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~ lIntroduction



Motivation - problématique

Etant donné une séquence génomique (partielle ou
compléte) d’un virus nouvellement séquencée ou
extraite a partir d’'une base de données :

peut-on identifier le type du virus ¢

En utilisant ses caractéristiques génomiques

Sans refaire un alignement de séquences ni une phylogénie



Motivation - problématique
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0 Classifications - typages

0 Classification taxonomique
o Classification géographique
o Classification par pouvoir pathogéne



Motivation - travaux associés

0 Méthodes basées sur I'alignement de séquences
NCBI Pairwaise Sequence Comparison (PASC) (o er . 2015

Diversity partitioning by hierchical clustering (DEmARC) (Lauber et Gorbalenya

2012)
B LAST (Altschul et al. 1997)

1 Méthodes basées sur une phylogénie
REGA (Alcantara et al., 2009; de Oliveira et al., 2005)
Pplcer matsen et al. 2010)

1 Méthodes indépendantes de I'alignement de séquences
COMET (struck et al. 2014)

Natural vector based on the distributions of nucleotides peng et . 2011)



Motivation
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71 Application
0 Efficace et rapide
o Automatique
o Réutilisable et reproductible

o Accessibilité



Apprentissage automatique
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The general chain of work of a common data mining task (inaki Inza et al. 2010)



Apprentissage automatique
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0 Apprentissage supervisé (Classification et régression)

0 Arbre de décision, SVM, KNN, bayésiens, réseaux de neurone efc.

-1 Apprentissage non supervisé (Clustering)
O Partitionnements K-means

O Partitionnements hiérarchiques, basés sur la densité, des graphes etc.






Les étapes de la classification

1. Construire des jeux de données représentatifs

2. Déterminer un ensemble d’attributs (features)
pertinents et non redondants

5. ldentifier des algorithmes d’apprentissage
adéquats et performants



Approche de classification
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1. Jeu de données
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1. Jeu de données
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01 Virus du papillome humain (VPH)

o ADN double brin circulaire
o ~ 8000 nt

01 Virus de I’'hépatite B (VHB)
o ADN circulaire

o Partiellement double brin

o ~ 3200 nt

o Virus de l'immunodéficience humaine type 1 (VIH-1)

o ARN simple brin en double exemplaire

o ~ 9700 nt

Smith B et al. 2011



1. Jeu de données
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0 Classification inter-genres des VPHs

Classe (genve) ____|______nombre
Alphapapillomavirus 457

Bétapapillomavirus 48

Gammapapillomavirus

pmitommi: [ S

Nupapilomevies L

0 Classification inter-espéces des VPHs

Classe Classe Classe Classe
(espéce) (espéce) (espéce) (espéce)

____ 29 [ AlphabV14 | o7
N AphePve  Aphapvio B
, I . IR
09 | AphaPV8 04 | AphePvis 02 | -




1. Jeu de données
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0 Classification inter-génotype des VHBs

Classe (Génotype)



1. Jeu de données

UQAM Introduction

0 Classification des sous-types M du VIH-1

|| clesse sousaype) _nomre [
A 314

2113

1065
76

55

O
w

Résultats Conclusion

Classe (sous-type) m

O1_AE 712
93
44
36

22




1. Jeu de données
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1 Source des données
o NCBI Taxonomy

1 NCBI Nucleotide

0 NCBI RefSeq
0 Papillomavirus Episteme (PaVE)

0 Los Alamos HIV databases



2. Attributs
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2. Attributs - RFLP

01 Polymorphisme de longueur des fragments de restriction (RFLP)
01 Technique de biologie moléculaire
1 Coupure de ’ADN par des enzymes de restrictions
0 Empreinte génétique
T - = - S T = - ®
S 2 8 X F % 3 § § 8 X35 3 %
L O & &8 2 £ & & & L 0@ 8 £ £ & ¢ §

HPV 6 HPV 33

Motifs RFLP d'un segment de la séquence du L1 pour l'identification des VPH génitaux (Bernard, et al., 1994 ).



2. Attributs - RFLP
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0 Technique bioinformatique

11 Restriction Enzyme dataBASE (REBASE)
0 172 prototypes d'enzymes de type |l

on nuteotde semances |+ cramex | evymess EnzymeX Enzymefs CLASS
Seql ‘ —N—% = Seql | ©60,780,1560 ‘ 2280, 720 Seql 10767  1690.7 RED
seq2 % ” . Seq2 14401560 2280, 720 Seq2  1501.2 1690.7 RED

Extraction Transformation

seq3 ‘ _._“_E N —p  SeG3 | 0175438 T gy %03 | 11047 | 9023 BLUE
Seq4 ?—“&;— Seqd 660,174,386 327,2171, 302 Seqd 11047  1279.5 BLUE
Seqs ‘ ” “ii ” Seqs | 820,280 ‘ 537, 680, 679, 1304 Seqs 1847 853.3 GREEN
Seqb 03— 383 Seqb 3300 537, 680, 679, 1304 Seq6 3300 853.3 GREEN
Seq7 ‘ * Seq7 13401640 ‘ 273, 2107, 600 Seq7  1497.5 12746 ?




2. Attributs - métriques
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0 Attributs numériques

11 Pour chaque couple virus — enzyme, on calcule

0 CUT : nombre de coupures (attributs entiers)

0 RMS : la moyenne quadratique des longueurs des

fragments (attributs réels) .
x = : fo

n . —

,q‘ i=1



2. Attributs
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1 Exemple de données d’apprentissage

ID CUT_Accl RMS_Accl CUT_Acll RMS_Acll CUT_Acyl RMS_Acyl CUT_ASfIIl RMS_AflII Class
X74483 5 1977,92 1 7844,00 3 2650,41 0 7844,00 PSV_PV
X77858 4 2645,70 3 3269,98 2 5423,81 2 3998,11 PSV_PV
X94164 5 2141,91 (0] 7988,00 7 1504,92 1 7988,00 PSV_PV
X94165 6 1866,19 4 2267,66 1 7700,00 1 7700,00 PSV_PV
Y15173 5 1748,69 2 4818,36 1 7537,00 0 7537,00 PSV_PV
Y15174 4 2182,74 1 7549,00 1 7549,00 1 7549,00 PSV_PV
Y15175 8 1227,69 2 3947,36 8 1456,80 2 5264,39 PSV_PV

NC_000852 254 1830,14 178 2718,91 177 2824,55 51 9170,54 NGV_PV
NC_000866 59 3783,18 64 3840,31 32 6939,67 27 7755,87 NGV_PV
NC_000867 1 10079,00 7 1949,85 7 1524,67 2 6809,43 NGV_PV
NC_000871 19 2230,87 16 2759,61 3 10656,71 4 10107,46 NGV_PV
NC_000872 22 2239,47 20 2822,73 6 8522,07 6 7608,48 NGV_PV
NC_000896 14 3942,09 15 3928,77 9 6618,34 12 4500,37 NGV_PV

NC_000898 101 2269,26 53 4339,03 124 261296 15 15151,01 NGV_PV




2. Attributs - Sélection
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2. Attributs - Sélection

11 Pertinence : gain d’information
Information mutuelle entre un attribut et la classe

Information gain evaluator (avec Ranker search method)
Top-k

1 Redondance : corrélation

Deux attributs corrélés sont redondants

Corrélation de Spearman (rho)



2. Attributs - Sélection
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3. Algorithmes d’apprentissage
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Weka modules

Arbres de décision weka.classifiers.trees.)48

Random Forest weka.classifiers.trees.RandomForest
Machines a vecteurs de support (SVM) weka.classifiers.functions.LibSVM
weka.classifiers.lazy.|Bk

Bagging weka.classifiers.meta.Bagging
AdaBoost weka.classifiers.meta.AdaBoostM1

Naive Bayes weka.classifiers.bayes.NaiveBayes



3. Algorithmes d’apprentissage
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0 La classification et I'évaluation sont effectuées avec
IC’ plCﬂ'efOI‘me Wekd (Waikato Environment for Knowledge Analysis)

1 Les entrainements des modeéles sont réalisés avec
une validation croisée de 10 itérations



4. Evaluation — Cohésion des classes

0 Compacité (cohésion interne) : les objets appartenant
a un cluster sont les plus similaires

0 Séparabilité (isolation externe) : les objets
appartenant aux autres clusters sont les plus distincts

0 Indice de Silhouette ruseen 197 ¢ indice € [-1, 1]

L] Indice de COhéSion (Daigle et al. 2015) & indice = [O, ]]



4. Evaluation — modéles d’apprentissage
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Taux de vrais positifs

. CLASSE REELLE

Condition Condition

(rappel, sensibilité)

Taux de faux positifs

L positive négative

E (FPR, 1 - spécificité)
1Tt Condition Vrais Faux

o positive positifs positifs

- (TP) (FP)

n

j Condition Faux Vrais

.~ négative négatifs négatifs

(FN) (TN)



5. Simulations

0 Cing jeux de données principaux de génomes viraux

0 Pour chaque jeu de données :
Générer 10 échantillons (sans remise)

Pour chaque échantillon :

m Construire des modeéles avec validation croisée en combinant :
m 2 métriques d’attributs (CUT et RMS)
B 2 méthodes de sélection d’attributs (topAtiributes et correlation)
m 7 algorithmes d’apprentissage (148, SVM, ADA, etc.)

m Au total 280 modeéles



Prédiction
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Cohésion des classes

Méthode Résultat Conclusion

MDS Cohesion index Silhouette index
100
L —
L4 —
50 ‘ L) L) _
L e, "
o @0 L )
g =50 @ 2 @
£ - 3] [
a % '.’
-100 ?
° .0?0 ° A 5
i Lo 3 e
-150 Py _—
[ —
=100 -50 0 50 100 1 0.0 0.2 04 0.6 0.8 1.0 04 02 00 02 04 06 08 1.0
Number of cuts per enzyme Dimension 1 Cohesion index Silhouette index

EEN HPV _ALPHA 2 WSSl HPV_ALPHA 3 BBl HPV_ALPHA 4 WSS HPV_ALPHA 6 WSS HPV_ALPHA_ 7

BN HPV_ALPHA 9 W HPV_ALPHA 10 WSS HPV_ALPHA 14 @& HPV_BETA EEE HPV_GAMMA
30 [
0 I 4
20
0
—20
I—4o “
by Bz E
k| 2 Z 2
g g © N
5 a
B 20 -0 0 10 20 . . 04 0.6 . . 04 -02 00 02 04 06 08 10
Number of cuts per enzyme Dimension 1 Cohesion index Silhouette index
BN HBV._ A EEE HBV B EEE HBV.C EEE HBV D WEE HBV_E BN HBV F EEE HBV.G WM HBV_H
60 = —
50 r
25 40
0 J
25 2
I—so o
- 5 2 @
1 " Z 2 2
(c) Z E é 0 2 2
O
== B 2 e ©
. ‘
N e
—40 r —
Moo s0 o 50 X 2 04 06 08 10 04 02" 00 02 04 06 08 10
Number of cuts per enzyme Dimension | Cohesion index Silhouette index

BN HIVI_0I_AE  BES HIVI 02 AG ~ ©9% HIVI 07 BC WSSl HIVI_08 BC o HIVI_A
. HIVI_B . HIVI C [ HIVILD [ HIVIF HIVI_G



Simulation - comparaison des métriques

A . r 1 4 .
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Simulation - comparaison des méthodes
de sélection d’attributs

A . V4 14 .
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Simulation - comparaison des

algorithmes d’apprentissage
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()

# of instances 551 461 418 413 413 11156 10949 10451 10771 10381

# of classes

% of correct classifications
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Comparaison CASTOR avec REGA et
COMET dans la classification de VIH

Introduction Méthode Résultats Conclusion

Complete genomes (b) pol fragments

51 29 8 6 6 71 48 21 22 15

Complete sampling Specific subtypes Common subtypes Complete sampling Specific subtypes Common subtypes

B COMET B REGA [ CASTOR



Plateforme CASTOR

o\ 910/:¢ Machine Learning Platform for the Classification of Nucleotide Sequences

Université du Québec a Montréal

| & | CASTOR-predict | CASTOR-build~ | CASTOR-optimize~ | CASTOR-database | Help | About

Welcome to CASTOR web-platform 1.0. A powerful, dynamic and open access web-platform to exploit robust machine learning classifiers for the classification
of sequences based on RFLP signatures. The platform allows the user to label nucleotide sequences and classify efficiently and quickly these sequences. With
CASTOR, one can build and optimize its own classifiers. Users could also share and publish in CASTOR-database their models that will allow the reused of their
tuned models as well as the access to their models for reproducible research.

Get Started with PMVHIVGCO04 classifier

1
0.5 ‘
'
0 '

TP Rate FP Rate Precision F-Measure g
H HIV1_01_AE HIV1_02_AG IV1_06_cpx ‘m_w_sc HIV1_08 ﬁ || HIVHl_cpx -ﬂv1_14_sc Ml Hivi_22 0141 HIV1_35_AD
Hivi_a2_gF Il HIV1 63_02A1 HIV1_71_BF1 HviA [l Hvis HIV1_C HIV1_D HIV1F HIV1_G WeightedAvgOfClasses

HIV-1 M Pure subtype and CRF classification using complete genomes.

'!é CASTOR-predict ||==‘ CASTOR-database

Predict nucleotide sequence classes using already build classifiers A database of community-shared classifiers

' = CASTOR-build '_/’j'ﬂ CASTOR-optimize

Build your own predictor to classify sequences Build improved classifiers




Perspectives

0 Typage d’autres virus et organismes

0 Identifier 'ensemble d’enzymes qui a un pouvoir
discriminant pour un type de classification
1 Autres types de classification
Géographique

Pouvoir pathogéne
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