"The evolution of germ-soma specialization under different genetic and environmental effects" Denis Tverskoi and Sergey Gavrilets University of Tennessee, Knoxville TN, dtversko@utk.edu

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Division of labor

Germ-soma specialization in Volvocales, cyanobacteria, and hydrozoans;

- Specialization in carbon fixation and nitrogen fixation in cyanobacteria;
- Casts in social insects;

Sexual division of labor in small hunter-gatherer groups;

Division of labor in complex societies.

Queen Morkey

Division of labor in economic theory

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Germ-soma specialization

Germ-soma specialization Reproductive altruism \rightarrow Biological complexity

Figure: Lohr, J.N., Galimov, E.R. and Gems, D., 2019. Does senescence promote fitness in Caenorhabditis elegans by causing death?. Ageing Research Reviews, 50, pp.58-71.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Effects of environmental conditions on germ-soma specialization. Examples:

Effects of temperature and oxygen concentration on slime molds

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Effects of water stress and cold on Volvocales in general
- Effects of mixed and still environment on Pleodorina starrii colonies

Effects of microenvironmental conditions on germ-soma specialization. Examples:

- Oxygen and nutrient gradients in biofilms;
- Iron gradients in S.coelicolor colonies;
- Examples in volvocaleans green algae: Volvox (left), Pleodorina (middle), Eudorina (right)¹:

¹Pictures from:

- https://www.istockphoto.com/vector/volvox-gm959301582-261956197
- Herron, M.D., Ghimire, S., Vinikoor, C.R. and Michod, R.E., 2014. Fitness trade-offs and developmental constraints in the evolution of soma: an experimental study in a volvocine alga. Evolutionary ecology research, 16(3), p.203.
- https://alchetron.com/Eudorina

Mathematical models of the emergence of germ-soma specialization:

- Trade-offs between reproductive and somatic functions (Michod, 2006, Leslie et al., 2017),
- group size (Michod, 2006),
- genetic relatedness (Cooper and West, 2018),
- developmental plasticity (Gavrilets, 2010),
- positional effects (Reuffler and Wagner, 2012), ,
- topological constraints (Yanni et al., 2020),
- resource constraint, positional effects, and the trade-off curvature (Tverskoi et al., 2018)

The model

We examine effects of environmental factors, positional effects and the trade-off between cell activity and fecundity on the evolution of germ-soma specialization in cell colonies. Environmental effects in the model:

At a between-colony level (resource-based competition)

 At a within-colony level (different microenvironmental effects on gene expressions)

The model: a general outline

- A finite population of colonies each composed by S asexually reproducing haploid cells,
- gene effects are affected by variation in microenvironment experienced by individual cells within a colony,

- colonies compete for resources,
- colonies surviving to the stage of reproduction disintegrate and the released cells start new daughter-colonies,
- mutation occurs during cell division.

The model: cell genotype and phenotype

- All cells within a colony are genetically identical. The cell's genotype is g = (g₁,..,g_G), g ∈ [0,1]^G.
- ▶ These genes control a cell's activity *a* and fecundity *b*, *a*, *b* \in [0, 1].
- We define the *i*-th gene's effect on fecundity as x_i = e_ig_i, where e_i specifies microenvironmental effects. Microenvironment effects e_i may differ between different cells of the same colony.

The model: cell genotype and phenotype

▶ We define a cell's fecundity as $b = \frac{1}{1 + \exp(-\omega \frac{x}{\sqrt{c}})}$, where $x = \sum x_i$ is the cumulative gene effect.

Fecundity and activity within each cell are traded off: a = (1 - b^γ)^{1/γ}, γ > 0 controls the shape of the trade-off relation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Trade-off curvature and colony size

The trade-off function between activity and fecundity is convex-like for large-size colonies, and concave for small-size colonies.

Figure: Michod, R.E., Viossat, Y., Solari, C.A., Hurand, M. and Nedelcu, A.M., 2006. Life-history evolution and the origin of multicellularity. Journal of theoretical Biology, 239(2), pp.257-272.

Cell microenvironment and cell prototypes

Cells can differ in size or position in the colony, which can impact on their gene effect on fecundity.

- In Volvox the regA gene ↓ reproduction in small cells (proto-soma), the lag gene ↓ motility in large cells (proto-germ).
- In *Pleodorina starrii*, cells are divided into tiers arranged from the anterior to the posterior of determined according to the motility direction.²

²Pictures from:

https://www.istockphoto.com/vector/volvox-gm959301582-261956197

Herron, M.D., Ghimire, S., Vinikoor, C.R. and Michod, R.E., 2014. Fitness trade-offs and developmental constraints in the evolution of soma: an experimental study in a volvocine alga. Evolutionary ecology research, 16(3), p.203.

Cell microenvironment and cell prototypes

Two ways of specifying microenvironmental effects e_{mi} (m = 1, ..., s; i = 1, ..., G):

- **Random microenvironmental effects**. $e_{m,i}$ is drawn randomly and independently from a uniform distribution on [-1, 1].
- Microenvironmental gradients, e_{m,i} change according to some gradient along the anterior-posterior axis.

 $|e_{m,i}|$ decreases geometrically at rate *r* with the distance *m* from the anterior layer: $e_{m+1,i} = re_{m,i}$ with $|e_{1,i}| = d$, d > 0.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Colony survival

- Colonies compete for a resource C > 0. The amount of the resource a colony secures in competition is $R = C \cdot \frac{A^{\beta}}{\sum A^{\beta}}$, where $A = \sum_{j} a_{j}$, $\beta \ge 1$ is the strength of competition.
- ▶ The colony always survives to the stage of reproduction if $R \ge R_0$. If $R < R_0$, the probability of survival is $V = R/R_0$, where $R_0 = (1 k)A + kB$ and 0 < k < 1 measures the relative cost of fertility.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Other details

- Reproduction. Each surviving colony disintegrates into S cells and each cell seeds a new colony with probability b_i. Mutations in an offspring colony genotype g happen with probability μ per gene.
- We define a cell phenotype as its fecundity b. Cells of the same prototype have the same phenotype. Cells of different prototypes can have the same phenotype as well. → the number of different cell phenotypes M ≤ s.

Results: random microenvironmental effects

(c) G = 32

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ▲ 圖 ● の Q @

Some analytical results

Analytical approximations (for $G
ightarrow \infty$) show that

- ► In the case of concave trade-offs and random microenvironmental effects, equilibrium cell fecundity b^* can be found as $\frac{k\beta}{1-k} \cdot b^{*\gamma+1} = (1 \beta b^{*\gamma}) \cdot (1 b^{*\gamma})^{\frac{1}{\gamma}}.$
- In the case of convex trade-offs, all prototypes or all prototypes except one are specialized.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Results: single gradient

Cell prototypes are marked in blue, red, green and gray colors respectively along the anterior-posterior axis.

(日)

Results: several gradients

Prototypes are sorted by increasing fecundity and marked with different colors.

イロト イヨト イヨト イヨ

э

Summary of the results

ME	Size	G	Typical patterns of within-colony differentiation	Conditions for coexistence of reproductive and so-
R	S	L	One type of unspecialized cells	
		S	One or two types of unspecialized cells	-
	L	L	Two types of cells: somatic and re- productive or somatic and unspecial- ized	All cases except one with large k and β
		S	Three types of cells: somatic, repro- ductive and unspecialized	Can be observed for all k and β , conditions are deter- mined by random microen- vironmental effects
1G	S	S&L	One type of unspecialized cells, or 2 types of cells (somatic and unspecial- ized or reproductive and unspecial- ized)	-
	L		One type of unspecialized cells, or 2 types of cells (somatic and unspecial- ized or 2 unspecialized) or 3 types of cells (somatic and 2 unspecialized)	-
SG	S		One type of unspecialized cells	-
	L		Two types of cells (somatic and re- productive or somatic and unspecial- ized) or three types of cells (somatic, reproductive and unspecialized)	eta is not large and k is not large

Some conclusions

- Specialization can evolve even if the curvature of the trade-off is concave. Incomplete specialization or even colonies composed only by unspecialized cells can be observed in the case of a convex trade-off.
- The type and extent of variation in within-colony microenvironment and, in the case of random microenvironment, the number of genes involved, are key factors shaping the model dynamics

Some conclusions

Increasing $s \to \uparrow W$. This happens because $\uparrow s \to \uparrow$ in the dimensionality of phenotype space. This generates a fitness landscape with a new fitness maximum, in which colony phenotypes that are fitness optimal for smaller number of gradients become fitness saddle points.

Pictures from: Ispolatov, I., Ackermann, M. and Doebeli, M., 2012. Division of labour and the evolution of multicellularity. Proceedings of the Royal Society B: Biological Sciences, 279(1734), pp.1768-1776.

Some conclusions

The share of reproductive cells in large colonies is smaller than that of somatic cells, with the exceptions of some special cases with small β and k.

Pictures from: Shelton, D.E., Desnitskiy, A.G. and Michod, R.E., 2012. Distributions of reproductive and somatic cell numbers in diverse Volvox (Chlorophyta) species. Evolutionary ecology research, 14, p.707.

Thank you for your attention!