Introduction to Reinforcement Learning
or how to track cell movements in an automated way

Bogdan Mazoure

McGill University / MILA / Microsoft

February 23 2021

About

About me:

B.Sc. in Statistics + Computer Science, M.Sc. in Mathematics,
now Ph.D. in Computer Science at McGill / MILA.

About MILA:

Inter-university association (McGill, UdeM, HEC, Polytechnique),
formerly only UdeM.

10+ core professors and 100+ graduate students working on pure
and applied deep learning methods.

We take Master's and Ph.D. students with strong mathematical
and programming background, as well as year-long interns.

Simple example

Imagine a robot that must navigate a maze to some point
(mouse-cheese here)
Columns

012345617289

un

Rows

WO NGOUA WNRO

Figure 1: Simple navigation task

Suppose it can only move along the XY axes, one block at the time.

Markov Chains

Suppose we have some discrete space X, say Z. Every timestep,
the system transitions to some state x;, 1 <t < T. All of
subsequent theory relies on the Markov property:

p(xe[x1:e-1) = p(xe|xe—1)- (1)

Typically, if we have n "states", then the "transition" probability
can be stored in a matrix form as

Py = p(X/’X), (2)

of size n x n.

A word about stationarity

Markov chains can be loosely split into two parts: those with a
"nice" long-term behaviour, and those with a more sporadic
pattern.

The nice long-term behaviour can be characterized by stationarity,
that is,

P(st+k|St+k—1) = p(st|st—1), (3)
meaning that transition probability depends on the duration
between events and not on the time itself.

How to compute the stationary distribution? Find a distribution
which does not change over time, i.e. the eigenfunction of P:

pP=p (4)

Markov Chain weather model

Very simple case:
3 states: sunny, rainy, cloudy. Suppose the weather today depends
only on yesterday's weather with following probabilities:

0.7 02 0.1
P=1[04 06 0 (5)
0 1 o0

Then,

p(sunny at time 5|sunny at time 0) = (P°)go = 0.54. (6)

Example (continued)

Solving for p in Python through
rho = numpy.linalg.eig(P.T) [1][:,0] gives

p = (0.34,0.37,0.29), (7)

the relative proportion of time spent in each of the 3 states after
infinitely many steps, regardless of the initial probabilities.

Why do we care? Because classical statistical methods perform
well on stationary data, which unfortunately happens very rarely in
real datasets. RL tends to work well on non-stationary processes.

Simple example (continued)

Only running a Markov chain by itself is not the focus of this talk.
You can check about sampling from MC using Monte Carlo Markov

chains in the literature.
To solve decision problems, we introduce the notion of "action"
into the Markov chain.

Figure 2: Which action should the agent pick in this state to get closer to
the goal?

Markov Decision Processes

state| [reward
R,

ok -
' <5 | Environment [e———

Figure 3: Agent-environment interaction

action

We can fully describe any Markovian decision system (e.g. video
games) with the following quantities:

1. A set of states X;

2. A set of actions A;

3. A transition probability p(x:|as, xt—1);
4

. A reward function r(x¢, at).

What does RL data look like?

Typical data for reinforcement learning is organized into
trajectories:

X0, a1, M1, X1,32, 12, ..., XT—1,@T, I'T, XT, (8)

where xg is the initial state and x1 is the final state.
Re-using the maze example above, we can describe the yellow
trajectory as:

(9,0),” down” [3], +0, (8,0), " right” [2], +0, ... 9)

There is no X /y modelling as in supervised learning, neither just an
X as in unsupervised learning (although we can transform
trajectories into a regression task).

Policy

So far, we know how to describe a Markov decision process, but
how do we find the solution (i.e. reach the goal state)?
Introduce the policy: 7(a¢|si—1) = p(at|si—1). Conditional density
function telling which action to take at every step.

» It can be deterministic: p(a; =" down"|sp = (9,0));

» It can also be continuous over R: p(als) = N(0,0.1).

Challenge: How to find 7 for a specific task?
Very vague answer: Take the gradient wrt the rewards cumulated
in a trajectory via the value function.

Value function

We can use the sum of rewards collected in a trajectory as a metric
for how well the agent is performing.

Gt:rt—l—rt+1+rt+2... (10)

Since T can be infinite, we discount cumulative rewards by a radius
7€ (0,1).

oo

.

Ge=) Yren < o, (11)
k=0 v

where rfmax = max(r, ra, ...).
The value function is just the conditional expectation of G; given s;
wrt to !

V(St) = EW[Gt’St],
Q(St, 3t) = Ew[Gt’5t7 3t]-

The operator E[-] simply means: collect trajectories using 7, then
average the returns over all trajectories.

(12)

Learning 7
Since ML is about learning, let's derive an easy learning rule for
the Q function using the Bellman equation:

Qlst.a0) = max (1 +1Q(sc11.)) (13

In a perfect setting, both sides are equal. In practice, however, they
tend not to be, which we use to minimize the Bellman error:

0t = Q(st,ar) — TG% (rt + 7 Q(st+1, 3)) (14)

The (deep) RL optimization problem now boils down to find
parameters 6 of Qy which solve
in 262 (15)
min = 4.
o 2
Once we found Qp, we just take a¢|s; = maxae 4 Q(st, a) (known as
the greedy policy).

Deep reinforcement learning

To make it simple, the simplest deep RL algorithm is the deep
Q-network, which wants to estimate a function Qy(s, a)
parametrized by a neural network (fully connected, CNN, LSTM,
etc).
Just like in supervised deep learning, we need:

1. Clearly defined input and output spaces;

2. A dataset;

3. A loss function;

4. An optimizer;

Deep Q-network (DQN)

The first and simplest proposed algorithm in 2015 was DQN. Relies
on minimizing %52.

DQN was tested on Atari games, showing much better performance
than an expert human player.

1st hidden 2nd hidden 3rd hidden

\aye layer layer Output

{J(.,“
Q(s

Mlly fu
onnected conny Qs

.'“ D/O/O

84x84x4 20x20x16 9x9x32 25

Figure 4: Neural network architecture of DQN

The input to the network is a tensor 84 x 84 x 4. Each RGB image
is converted to grayscale, then 4 consecutive images are stacked
together (so that the network has an idea of velocity of the objects).
The output is a vector of size |.A|, one value for every action. We
take the action with the highest value.
https://colab.research.google.com/github/tensorflow/
agents/blob/master/docs/tutorials/1_dgqn_tutorial.ipynb

https://colab.research.google.com/github/tensorflow/agents/blob/master/docs/tutorials/1_dqn_tutorial.ipynb
https://colab.research.google.com/github/tensorflow/agents/blob/master/docs/tutorials/1_dqn_tutorial.ipynb

Exploration-exploitation trade-off

One might imagine an environment in which taking the immediate
best action will put the agent into a local maximum. For example,
moving a car back and forth in order to go on top of a hill will have
a sinusoidal pattern.

Balancing optimal and suboptimal actions is known as the
exploration-exploitation trade-off. The simplest strategy is, when
asked to take an action, to act randomly 100c% of the time, and
act greedy in the other cases.

largest mean
(exploitation)

large
uncettainty
(exploration)

Property (arb. units)

Experience replay

So far, we still have not addressed the exact dataset structure.
Data in deep RL is stored (for most algorithms) in an array known
as experience or buffer replay.

A replay buffer of size K looks something like this:
5130 ail ’1;1 51;1 92%2
S98 999 99 S99 100

B= (16)

s ar s af
Just as like in deep learning, the neural network is trained on a
randomly sampled batch from the buffer (think of randomly
selecting rows in B). Plug these quantities into Eq.9 and use any
optimizer to find the first order gradient.

Replay buffer

Pt
Sample H
Py P
—
Pres
774
Experience replay Buffer Batch of experiences
States
States R d
ewards

Rewards

‘ ‘ Action

Game Environment

Q learning agent

Figure 6: All game screens are added to the replay buffer. The neural
network is then trained on random samples from the buffer.

A word about the optimizer

Picking the correct optimization rule is crucial to convergence rate
in deep RL. Common optimizers:

1. Adam: State-of-the-art, very efficient but sometimes unstable;

2. RMSProp: Quite good, useful for problems with a lot of
moving parts;
3. Vanilla SGD;
Typically we use Adam with a learning rate of the order of 1074,

Reminder: the general optimization rule for parameters 6 with
learning rate «, loss L and data batch x:

00D 0() — o VgL (x) (17)

My research interests
Learning meaningful representations in RL through density
estimation, mathematical statistics, kernels embeddings and

self-supervised learning.
For example, density estimation as robotic control:

i A/\" Elnitial policy

=
S
3
N
q
<
ES
2

/ : @ Eso Os O+
L2~ Npg(s1), 07 (s1))
””””””””””” Invertible
¢ transformations

v
,,,,,,, g ,,,,fﬁbf,,, Target policy .

| (b) Example of robotic task where our

ay approach saw huge improvements.

(a) Transforming a Gaussian density
into a complicated 4-modes shape.

Applications
We will now go over a real-life application of RL: tracking cell
movement.
Imagine you are a micro-biologist and would like to model the
dynamics of cellular evolution from a set of pictures.
Raw images can be too uninformative about evolution dynamics,
which is why the authors of the method pre-process all observations
to extract positions of all cells on a given plate into a fixed length
vector using the automated cell lineage tracing technology.

Figure 8: Interaction diagram of DQN for cell tracking

Cell state representation

ABarpppap: [241, 287, 32]

ABarppppa: [258, 290, 36]

ORERER)

»»

Figure 9: Encoding of the representation of a cell system extracted
through a pre-processing method.

Cpaap: [271, 333, 40]

Cell movement model
Actions are represented by 8 angles of cardinal directions equally
distant (at 45 degrees). The magnitude of the vector (i.e. speed) is
fixed a priori.
Rewards are assigned based on a combination of collision and
shortest path to destination.

(@)

Figure 10: a) Ground truth cell colony labelled using cell lineage tracing
and b) predictions made by the Q network

Results

(a) (b)

°
L

025 o
10 120
o0

100 g0
H

800 01s 2 w0
H P i

i L E
010 1)
™ t

fw

200 o Y

.
000 °
S me @ we wm W W w0 T me M we ae mw
T toons Taing Epocrs T o

Figure 11: Training reward, loss and action values for the cell tracking
problem.

Results

® e, e .}' % '}' 5, Q0.

L0 SR X TR S X R Y2 SR X & R (3
e, 'sis, ‘os'tde. Stiede oSt . e3ee:
% o3 '5:;"" 'cg,%& 'oo}:’s RO A L)
an” . ® - o o o

Figure 12: Ground truth vs learned dynamics model of cell movement
with and without the distance rule. Distance rule makes cells go to a
pre-determined location.

Conclusion

Reinforcement learning is currently a popular suite of tools to solve
difficult time-dependent data problems, such as non-stationary data
distribution and large state spaces.

Link to the cell movement tracking paper: https://academic.
oup.com/bioinformatics/article/34/18/3169/4986416.

Currently, almost all applications of RL are in video games and
robotics - now is the time to apply RL to bicinformatics,
econometrics, psychology and other fields!

If you're interested to discuss the topic further, send me an e-mail
at bogdan.mazoure@mail .mcgill.ca .

https://academic.oup.com/bioinformatics/article/34/18/3169/4986416
https://academic.oup.com/bioinformatics/article/34/18/3169/4986416
bogdan.mazoure@mail.mcgill.ca

	Introduction

