
CLASSIFICATION DES SÉQUENCES 
GÉNOMIQUES VIRALES PAR UNE 
APPROCHE D’APPRENTISSAGE 
AUTOMATIQUE  

M.A. Remita, A. Halioui, A.A.M. Diouara, B. Daigle, G. Kiani et A. B. Diallo. A 
machine learning approach for viral genome classification. BMC Bioinformatics 

(sous presse) 
BIF7002 – Hiver2017 

Université du Québec à Montréal 

Mohamed Amine Remita 



Plan 

¨  Motivation et problématique 

¨  Apprentissage automatique 

¨  Méthode 

¤ Ensembles de données, attributs et algorithmes 

¨  Résultats 

¨  CASTOR – plateforme web 

¨  Conclusion et perspectives 



Introduction 



Motivation - problématique 

 
¨  Étant donné une séquence génomique (partielle ou 

complète) d’un virus nouvellement séquencée ou 
extraite à partir d’une base de données : 

 
¨  peut-on identifier le type du virus ? 

¤ En utilisant ses caractéristiques génomiques 
n Sans refaire un alignement de séquences ni une phylogénie 
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Motivation - problématique 

¨  Classifications - typages 

¤ Classification taxonomique 
¤ Classification géographique 
¤ Classification par pouvoir pathogène 
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Motivation - travaux associés 

¨  Méthodes basées sur l’alignement de séquences 
¤  NCBI Pairwaise Sequence Comparison (PASC) (Bao et al. 2015) 

¤  Diversity partitioning by hierchical clustering (DEmARC) (Lauber et Gorbalenya 
2012) 

¤  BLAST (Altschul et al. 1997) 

¨  Méthodes basées sur une phylogénie 
¤  REGA (Alcantara et al., 2009;  de Oliveira et al., 2005) 

¤  Pplcer (Matsen et al. 2010) 

¨  Méthodes indépendantes de l’alignement de séquences 
¤  COMET (Struck et al. 2014) 

¤  Natural vector based on the distributions of nucleotides (Deng et al. 2011) 
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Motivation 

¨  Application 
¤ Efficace et rapide 

¤ Automatique 

¤ Réutilisable et reproductible 

¤ Accessibilité 
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Apprentissage automatique 
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The general chain of work of a common data mining task (Inaki Inza et al. 2010) 



Apprentissage automatique 

¨  Apprentissage supervisé (Classification et régression) 
¤  Arbre de décision, SVM, KNN, bayésiens, réseaux de neurone etc. 

¨  Apprentissage non supervisé (Clustering) 
¤  Partitionnements K-means 

¤  Partitionnements hiérarchiques, basés sur la densité, des graphes etc. 

Jain A.K (2010) 
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Méthode 



Les étapes de la classification 

1.  Construire des jeux de données représentatifs 

2.  Déterminer un ensemble d’attributs (features) 
pertinents et non redondants 

3.  Identifier des algorithmes d’apprentissage 
adéquats et performants 
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Approche de classification 
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1. Jeu de données 
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1. Jeu de données 

¨  Virus du papillome humain (VPH) 
¤  ADN double brin circulaire 

¤  ~ 8000 nt 
¨  Virus de l’hépatite B (VHB) 

¤  ADN circulaire 
¤  Partiellement double brin 

¤  ~ 3200 nt 

¨  Virus de l'immunodéficience humaine type 1 (VIH-1) 
¤  ARN simple brin en double exemplaire 

¤  ~ 9700 nt 
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Smith B et al. 2011 



1. Jeu de données 

¨  Classification inter-genres des VPHs 
Classe (genre) nombre 

Alphapapillomavirus 457 

Bétapapillomavirus 48 

Gammapapillomavirus 27 

Mupapillomavirus 02 

Nupapillomavirus 01 
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¨  Classification inter-espèces des VPHs 

Classe 

(espèce) 

nombre Classe 

(espèce) 

nombre Classe 

(espèce)  

nombre Classe 

(espèce)  

nombre 

AlphaPV 1 03 AlphaPV 5 04 AlphaPV 9 249 AlphaPV 14 07 

AlphaPV 2 11 AlphaPV 6 34 AlphaPV 10 72 - - 

AlphaPV 3 11 AlphaPV 7 49 AlphaPV 11 02 - - 

AlphaPV 4 09 AlphaPV 8 04 AlphaPV 13 02 - - 



1. Jeu de données 

¨  Classification inter-génotype des VHBs 
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Classe (Génotype)	 nombre	

A	 378	

B	 540	

C	 1085	

D	 825	

E	 228	

F	 129	

G	 29	

H	 21	



1. Jeu de données 

¨  Classification des sous-types M du VIH-1 
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Classe (sous-type) nombre 

PU
R

S 

A 314 

B 2113 

C 1065 

D 76 

F 55 

G 53 

H 4 

J 3 

K 2 

Classe (sous-type) nombre 

C
R

Fs
 

01_AE 712 

02_AG 93 

07_BC 44 

08_BC 36 

35_AD 22 

42_BF 17 

22_01A1 16 

11_cpx 14 

14_BG 13 



1. Jeu de données 

¨  Source des données 
¤ NCBI Taxonomy 

¤ NCBI Nucleotide 

¤ NCBI RefSeq  

¤ Papillomavirus Episteme (PaVE) 

¤ Los Alamos HIV databases 
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2. Attributs 
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¨  Polymorphisme de longueur des fragments de restriction (RFLP) 
¨  Technique de biologie moléculaire 
¨  Coupure de l’ADN par des enzymes de restrictions 
¨  Empreinte génétique 

Motifs RFLP d'un segment de la séquence du L1 pour l'identification des VPH génitaux (Bernard, et al., 1994 ). 
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2. Attributs - RFLP 



2. Attributs - RFLP 

¨  Technique bioinformatique 
¨  Restriction Enzyme dataBASE (REBASE) 

¤  172 prototypes d'enzymes de type II 
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2. Attributs - métriques 

¨  Attributs numériques 
¨  Pour chaque couple virus – enzyme, on calcule 
 

¤ CUT : nombre de coupures (attributs entiers) 
 
¤ RMS : la moyenne quadratique des longueurs des 

fragments (attributs réels) 
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2. Attributs 

¨  Exemple de données d’apprentissage 
Introduction  Méthode   Résultats   Conclusion 

ID	 CUT_AccI	 RMS_AccI	 CUT_AclI	 RMS_AclI	 CUT_AcyI	 RMS_AcyI	 CUT_AflII	 RMS_AflII	 Class	

X74483	 5	 1977,92	 1	 7844,00	 3	 2650,41	 0	 7844,00	 PSV_PV	

X77858	 4	 2645,70	 3	 3269,98	 2	 5423,81	 2	 3998,11	 PSV_PV	

X94164	 5	 2141,91	 0	 7988,00	 7	 1504,92	 1	 7988,00	 PSV_PV	

X94165	 6	 1866,19	 4	 2267,66	 1	 7700,00	 1	 7700,00	 PSV_PV	

Y15173	 5	 1748,69	 2	 4818,36	 1	 7537,00	 0	 7537,00	 PSV_PV	

Y15174	 4	 2182,74	 1	 7549,00	 1	 7549,00	 1	 7549,00	 PSV_PV	

Y15175	 8	 1227,69	 2	 3947,36	 8	 1456,80	 2	 5264,39	 PSV_PV	

NC_000852	 254	 1830,14	 178	 2718,91	 177	 2824,55	 51	 9170,54	 NGV_PV	

NC_000866	 59	 3783,18	 64	 3840,31	 32	 6939,67	 27	 7755,87	 NGV_PV	

NC_000867	 1	 10079,00	 7	 1949,85	 7	 1524,67	 2	 6809,43	 NGV_PV	

NC_000871	 19	 2230,87	 16	 2759,61	 3	 10656,71	 4	 10107,46	 NGV_PV	

NC_000872	 22	 2239,47	 20	 2822,73	 6	 8522,07	 6	 7608,48	 NGV_PV	

NC_000896	 14	 3942,09	 15	 3928,77	 9	 6618,34	 12	 4500,37	 NGV_PV	

NC_000898	 101	 2269,26	 53	 4339,03	 124	 2612,96	 15	 15151,01	 NGV_PV	



2. Attributs - Sélection 
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2. Attributs - Sélection 

¨  Pertinence : gain d’information 
¤  Information mutuelle entre un attribut et la classe 
¤  Information gain evaluator (avec Ranker search method) 
¤ Top-k 
 

¨  Redondance : corrélation 
¤ Deux attributs corrélés sont redondants 
¤ Corrélation de Spearman (rho) 
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2. Attributs - Sélection 
Introduction  Méthode   Résultats   Conclusion 



3. Algorithmes d’apprentissage 
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Algorithms Weka modules 

Arbres de décision weka.classifiers.trees.J48 

Random Forest weka.classifiers.trees.RandomForest 

Machines à vecteurs de support (SVM) weka.classifiers.functions.LibSVM 

KNN weka.classifiers.lazy.IBk 

Bagging weka.classifiers.meta.Bagging 

AdaBoost weka.classifiers.meta.AdaBoostM1 

Naive Bayes weka.classifiers.bayes.NaiveBayes 



3. Algorithmes d’apprentissage 

¨  La classification et l’évaluation sont effectuées avec 
la plateforme Weka (Waikato Environment for Knowledge Analysis) 

¨  Les entrainements des modèles sont réalisés avec 
une validation croisée de 10 itérations 
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4. Évaluation – Cohésion des classes 
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¨  Compacité (cohésion interne) : les objets appartenant 
à un cluster sont les plus similaires 

¨  Séparabilité (isolation externe) : les objets 
appartenant aux autres clusters sont les plus distincts 

¨  Indice de Silhouette (Rousseeuw 1987) : indice ∈ [-1, 1]  

¨  Indice de cohésion (Daigle et al. 2015) : indice ∈ [0, 1] 



4. Évaluation – modèles d’apprentissage 

Mesure	 Formule	
Taux de vrais positifs 
(rappel, sensibilité)	

Taux de faux positifs 
(FPR, 1 - spécificité)	

Précision	

F-mesure	
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CLASSE RÉELLE 

C
LA

SS
E 

PR
ÉD

IT
E 

 

Condition 
positive 

Condition 
négative 

Condition 
positive 

 

Vrais 
positifs 

(TP) 

Faux 
positifs 

(FP) 

Condition 
négative 

 

Faux 
négatifs 

(FN) 

Vrais 
négatifs 

(TN) 



5. Simulations 
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¨  Cinq jeux de données principaux de génomes viraux 
¨  Pour chaque jeu de données : 

¤ Générer 10 échantillons (sans remise)  
¤ Pour chaque échantillon : 

n Construire des modèles avec validation croisée en combinant : 
n  2 métriques d’attributs (CUT et RMS) 
n  2 méthodes de sélection d’attributs (topAttributes et correlation) 
n  7 algorithmes d’apprentissage (J48, SVM, ADA, etc.) 

n Au total 280 modèles 



Prédiction 
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Résultats 



Cohésion des classes 
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Simulation - comparaison des métriques 
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Simulation - comparaison des méthodes 
de sélection d’attributs 
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Simulation - comparaison des 
algorithmes d’apprentissage 
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Comparaison CASTOR avec REGA et 
COMET dans la classification de VIH 
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Plateforme CASTOR 
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Perspectives 

¨  Typage d’autres virus et organismes 
¨  Identifier l’ensemble d’enzymes qui a un pouvoir 

discriminant pour un type de classification 
¨  Autres types de classification 

¤ Géographique 
¤ Pouvoir pathogène 

Introduction  Méthodes   Résultats   Conclusion 
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