Heuer et al.
(2003)). They include reagents evaporation or decay of cells which usually
show up as smooth trends in the plate mean or median values. Another typi-
cal error can be caused by the liquid handling or malfunctioning of pipettes.
Usually this generates a localized deviation of expected values. A variation
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in the incubation time, a time drift in measuring different wells or different
plates, and reader effects may appear as smooth attenuations of measure-
ments over an assay. This kind of effects may have a significant influence
on the selection process of active compounds. They can result in an under-
estimation (false negative hits) or overestimation (false positive hits) of the
number of potential drug targets.

We have developed two methods to minimize the impact of systematic
errors when analyzing HTS data. A systematic error can be defined as a
systematic variability of the measured values along all plates of an assay. It
can be detected, and its effect can be removed from raw data, by analyzing the
background pattern of plates of the same assay (Kevorkov and Makarenkov
(2005)). On the other hand, one can adjust the data variation at each well
along the whole HTS assay to correct the traditional hit selection procedure
(Makarenkov et al. (2006)). Methods described in Sections 3 and 4 originate
from the two above-mentioned articles.

2 HTS procedure and classical hit selection

An HTS procedure consists of running samples (i.e. chemical compounds)
arranged in 2-dimensional plates through an automated screening system that
makes experimental measurements. Samples are located in wells. The plates
are operated in sequence. Screened samples can be divided into active (i.e.
hits) and inactive ones. Most of the samples are inactive, and the measured
values for the active samples are significantly different from the inactive ones.
In general, samples are assumed to be located in a random order, but it is
not always the case in practice.

The mean values and standard deviations are calculated separately for
each plate. To select hits in a particular plate, one usually takes the plate
mean value µ and its standard deviation σ to identify samples whose values
differ from the mean µ by at least cσ, where c is a preliminary chosen constant.
For example, in the case of an inhibition assay, by choosing c = 3, we would
select samples with the values lower than µ − 3σ. This is the simplest and
most widely-known method of hit selection. This method is applied on a
plate-by-plate basis.

3 Correction by removing the evaluated background

This correction method is a short overview of the corresponding procedure
of Kevorkov and Makarenkov (2005). To use it properly, we have to assume
that all samples are randomly distributed over the plates and systematic er-
ror causes a repeatable influence on the measurements in all plates. Also,
we have to assume that the majority of samples are inactive and that their
average values measured for a large number of plates are similar. Therefore,
the average variability of inactive samples is caused mainly by systematic
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error, and we can use them to compute the assay background. In the ideal
case, the measurements background surface is a plane, but systematic errors
can introduce local fluctuations in it. The background surface and hit distri-
bution surface of an assay represent a collection of scalar values which are
defined per well and are plotted as a function of the well coordinates in a
3-dimentional diagram.

An appropriate statistical analysis of experimental HTS data requires a
preprocessing. This will ensure the meaningfulness and correctness of the
background evaluation and hit selection procedures. Therefore, we use nor-
malization by plate and exclude outliers from the computations. Keeping in
mind the assumptions and pre-procession requirements, the main steps of
this method can be outlined as follows:

• Normalization of experimental HTS data by plate,
• Elimination of outliers from the computation (optional),
• Topological analysis of the evaluated background,
• Elimination of systematic errors by subtracting the evaluated background

surface from normalized raw data,
• Selection of hits in the corrected data.

3.1 Normalization

Plate mean values and standard deviations may vary from plate to plate. To
compare and analyze the experimental data from different plates, we need
first to normalize all measurements within each plate.

To do this, we use classical mean centering and unit variance standardiza-

tion of the data. Specifically, to normalize the input measurements, we apply
the following formula:

x′

i =
xi − µ

σ
, (1)

where xi, i = 1, 2, . . . , n, is the input element value, x′

i, i = 1, 2, . . . , n, is the
normalized output element value, µ is the plate mean value, σ is the plate
standard deviation, and n is the total number of elements (i.e. number of
wells) in each plate. The output data will have the plate mean value µ′ = 0
and the plate standard deviation σ′ = 1.

Another possibility discussed by Kevorkov and Makarenkov (2005) is to
normalize all the plate values to a given interval. This normalization generally
produces results similar to the described one.

3.2 Evaluated background

Systematic error is assumed to appear as a mean fluctuation over all plates.
Therefore, an assay background can be defined as the mean of normalized
plate measurements, i.e.:

zi =
1

N

N∑

j=1

x′

i,j , (2)
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where x′

i,j , i = 1, 2, . . . , n, j = 1, 2, . . . , N , is the normalized value at well i
of plate j, zi is the background value at well i, and N is the total number of
plates in the assay.

Clearly, Formula 2 is more meaningful for a large number of plates: in this
case the values of inactive samples will compensate the outstanding values of
hits. To make Formula 2 useful and more accurate for an assay with a small
number of plates, one can exclude hits and outliers from the computations.
Thus, the evaluated background will not be influenced by the outstanding
values and will better depict systematic errors.

3.3 Subtraction of evaluated background

Analyzing the distribution of selected hits, we can tell whether any system-
atic error is present or not in the assay: hits should be more or less evenly
distributed over all wells. Otherwise, the hit amounts vary substantially from
one well to another indicating the presence of systematic errors.

Deviations of the evaluated background surface from the zero plane indi-
cate an influence of systematic errors on the measured values. Therefore, it is
possible to correct raw HTS data by subtracting the evaluated background,
defined by Formula 2, from the normalized values of each plate, given in
Formula 1. After that, we can reassess the background surface and hit distri-
bution again.

4 Well correction method

This section is a concise description of the well correction approach presented
in detail in Makarenkov et al. (2006). We have to make the assumptions stated
in the previous section about input HTS data and positions of samples in
wells. The main steps of the well correction method are the following:

• Normalization of all sample values by plate,
• Analysis of hit distribution in the raw data,
• Hit and outlier elimination (optional),
• Correction and normalization of samples by well,
• Normalization of all samples by plate,
• Selection of hits in the corrected data.

Similarly to the evaluated background approach, the normalization of all
samples by plate is done here using the mean centering and unit variance
standardization procedure described above. The hit distribution surface can
be computed as a sum of selected hits by well along the whole assay. If
this surface is significantly different from a plane, it implies the presence of
systematic errors in the assay measurements. Excluding hits and outliers from
the computation, we obtain the non-biased estimates for the mean values and
standard deviations of inactive samples in plates.
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4.1 Well correction technique

Once the data are plate-normalized, we can analyze their values at each par-
ticular well along the entire assay. The distribution of inactive measurements
(i.e. excluding hits and outliers) along wells should be zero-mean centered if
systematic error is absent in the dataset.

However, a real distribution of values by well can be substantially different
from the ideal one. Such an example is shown in the article by Makarenkov
et al. (2006). A deviation of the well mean values from zero indicates the
presence of systematic errors. Experimental values along each well can have
ascending and descending trends (Makarenkov et al. (2006)). These trends
can be discovered using the linear least-squares approximation (e.g. the trends
can be approximated by a straight line).

In the case of approximation by a straight line (y = ax+b), the line-trend
is subtracted from or added to the initial values bringing the well mean value
to zero (x denotes the plate number, and y is the plate-normalized value of
the corresponding sample). For the analysis of large industrial assays, one
can also use some non-linear functions for the approximation. On the other
hand, an assay can be divided into intervals and a particular trend function
characterizing each interval can be determined via an approximation. After
that, the well normalization using the mean centering and unit variance stan-
dardization procedure is carried out. Finally, we normalize the well-corrected
measurements in plates and reexamine the hit distribution surface.

5 Results and Conclusion

To compare the performances of the two methods described above, we have
chosen an experimental assay of the HTS laboratory of McMaster University
(http://hts.mcmaster.ca/Competition 1.html). These data consist of a
screen of compounds that inhibit the Escherichia coli dihydrofolate reduc-
tase. The assay comprises 1250 plates. Each plate contains measurements for
80 compounds arranged in 8 rows and 10 columns. A description of the hit
follow-up procedure for this HTS assay can be found in Elowe et al. (2005).

Table 1 shows that the proposed correction methods have slightly in-
creased the number of selected hits. However, the standard deviation of se-
lected hits by well and the χ-square values (obtained using the χ-square
contingency test with α-parameter equal to 0.01; the null hypothesis, H0,
here is that the hit distribution surface is a constant plane surface) become
smaller after the application of the correction procedures. Moreover, the well
correction method allowed the corresponding hit distribution surface to pass
the χ-square contingency test in both cases (using 2.5σ and 3σ thresholds for
hit selection). Figure 1 shows that the hit distribution surfaces have become
closer to planes after the application of the correction methods.

To demonstrate the effectiveness of the proposed correction procedures,
we have also conducted simulations with random data. Thus, we have con-
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Raw Rem. Well Raw Rem. Well
data backgr. correct. data backgr. correct.

Hit selection threshold 3σ 3σ 3σ 2.5σ 2.5σ 2.5σ

Mean value of hits per well 3.06 3.13 3.08 6.93 6.93 7.03

Standard deviation 2.17 2.16 2.06 3.93 3.55 2.61

Min number of hits per well 0 0 0 1 2 2

Max number of hits per well 10 10 10 19 22 15

χ-square value 121.7 118 109.1 175.8 143.8 76.6

χ-square critical value 111.14 111.14 111.14 111.14 111.14 111.14

χ-square contingency H0 No No Yes No No Yes

Table 1. Results and statistics of the hit selection carried out for the raw, back-
ground removed (Rem. backgr.) and well-corrected (Well correct.) McMaster data.

sidered random measurements generated according to the standard normal
distribution. The randomly generated dataset also consisted of 1250 plates
having wells arranged in 8 rows and 10 columns. The initial data did not con-
tain any hit. However, the traditional hit selection procedure has found 119
false positive hits in the random raw data using the 3σ threshold. The correc-
tion methods detected 117 (removed background) and 104 (well correction)
false positive hits.

Then, we have randomly added 1% of hits to the raw random data. The
hit values were randomly chosen from the range [µ − 3.5σ; µ − 4.5σ], where
µ denotes the mean value and σ denotes the standard deviation of the ob-
served plate. After that, the data with hits were modified by adding the
values 4c, 3c, 2c, c, 0, 0,−c,−2c,−3c, and −4c to the 1st, 2nd, . . ., and 10th
columns, respectively, thus simulating a systematic error in the assay, where
the variable c was consequently taking values 0, σ/10, 2σ/10, . . ., and 5σ/10.
The value c = 0 does not create any systematic error, but bigger values of c
increase systematic error proportionally to the standard deviation σ.

For each value of the noise coefficient c, hits were selected in the raw,
background removed and well-corrected datasets using the 3σ threshold.
The hit detection rate as well as the false positive and false negative rates
were assessed. The hit detection rate was generally higher for both corrected
datasets. Figure 2(a) shows that the background and well correction proce-
dures successfully eliminated systematic error from the random data. Both
methods were robust and showed similar results in terms of the hit detection
rate. However, the well correction method systematically outperformed the
background method in terms of the false positive hit rate (see Figure 2(b)).

In conclusion, we developed two statistical methods that can be used to
refine the analysis of experimental HTS data and correct the hit selection
procedure. Both methods are designed to minimize the impact of systematic
error in raw HTS data and have been successfully tested on real and artifi-
cial datasets. Both methods allow one to bring the hit distribution surface
closer to a plane surface. When systematic error was not present in the data,
both correcting strategies did not deteriorate the results shown by the tra-
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Fig. 1. Hit distribution surfaces computed for the 3σ and 2.5σ hit selection thresh-
olds for the raw (a and b), background removed (c and d), and well-corrected (e
and f) McMaster datasets.
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ditional approach. Thus, their application does not introduce any bias into
the observed data. During the simulations with random data, the well cor-
rection approach usually provided more accurate results than the algorithm
proceeding by the removal of evaluated background.
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Fig. 2. Correct (a) and false positive (b) detection rates for the noisy random data
obtained by the traditional hit selection procedure (denoted by 2), the removed
background (denoted by ◦), and well correction (denoted by △) methods.
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