
Accepted paper. To appear in the 21st International Conference on Software Engineering, May 16-22 1999, Los Angeles USA. 1

Investigating Quality Factors in Object-Oriented Designs:
an Industrial Case Study

Lionel C. Briand, Jürgen Wüst
Fraunhofer Institute for

Experimental Software Engineering
Sauerwiesen 6

67661 Kaiserslautern, Germany
+49 6301 707 251

{briand,wuest}@iese.fhg.de

Stefan Ikonomovski , Hakim Lounis
Centre de Recherche

Informatique de Montréal
550, Sherbrooke West, Suite 100
Montréal, Qc, Canada H3A 1B9

+1 514 840-1234
{sikonomo, hlounis}@crim.ca

ABSTRACT
This paper aims at empirically exploring the relationships
between most of the existing coupling and cohesion
measures for object-oriented (OO) systems, and the fault-
proneness of OO system classes. The underlying goal of
such a study is to better understand the relationship
between existing design measurement in OO systems and
the quality of the software developed.

The study described here is a replication of an analogous
study conducted in an university environment with systems
developed by students. In order to draw more general
conclusions and to (dis)confirm the results obtained there,
we now replicated the study using data collected on an
industrial system developed by professionals.

Results show that many of our findings are consistent
across systems, despite the very disparate nature of the
systems under study. Some of the strong dimensions
captured by the measures in each data set are visible in
both the university and industrial case study. For example,
the frequency of method invocations appears to be the main
driving factor of fault-proneness in all systems. However,
there are also differences across studies which illustrate
the fact that quality does not follow universal laws and that
quality models must be developed locally, wherever needed.

Keywords
metrics, measurement, empirical validation, coupling,
cohesion, object-oriented.

1 INTRODUCTION
A large number of object-oriented (OO) measures have
been proposed in the literature ([2], [8], [9], [10], [13], [15],
[17], [18]). A particular emphasis was given to the
measurement of design artifacts, in order to help assess
quality early on during the development process. However,
many of the measures proposed and their relationships to
external quality attributes of OO designs, have been the
focus of little empirical investigation ([1], [2], [3],RENV
[17]). It is therefore difficult to assess whether these
measures capture similar dimensions and are indicators of

any relevant quality attribute at all.

Recently, some of the authors performed an in-depth,
comprehensive analysis of most of the literature OO
measures on students’ projects [3] of rather small sizes. The
goal was to look at the relationship between these measures
and the likelihood of detecting a fault in a class during
testing, i.e., its fault-proneness. The high cognitive
complexity of classes may result in many different types of
problems such as low maintainability or high fault-
proneness. However, fault-proneness is not only one
important quality aspect related to class cognitive
complexity but also the easiest one to observe and measure,
hence its use in our studies.

In order to draw more general conclusions and (dis)confirm
the results obtained in our student experiments, we replicate
here this analysis on data we collected on an industrial
project which is currently under use and maintenance. By
analyzing carefully the results and by comparing them in a
systematic way with the results obtained from the students'
projects, we identified a number of structural dimensions in
OO designs that appear to be related to class fault-
proneness across the two data sets. Considering the
significant differences between the students’ systems and
the industrial system studied here (e.g., in terms of size,
domain, programmer experience), we hope to draw
conclusions that should be robust across many systems.
Further replication is of course necessary to build an
adequate body of knowledge regarding the use of OO
design measures.

The paper is organized as follows. Section 2 describes the
goals and setting of the empirical study, and the data
collected. Section 3 describes the methodology used to
analyze the data. The results of this analysis are then
presented in Section 4, where we also compare the results
to those obtained for the students’ systems in [3]. We draw
our conclusions in Section 5.

2 THE EMPIRICAL STUDY
The goal of this study is to empirically assess the object-
oriented design measures discussed in a literature review
[5][6], and compare the results to those obtained in an
analogous study using systems developed by students.

2.1 Dependent Variable
We want to evaluate whether existing measures are useful
for predicting the probability that a fault occurs in a class
during operation of the system. More precisely, the

2PAGE

probability of fault detection that is meant here is a

conditional probability: the probability that at least one
fault is registered during operation in a class, depending on
the obtained measurement values of the independent
variables for that class. This should be a good indicator of
its probability of containing a fault and, therefore, a valid
measure of fault-proneness. The construct validity of our
dependent variable can thus be considered satisfactory.

Other measures such as class fault density could have been
used. However, the variability in terms of number of faults
in our data set is small: Faults were detected in 55% of the
classes, and 80% of the classes contain less than three
faults. Therefore, using a dependent variable with low
variability would have affected our ability to identify
significant relationships between OO design measures and
this dependent variable.

2.2 Independent Variables
The measures of coupling and cohesion identified in a
literature survey on object-oriented design measures [5][6]
are the independent variables used in this study. We only
use measures defined at the class level, because this is also
the granularity at which the fault data was collected.

Tables 1 and 2 describe the coupling and cohesion
measures used in this study. We list the acronym used for
each measure, informal definitions of the measures, and
literature references where the measures originally have
been proposed. The informal natural language definitions

of the measures should give the reader a quick insight into

the measures. However, such definitions tend to be
ambiguous. Formal definitions of the measures using a
uniform and unambiguous formalism are provided in
[5][6].

2.3 Description of the empirical study
This subsection provides details about the LALO system
and the fault data and design measurement data collected.

2.3.1 Setting of the Study
The data were collected from an open multi-agent system
development environment, called LALO (Langage
d'Agents Logiciel Objet). This system has been developed
and maintained since 1993 at CRIM (Centre de Recherche
Informatique de Montréal); it includes 90 C++ classes with
approximately 40K source lines of code (SLOC). Classes
automatically generated by software tools, e.g., OO
lex/yacc are included in this amount. Therefore, in the
analysis below, these classes were not investigated since
they are much less likely to contain faults than classes
implemented manually. In fact, the use of these classes
could have biased the results.

In addition to the 90 application-specific classes, a number
of standard library classes for IO, threading, socket
communication, etc., are used in the LALO system.

LALO was mostly developed under Windows NT using
Visual C++ and then ported to Sun OS and Solaris. We

Name Definition Src.
CBO Coupling between object classes. According to the definition of this measure, a class is coupled to another, if methods of

one class use methods or attributes of the other, or vice versa. CBO is then defined as the number of other classes to
which a class is coupled. This includes inheritance-based coupling (coupling between classes related via inheritance).

[10]

CBO’ Same as CBO, except that inheritance-based coupling is not counted. [9]
RFC� Response set for class. The response set of a class consists of the set M of methods of the class, and the set of methods

directly or indirectly invoked by methods in M. In other words, the response set is the set of methods that can potentially
be executed in response to a message received by an object of that class. RFC is the number of methods in the response
set of the class.

[9]

RFC1 Same as RFC� , except that methods indirectly invoked by methods in M are not included in the response set. [10]
MPC Message passing coupling. The number of method invocations in a class. [17]
DAC Data abstraction coupling. The number of attributes in a class that have another class as their type. [17]
DAC’ The number of different classes that are used as types of attributes in a class. [17]
ICP Information-flow-based coupling. The number of method invocations in a class, weighted by the number of parameters

of the invoked methods.
[18]

IH-ICP As ICP, but counts invocations of methods of ancestors of classes (i.e., inheritance-based coupling) only. [18]
NIH-ICP As ICP, but counts invocations to classes not related through inheritance. [18]
IFCAIC
ACAIC

FCAEC
DCAEC

IFCMIC
ACMIC

FCMEC
DCMEC

IFMMIC
AMMIC

FMMEC
DMMEC

These coupling measures are counts of interactions between classes. The measures distinguish the relationship between
classes (friendship, inheritance, none), different types of interactions, and the locus of impact of the intera tion.
The acronyms for the measures indicates what interactions are counted:
•

classes, IF: Inverse Friends (classes that declare a given class c as their friend), O: Others, i.e., none of the other

• The next two letters indicate the type of interaction:
 c d c d

• CM: There is a Class-Method interaction between classes and , if class has a method with a parameter of type
d

• MM: There is a Method-Method interaction between classes and , if invokes a method of , or if a method of
d c

• The last two letters indicate the locus of impact:
 c c

• EC: Export coupling: count interactions where class is the used class.

Table 1: Coupling measures

3PAGE

have investigated only the Sun OS version.

Six developers have worked on the LALO system over its
lifetime, with at most three developers working on the
system in parallel. All developers had several years of
previous experience in system development, and four
developers have worked on OO systems before.

2.3.2 Data Collection Procedures and Measurement
Instruments

The following relevant items were collected:

• the source code of the LALO system.

• data about faults found by world-wide users of LALO,
over a period of about one year.

A tool developed at the Fraunhofer IESE, and based on
GEN++ [11], was used to extract the values for the object-
oriented measures directly from the source code of LALO
version 1.3. To collect item 2, change report forms (CRF)
were used to document the nature of each problem reported
by a LALO user, the names of the faulty C++ classes, and
the type and location of the maintenance change. The CRFs
were registered in a revision control system, which could
then be used to generate statistics about the number of
faults traced back to each individual class.

2.3.3 Data Collected
LALO consists of a total of 90 classes. Of these 90 classes,
seven were automatically generated by code generators.
The other 83 classes were developed from scratch or reused
with extensive modifications. For these 83 system classes,
the values for each of the design measures were collected.

At this stage, it is pertinent to consider the influence of the
library classes and the automatically generated classes (for
simplicity, we collectively refer to these classes as ‘library
classes’ thereafter). For coupling measures, a decision
regarding whether or not to count coupling to library
classes will have an impact on the computed measures'
values. We hypothesized that a class is more likely to be
fault prone if it is coupled to a system class than if it is
coupled to a library class (although this may be dependent
on the experience of the developer with the class library
being used, or the quality of the library documentation).
Consequently, the results for each coupling measure were
calculated twice for each system class: counting coupling to
other system classes only, and counting coupling to library
classes only. Analysis was then performed on both resulting
data sets.

2.4 Comparison to students’ systems
The results of the current study will be compared to those
obtained in a previous study [3], where we used data
collected from a development project performed at the
University of Maryland (UMD) over a four month period.
Eight different groups of developers, composed of
undergraduate and postgraduate students, were asked to
develop an information system each. The systems were
implemented in C++, and ranged in size from 4 to 15
KSLOC. The eight systems contained a total of 113 non-
library classes.

The independent variables were the same as described in
Section 2.2. The fault data used in that study stemmed from
a thorough acceptance test performed on each system by an

Name Definition Src.
LCOM1 Lack of cohesion in methods. The number of pairs of methods in the class using no attribute in common. [9]
LCOM2 LCOM2 is the number of pairs of methods in the class using no attributes in common, minus the number of pairs of

methods that do. If this difference is negative, however, LCOM2 is set to zero.
[10]

LCOM3 Consider an undirected graph G, where the vertices are the methods of a class, and there is an edge between two vertices
if the corresponding methods use at least an attribute in common. LCOM3 is defined as the number of connected
components of G.

[15]

LCOM4 Like LCOM3, where graph G additionally has an edge between vertices representing methods m and n, if m invokes n or
vice versa.

[15]

Co Connectivity. Let V be the number of vertices of graph G from measure LCOM4, and E the number of its edges. Then
))2)(1/(())1((2 −−−−= VVVECo .

[15]

LCOM5 Consider a set of methods {Mi} (i=1,...,m) accessing a set of attributes {Aj} (j=1,...,a). Let µ(Aj) be the number of

methods which reference attribute Aj. Then)1/()))(((
1

5
1

mmA
a

LCOM
a

j j −−= ∑ =
µ .

[15]

Coh
A variation on LCOM5:)/())((

1
amACoh

a

j j ⋅= ∑ =
µ

[2]

TCC Tight class cohesion. Besides methods using attributes directly (by referencing them), this measure considers attributes
indirectly used by a method. Method m uses attribute a indirectly, if m directly or indirectly invokes a method which
directly uses attribute a. Two methods are called connected, if they directly or indirectly use common attributes. TCC is
defined as the percentage of pairs of public methods of the class which are connected, i.e., pairs of methods which
directly or indirectly use common attributes.

[8]

LCC Loose class cohesion. Same as TCC, except that this measure also considers pairs of indirectly connected methods. If
there are methods m1,..., mn, such that mi and mi+1 are connected for i=1,...,n-1, then m1 and mn are indirectly connected.
Measure LCC is the percentage of pairs of public methods of the class which are directly or indirectly connected.

[8]

ICH Information-flow-based cohesion. ICH for a method is defined as the number of invocations of other methods of the
same class, weighted by the number of parameters of the invoked method (cf. coupling measure ICP above). The ICH of
a class is the sum of the ICH values of its methods.

[18]

Table 2: Cohesion Measures

4PAGE

independent group composed of experienced software
professionals. See [3] for more details on the setting of that
study.

3 DATA ANALYSIS METHODOLOGY
In this section we describe the methodology used to analyze
the coupling and cohesion measurement data collected for
the 83 system classes. The analysis procedure comprises an
analysis of the descriptive statistics, principal component
analysis, univariate regression analysis against the fault
data, and correlation to size. We now describe these
techniques in some detail.

3.1 Descriptive statistics
The data set consists of 83 classes along with the relevant
values for each coupling and cohesion and inheritance
measure. The distribution and variance of each measure is
examined to select those with enough variance for further
analysis. Low variance measures do not differentiate
classes very well and therefore are not likely to be useful
predictors in our data set.

3.2 Principal component analysis
If a group of variables in a data set are strongly correlated,
these variables are likely to measure the same underlying
dimension (i.e., class property) of the object to be
measured. Principal component analysis (PCA) is a
standard technique to identify the underlying, orthogonal
dimensions that explain relations between the variables in
the data setRENV.

Principal components (PCs) are linear combinations of the
standardized independent variables. The sum of the square
of the coefficients in each linear combination is equal to
one. PCs are calculated as follows. The first PC is the linear
combination of all standardized variables which explain a
maximum amount of variance in the data set. The second
and subsequent PCs are linear combinations of all
standardized variables, where each new PC is orthogonal to
all previously calculated PCs and captures a maximum
variance under these conditions. Usually, only a subset of
all variables have large coefficients - also called the loading
of the variable - and therefore contribute significantly to the
variance of each PC. The variables with high loadings help
identify the dimension the PC is capturing but this usually
requires some degree of interpretation.

In order to identify these variables, and interpret the PCs,
we consider the rotated components. This is a technique
where the PCs are subjected to an orthogonal rotation. As a
result, the rotated components show a clearer pattern of
loadings, where the variables either have a very low or high
loading, thus showing either a negligible or a significant
impact on the PC. There exist several strategies to perform
such a rotation. We used the varimax rotation, which is the
most frequently used strategy in the literature. See [12] for
more details on PCA and rotated components.

3.3 Univariate regression analysis
Univariate regression analysis is performed for each
individual measure (independent variable) against the
dependent variable, i.e., no fault/fault detection, in order to
determine if the measure is a useful predictor of fault-
proneness.

The dependent variable we use to validate the design
measures is binary, i.e., was a fault reported by a user
traced back to a class during the maintenance phase?
Therefore, we use logistic regression, a standard technique
based on maximum likelihood estimation, for the
regression analysis. In the following, we give a short
introduction to logistic regression, full details can be found
in [14] or [16].

The logistic regression model is based on the following
relationship equation:

)(

)(

)(
Xcc

Xcc

10

10

e1

e
X

+

+

+
=π

π is the probability that a fault was found in a class during
the validation phase, and X is the design measure. The
curve between π and X takes a flexible S shape which
ranges between two extreme cases:

• When X is not significant, then the curve approximates a
horizontal line, i.e., π does not depend on X.

• When X entirely differentiates fault-prone software
parts, then the curve approximates a step function.

The coefficients c0 and c1 are estimated through the
maximization of a likelihood function L, built in the usual
fashion, i.e., as the product of the probabilities of the single
observations, which are functions of the covariates (whose
values are known in the observations) and the coefficients
(which are the unknowns). For mathematical convenience,
l=ln[L], the loglikelihood, is usually the function to be
maximized. This procedure assumes that all observations
are statistically independent. In our context, an observation
is the (non) detection of a fault in a C++ class. Each (non)
detection of a fault is assumed to be an event independent
from other fault (non) detections. Each data vector in the
data set describes an observation and has the following
components: an event category (fault, no fault) and a set of
OO design measures (described in Section 2.2).

∆ψ, which is based on the notion of the odds ratio [14],
provides an evaluation of the impact of the measure on the
dependent variable. More specifically, the odds ratio ψ(X)
represents the ratio between the probability of having a
fault and the probability of not having a fault when the
value of the measure is X. As an example, if, for a given
value X, ψ(X) is 2, then it is twice as likely that the class
does contain a fault than that it does not contain a fault. The
value of ∆ψ is computed by means of the following
formula:

)(
)+(

=∆
X

X
ψ

σψψ

σ is the standard deviation of the measure. Therefore, ∆ψ
represents the reduction/increase in the odds ratio when the
value X increases by one standard deviation. This is
designed to provide an intuitive insight into the impact of
independent variables. However, as we will see in Section
4, some measures display very extreme outliers which
inflate the standard deviation of those measures. The ∆ψs
then can no longer be reasonably interpreted. Therefore,
outliers were excluded for the calculation of the ∆ψs.

5PAGE

3.4 Correlation to size
For each measure, we analyze its relationship to the size of
the class. This is to determine empirically whether the
measure, even though it is assumed to be a coupling or
cohesion measure, is essentially measuring size. This is
important for several reasons. First, if a measure is strongly
related to size, then it might shed light on its relationship
with fault-proneness: bigger classes are more likely to
contain faults. Recall that we are interested in increasing
our understanding of OO code and design quality,
independently of its size. Second, a model that
systematically identifies bigger classes as more fault-prone
is a priori less useful: the predicted fault-prone classes are
likely to cover a larger part of the system, the model thus
could not help to focus inspection and testing efforts very
well.

In this study, we measure the size of a class in terms of the
number of methods implemented in the class. We then
calculate Spearman’s Rho coefficient between each design
measure and size.

3.5 Comparison to previous study
One focus of this paper to compare the results obtained
from LALO to those obtained to from the systems analyzed
in [3] (referred to thereafter as the “UMD systems”).
Therefore, in the analyses below, we include a systematic
comparison of the results with this previous study and try to
explain differences and common observation. Since the
systems studied are very different in nature, this should
allow us to identify what results are more likely to be
generalizable.

4 ANALYSIS RESULTS
In this section, we discuss for the coupling and cohesion
measures separately, the descriptive statistics, principal
component analysis, univariate analysis, and correlation to
size, and compare the results to those obtained with the
UMD systems. In Section 4.3, we briefly summarize the
results from building and evaluating a multivariate
prediction model.

4.1 Coupling Results
Table 3 summarizes the descriptive statistics, univariate
analysis, and correlation to size for the coupling measures.
The left half of the table provides the data for the measures
counting coupling to non-library classes only, the right half
for the measures counting coupling to library classes only.
Columns “Max”, “Mean” and “σ” state, for each measure,
the maximum value, mean value, and standard deviation.
From univariate analysis, the regression coefficient and
standard error is provided (Columns „Coeff.“ and „S.E. “),
the ∆ψ value as defined in Section 3.3, and the statistical
significance (p-value) of the regression coefficient. For
measures which also have a significant relationship to size
(at α=0.05), Spearman’s Rho coefficient with size is given
in column “Rho”.

4.1.1 Descriptive statistics
• The measures that count coupling to friend classes (the

F***C and IF***C measures) are all zero. That is, there
are no friendship relationships in the system.

• There is little inheritance coupling, as can be seen by the
low mean and standard deviation of the measures which

count this type of coupling: NIH-ICP, the A***C and
D***C measures. Measures ACAIC and DCAIC have
only one class with a non-zero value. There is no
inheritance coupling to library classes. Therefore, ICP
and NIH-ICP yield identical values, as do MPC and
OMMIC.

• Overall, there is only very little coupling to library
classes. 60% of the LALO classes only interact with
other LALO classes.

• There is evidence of export coupling to library classes.
One of the automatically generated classes in the LALO
system uses some of the 83 non-library classes.

Comparison to UMD systems
For the UMD study, we investigated eight independent,
smaller systems, whereas in the current study, we have one
larger system. Therefore, overall there is more coupling
present in the LALO system, especially the measures which
involve method invocations have higher means and
standard deviations than in the UMD systems. However,
there are two exceptions to this:

• There is less aggregation coupling in the LALO system
(in this paper by aggregation we mean instances where a
class has an attribute whose type is another class). In
particular, there is no aggregation coupling to library
classes, which is to be expected for kinds of libraries
used (IO, threading).

• Unlike in the UMD systems, there is no friendship
coupling in the LALO system. This was considered bad
practice and was avoided, e.g., by introducing access
methods to set and retrieve values of class attributes,
whenever this was required.

4.1.2 Principal Component Analysis
Since each coupling measure has been measured twice
(once counting coupling to library classes only, once
counting coupling to non-library classes only), we consider
the two versions of each measure to be distinct measures.
To distinguish them, we denote the version counting
coupling to library classes by appending an „_L“ to its
name. For example, MPC_L denotes the measure that
counts invocations of methods from library classes,
whereas MPC denotes the measure that counts invocations
of method from non-library classes.

For the PCA, measures that did not vary were discarded.
From pairs of measures with identical values, one
redundant measure was removed. PCA with the remaining
measures identified seven PCs which capture 82% of the
data set variance.

In the following, we provide for each PC the percentage of
the data set variance the PC describes, a list of the measures
with high loadings in the PC, and our interpretation of the
dimension that the PC captures.

• PC1 (27%): MPC, ICP, NIH-ICP, and OMMIC: measure
the extent of import coupling through method
invocations to non-library classes.

• PC2 (16%): OCAEC, ACMIC, OCMEC, AMMIC,
CBO_L, and OCMIC_L. This PC is difficult to interpret.
The two strongest variables, OCAEC and OCMEC,

6PAGE

capture export coupling to non-library classes, but the
remaining measures have only little in common.

7PAGE

Coupling to non-library classes only Coupling to library classes only
Descriptive Statistics Univariate Analysis Size Descriptive Statistics Univariate Analysis Size

Measure Max Mean σ Coef. S.E
.

∆ψ p Rho Max Mean σ Coef. S.E. ∆ψ p Rho
CBO 31 7.18 6.66 0.404 0.084 5.493 <.0001 0.3937 2 0.422 0.587 2.108 0.47 3.445 <.0001 0.3152
CBO' 31 6.61 6.65 0.447 0.091 4.439 <.0001 0.3939 2 0.422 0.587 2.108 0.47 3.445 <.0001 0.3152
RFC1 358 48.30 57.84 0.018 0.006 1.368 0.0019 0.4788 27 2.241 4.825 0.535 0.165 1.879 0.0012 0.3091
RFC� 669 106.04 143.23 0.004 0.002 1.296 0.0098 0.2937 119 32.277 41.602 0.016 0.005 1.96

6
0.0006 n. sig.

MPC 274 16.21 37.45 0.099 0.03 1.73 0.0008 0.3969 73 3.47 10.233 0.687 0.231 3.34 0.0029 0.3569
ICP 769 49.24 113.13 0.043 0.013 2.215 0.0014 0.3850 201 9.446 27.88 0.257 0.087 3.61

2
0.0031 0.3601

IH-ICP 190 7.46 22.32 0.062 0.025 1.409 0.0129 n. sig. 0 0 0 All zero
NIH-ICP 579 41.78 98.35 0.066 0.02 2.386 0.0011 0.4268 201 9.446 27.88 0.257 0.087 3.61

2
0.0031 0.3601

DAC 8 1.19 1.48 0.257 0.124 1.461 0.0386 0.5208 0 0 0 All zero
DAC' 7 1.00 1.22 0.304 0.147 1.448 0.0391 0.5083 0 0 0 All zero
IFCAIC 0 0.00 0.00 All zero 0 0 0 All zero
ACAIC 2 0.02 0.22 Only one non-zero data point 0 0 0 All zero
OCAIC 8 1.17 1.48 0.241 0.121 1.429 0.0467 0.4866 0 0 0 All zero
FCAEC 0 0.00 0.00 All zero 0 0 0 All zero
DCAEC 2 0.02 0.22 Only one non-zero data point 0 0 0 All zero
OCAEC 16 1.17 2.60 0.588 0.2

42
1.462 0.0152 n. sig. 6 0.084 0.666 Only two non-zero data points

IFCMIC 0 0.00 0.00 All zero 0 0 0 All zero
ACMIC 8 0.81 1.48 0.339 0.152 1.226 0.0261 0.2826 0 0 0 All zero
OCMIC 205 9.39 23.64 0.1015 0.036 2.009 0.0052 0.5167 2 0.217 0.443 3.179 1.019 4.089 0.0018 0.4201
FCMEC 0 0.00 0.00 All zero 0 0 0 All zero
DCMEC 38 0.81 4.43 0.035 0.066 1.165 0.6019 n. sig. 0 0 0 All zero
OCMEC 135 9.39 23.25 0.093 0.035 1.365 0.0086 n. sig. 62 0 8.412 1.82 0.458 2.39

5
<.0001 0.3455

IFMMIC 0 0.00 0.00 All zero 0 0 0 All zero
AMMIC 24 2.11 4.02 0.19 0.076 1.395 0.0121 n. sig. 0 0 0 All zero
OMMIC 250 14.10 35.34 0.096 0.03 1.562 0.0014 0.3591 73 3.47 10.233 0.687 0.231 3.34 0.0029 0.3569
FMMEC 0 0.00 0.00 All zero 0 0 0 All zero
DMMEC 69 2.11 8.53 0.138 0.092 1.204 0.1349 n. sig. 0 0 0 All zero
OMMEC 124 14.10 23.71 0.051 0.017 1.542 0.0025 0.4688 26 0.542 2.91 0.826 0.37

7
1.45
4

0.0282 0.2343
Table 3: Analysis results for coupling measures

8PAGE

• PC3 (12%): RFC1_L, MPC_L, ICP_L, OCMIC_L, and
OMMEC_L: MPC_L and ICP_L count import coupling
through method invocations to library classes. RFC1_L
captures the number of methods invoked plus the local
methods, and is therefore expected here. OCMIC_L also
counts import coupling to library classes. OMMEC_L is
an export coupling measure, and is the weakest of the
five measures.

• PC4 (10%): DAC, DAC’, OCAIC, OCMIC: The first
three measures are the strongest and count import
coupling through aggregation relationships to non-
library classes.

• PC5 (8%): RFC1, RFC�, ICH-ICP, AMMIC, RFC�_L.
Measures ICH-ICP and AMMIC count import coupling
through method invocations to ancestor classes. The
correlation of these measures to the RFC measures was
also observed in the UMD systems. The explanation is
that classes which import from ancestors also inherit
methods from their ancestors. These inherited methods
are part of the „response set“ of the class (see the
definition of RFC in Table 1) and thus counted by the
measures. Hence, the RFC measures tend to be larger for
descendent classes. Because the inheritance-based
coupling measures are non-zero for descendent classes
only, they have a positive correlation to RFC1 and
RFC� .

• PC6 (5%): DCMEC, DMMEC count export coupling to
(non-library) descendent classes. DCAEC, which would
also fit in this PC, is missing here because it has too little
variance.

• PC7 (4%): CBO, CBO’, OMMEC, OCMEC_L. This
PCs cannot be reasonably interpreted. It is common in
principal component analysis that the weaker PCs
explaining a small amount of variance are difficult to
interpret.

Comparison to UMD systems
There are a number of orthogonal coupling dimensions
common to both systems: the dimensions represented by
PC1 (method invocations to non-library classes), PC3
(method invocations to library classes), and PC4 (import
aggregation coupling) are also present in the UMD systems.

Some dimensions identified in the UMD systems could not
be observed here, because the corresponding measures had
little or no variation in the LALO system, e.g., import
aggregation coupling to library classes, import and export
coupling to friend classes.

4.1.3 Univariate logistic regression
As we can see in Table 3, most of the measures have a
significant relationship to fault-proneness (at α=0.05). The
exceptions are DCMEC and DMMEC of PC6, which count
export coupling to descendent classes.

For all significant measures, the regression coefficients are
positive. This is consistent with the common notion that
classes with higher import or export coupling are more
likely to be fault-prone.

The impact of export coupling on fault-proneness is weaker
than that of import coupling: the export coupling measures
mostly have lower coefficients and ∆ψs than their import

coupling counterparts.

The CBO measures are the only measures which count both
import and export coupling. Their relationship to fault-
proneness is particularly strong (high coefficients and ∆ψs).

Comparison to UMD systems
Similar to the results obtained with the UMD systems, all
import coupling measures with sufficient variation were
found to be significant predictors of fault-proneness.

However, in the UMD systems, none of the export coupling
measures was found to be significantly related to fault-
proneness in the expected direction. In the LALO system,
most of the export coupling measures that do vary also are
indicators of fault-proneness. Maybe, because of the
weaker impact of export coupling, and because there was
overall less coupling in the UMD systems, thus resulting in
less statistical power, we failed to find a statistically
significant relationship to fault-proneness in those systems.

4.1.4 Correlation to size
The measures DAC, DAC’, OCAIC, and OCMIC of PC4
have the strongest relationship to size. For OCMIC this
may be explained because the more methods a class has,
the more method parameters there are, the higher OCMIC
is likely to be (which counts the number of method
parameters that have an “other” class as their type).
However, the Rho coefficients for the measures in PC4 are
only barely above 0.5, i.e., the relationship to size is not
very strong. For all other coupling measures, significant
Rho coefficients are below 0.5, that is, there is at most a
moderate correlation to size for these measures, if any.

Comparison to UMD systems
Common to the LALO and UMD systems is that overall a
correlation to size is present, but it is weak.

4.2 Cohesion Results
Table 4 presents the descriptive statistics, univariate
analysis, and correlation to size for all cohesion measures.
The meaning of the columns is the same as in Table 3.

4.2.1 Descriptive statistics
ICH, LCOM1 and LCOM2 have extreme outliers. For the
LCOM measures, this is due to the presence of access
methods. These methods usually only reference one
attribute, and therefore increase the number of pairs of
methods in the class that do not use attributes in common.

A closer inspection of the distribution of ICH reveals that
there are only few method invocations within classes: only
one third of all classes have a non-zero value for ICH. This
explains why LCOM3 and LCOM4 have similar
distributions: in addition to counting pairs of methods
which use attributes in common like LCOM3, LCOM4 also
takes method invocations into account. Because for most
classes there are no method invocations among methods,
LCOM4 produces similar values to LCOM3. This was also
observed in the UMD systems.

Comparison to UMD systems
Overall, the distributions of the individual measures in
terms of their mean and standard deviations are very similar
to the UMD systems. This is to be expected, as the
cohesion measures are concerned with the internal structure

9PAGE

of each individual class. Unlike the coupling measures,
they are not strongly affected by the overall size of the
systems.

4.2.2 Principal Component Analysis
PCA identified three PCs which describe 91% of the
variance in the data set. Below, we provide for each PC the
percentage of the data set variance the PC describes, the list
of the measures with high loadings in the PC, and our
interpretation of the dimension that the PC captures:

• PC1 (57%): LCOM5, Coh, Co, and TCC: These are
normalized cohesion measures which are based on
attribute usage by methods. Also common to these
measures is that they do not take the transitive closure of
the attribute-usage relationship between methods into
account.

• PC2 (26%): LCOM1, LCOM2, and ICH. This PC is
difficult to interpret. LCOM1 and LCOM2 are non-
normalized measures based on common attribute usage
between methods. ICH is a count of method invocations
in a class. Since these measures are in the same PC
indicates that the more the methods of a class invoke
each other (high ICH), the less likely they are to use
attributes in common (high LCOM1 and LCOM2). It
should also be noted that LCOM1 and ICH have, of all
measures considered here, the strongest correlation to
size. Possibly, this is the common denominator that links
the measures together in this PC.

• PC3 (9%): LCOM3, LCOM4, LCC. These measures
operate on graphs whose vertices represent the methods
of a class, and edges between nodes represent common-
attribute usage relationships (the precise definitions of
the graphs differ slightly between measures, cf. their
definitions in Table 2). This PC captures the degree of
connectivity in these graphs. LCOM3 and LCOM4 count
the connected components of their respective graphs,
LCC is a (normalized) count of the edges of a graph that
takes the transitive closure of common attribute-usage
relationships into account. Whenever the graphs consist
of few connected components (low values of LCOM3
and LCOM4), the number of edges of the transitive
closure of the graph is large (high values of LCC).

Among the cohesion measures considered here are variants
of the same concept. These variants were mostly defined
with the intention to improve existing measures by

eliminating problems that were identified based on
theoretical considerations (see [6] for a summary of these
discussions). From a practical perspective, these differences
in the definitions do not seem to matter much, because the
related measures lie within the same PCs: LCOM5 and Coh
in PC1, LCOM1 and LCOM2 in PC2, LCOM3 and
LCOM4 in PC3. An exception is TCC and LCC: the two
measures are related, but TCC is stronger in PC1, LCC is
stronger in PC3.

There appears to be a separation between normalized and
non-normalized measures. PC1 consists of normalized
measures only, PC2 only of non-normalized measures.
PC3, however, contains a mix of one normalized and non-
normalized measures, for reasons explained above.

Comparison to UMD systems
The separation between normalized and non-normalized
measures oberseved in the LALO system was even stronger
visible in the UMD systems.

The fact that measures which are variants of the same
concept show up in the same PC was also observed in the
UMD systems. From a practical perspective, it means that
although those variant measures were deemed important
from a conceptual perspective, they do not seem to make a
tangible difference. TCC and LCC, however, do not show a
strong relationship in the LALO system, in contrast to the
UMD systems.

Notable differences between the systems: LCOM1,2,3 and
4 all were in one PC in the UMD systems, and ICH defined
a dimension of its own.

4.2.3 Univariate logistic regression
Five of the ten cohesion measures are significant at α=0.05:

• The significant measures LCOM1, LCOM2, and
LCOM3 show positive correlation coefficients. This
indicates that the higher the values of these measures,
the more fault-prone the class is likely to be. This is
consistent with the common belief that low cohesion is
bad design.

• As was discussed in [3], the mathematical properties of
ICH make it unlikely to be measuring cohesion. ICH
possesses properties of a complexity measure. With this
information, the positive coefficient of ICH is
reasonable: the higher ICH (and thus class complexity),
the more fault-prone the class.

Descriptive Statistics Univariate Analysis SizeMeasure
Max Mean σ Coef. S.E. p ∆ψ Rho

LCOM1 5437 139.5904 598.2496 0.02 0.006 0.0004 3.942 0.8069
LCOM2 4988 99.5904 547.7370 0.011 0.005 0.0249 1.613 0.3087
LCOM3 58 5.91566 6.51491 0.141 0.063 0.0257 1.529 0.2555
LCOM4 51 5.72289 5.78752 0.108 0.065 0.0966 1.365 0.2294
LCOM5 1.2500 0.62071 0.25716 0.196 0.798 0.8061 1.052 n. sig.

Coh 1 0.42850 0.23098 -0.741 0.841 0.3786 0.843 n. sig.
Co 0.5000 0.11246 0.20116 1.232 1.098 0.2619 1.281 0.3491

LCC 1 0.48434 0.30022 1.712 0.696 0.0140 1.672 0.4093
TCC 1 0.38255 0.25424 0.773 0.867 0.3726 1.217 n. sig.
ICH 343 9.32530 42.54384 0.674 0.271 0.0128 6.179 0.5426

Table 4: Analysis results for cohesion measures

10PAGE

• For LCC, the positive coefficient indicates that fault-
proneness increases with class cohesion, which is
counter-intuitive. As we will see below, LCC is also
positively correlated to size, which may explain this
unexpected relationship to fault-proneness.

All other measures (LCOM4, LCOM5, Coh, Co, TCC) are
not significant predictors.

All measures of PC2 are significant: LCOM1, LCOM2, and
ICH. Two of these measures, LCOM1 and ICH are
correlated to size. None of the measures in PC1 is
significant. This PC contains normalized measures, which
we consider a necessary property of a cohesion measure
[7], but which appears not to be effective. In PC3
(connectivity), only LCOM3 is significant at α = 0.05 (in
the expected direction).

Variants of the same measure that lie in the same PC also
have similar results for univariate analysis. Both LCOM5
and Coh of PC1 are not significant. LCOM1 and LCOM2
in PC2 are significant with similar coefficients and p-
values. For LCOM3 and LCOM4 in PC3, the difference of
the p-values too is small, however, LCOM3 is below the
0.05 threshold, LCOM4 above. For TCC and LCC, the
results are different, but these measures also are in different
PCs.

Comparison to UMD systems
From the cohesion measures found significant in the LALO
system, LCOM3 and ICH were also significant in the UMD
systems. Coh was significant in the UMD systems, but not
in the LALO system. All other measures, including
LCOM1, LCOM2, and LCC, were not significant in the
UMD systems.

Correlation to size
LCOM1 is very strongly correlated to size, which may
explain its significant relationship to fault-proneness. The
correlation to size is due to the presence of access methods
in some classes, which artificially increases the number of
pairs of methods that do not use attributes in common.

ICH and LCC have a moderate positive correlation to size.
For ICH, which is a count of method invocations within
classes, this is understandable: the more methods a class
has, the more method invocations are likely to occur within
the class (even though this could not be observed in the
UMD systems). For LCC, however, we have no
explanation for the correlation to size. Most of the other
measures have a significant, but weak correlation to size.

Comparison to UMD systems
In the UMD systems, we also found that many measures
had a significant, but weak correlation to size. In particular,
ICH displayed one of the strongest correlations among all
cohesion measures in both the UMD and LALO systems.
Such a relationship is explained, as discussed above, by the
way the measure is defined. Such correlations just confirm
the argument that ICH cannot probably be considered as a
cohesion measure.

4.3 Building Predictive Models
In this paper, we have focused on empirically investigating
the bivariate relationships between OO coupling and
cohesion measures and fault-proneness. Our goals were to

better understand the dimensions captured by existing
measures and quantitatively investigate their impact on one
important aspect of quality. However, in addition to the
results presented above, it is interesting to note that by
combining coupling and cohesion measures into
multivariate prediction models, it is possible to obtain very
accurate prediction models of fault-prone classes based on
design information. Such models can then be used to focus
inspection or testing activities on specific parts of the
system [3]RENV. Because of space constraints, we cannot
report here the full details of our multivariate analysis
results. However, we think it is important to summarize
those results in order to illustrate the level of predictive
accuracy that can be obtained through design measurement.

We built a prediction model using multivariate logistic
regression and a forward selection procedure. The
significant coupling and cohesion measures, plus a number
of inheritance measures that we additionally investigated in
[4] were allowed to enter the model. The resulting model
consisted of six measures: four coupling measures (CBO’,
RFC1, ICP, RFC1_L), one ‘cohesion’ measure (ICH, which,
as discussed, is unlikely to measure cohesion), and one
inheritance measure (NMI, the number of methods that a
class inherits).

To evaluate the prediction model, we performed a 10-cross
validation. To this end, the 83 data points were randomly
split into ten partitions of roughly equal size. For each
partition, we re-fitted the model with the six covariates
listed above, using only data points not included in the
partition, and then applied the model to those data points in
the partition. Classes with a predicted probability π>0.5
were classified fault-prone. The threshold 0.5 was selected
to balance the number of actually faulty and predicted fault-
prone classes. We then compared, across all ten partitions,
the predicted and actual fault-proneness of the classes The
results of this comparison are summarized in Table 5.

Predicted
π<0.5 π>0.5

Σ

No fault 31 6 37
Actual Fault 7

(8 faults)
39
(123 faults)

46
(131 faults)

Σ 38 45 83
TableSEQARABE 5: Prediction model evaluation

From Table 5 we see that 45 classes were predicted fault-
prone. These 45 classes contained 123 out of all 131 faults
in the system (94% completeness). 39 of these 45 classes
actually contained a fault (87% correctness).

The 45 classes predicted fault-prone contain 66% of the
methods. The 46 actually fault-prone classes contain 65%
of all methods. That is, the portion of the system that is
predicted fault-prone is close to the theoretical minimum,
the portion of the system that is actually fault-prone.

Comparison to UMD systems
In terms of its predictive power, the multivariate model
derived from the UMD data set performs almost as well as
the LALO (~90% completeness, ~80% correctness). The
model itself differs from the LALO model: it contains a
larger number of variables (due to the larger data set), and a

11PAGE

different selection of variables. However, the dimensions
that were found to have a strong relationship to fault-
proneness in both systems (e.g., import coupling through
method invocations to library/non-library classes) are also
represented in both models; see [4] for a more detailed
comparison of the models.

5 CONCLUSIONS
Based on the comparison of the results from the two studies
performed so far, we provide a number of
recommendations. If one intends to build quality models of
OO designs, coupling will very likely be an important
structural dimension to consider. More specifically, a
strong emphasis should be put on method invocation,
import coupling since it has shown to be a strong, stable
indicator of fault proneness. We also recommend that the
following aspects be measured separately since they
capture distinct dimensions in our data sets: import versus
export coupling, coupling to library classes versus
application classes, method invocation versus aggregation
coupling. As far as cohesion is concerned and measured
today, it is very likely not to be a very good fault-proneness
indicator. This stems mainly from the current difficulty to
define clearly the concept and measure it. One illustration
of this problem is that two distinct dimensions are captured
by existing cohesion measures: normalized versus non-
normalized cohesion measures. As opposed to the various
coupling dimensions, these do not look like components of
a vector characterizing class cohesion, but rather as two,
fundamentally different ways of looking at cohesion.
Which one is actually measuring the concept of cohesion, if
any?

When using design measures to build predictive models of
fault-prone classes, we have consistently obtained, across
two studies, high levels of classification accuracy (i.e.,
around 90% correctness and completeness). This suggests
that design measurement-based models may be very
effective instruments for quality evaluation and control.
However, the overall results of our studies also tell us that
the validity of fault-proneness models may be very context-
sensitive. In a given environment, their stability has to be
assessed and analyzed across systems so that conditions
(e.g., application domain) under which models are stable
can be identified. Although some of the patterns and
relationships presented above seem stable across very
different study settings and systems, replication of such
studies is necessary in order to build over time a credible
body of empirical knowledge on which to base the quality
assessment of OO designs and systems.

ACKNOWLEDGMENTS
We would like to thank Michael Ochs for developing the
analyzers used in this study, Michel Lavallee for making
the LALO study possible, and the LALO developers
without whom such quality data could not have been
collected.

REFERENCES
All ISERN technical reports below are available from
http://www.iese.fhg.de/ISERN/pub/isern_biblio_tech.html.

[1] V.R. Basili, L.C. Briand, W.L. Melo, "A Validation of
Object-Oriented Design Metrics as Quality

Indicators", IEEE Transactions on Software
Engineering, 22 (10), 751-761, 1996.

[2] L. Briand, P. Devanbu, W. Melo, "An Investigation
into Coupling Measures for C++", Proceedings of
ICSE ‘97, Boston, USA, 1997.

[3] L. Briand, J. Daly, V. Porter, J. Wüst, "A
Comprehensive Empirical Validation of Product
Measures for Object-Oriented Systems", Technical
Report ISERN-98-07, 1998.

[4] L. Briand, S. Ikonomovski, H. Lounis, J. Wüst, “A
Comprehensive Investigation of Quality Factors in
Object-Oriented Designs: an Industrial Case Study”,
Technical Report ISERN-98-29, 1998.

[5] L. Briand, J. Daly, J. Wüst, "A Unified Framework for
Coupling Measurement in Object-Oriented Systems",
IEEE Transactions on Software Engineering: to be
published, 1998. Also Technical Report ISERN-96-14.

[6] L. Briand, J. Daly, J. Wüst, "A Unified Framework for
Cohesion Measurement in Object-Oriented Systems",
Empirical Software Engineering Journal, 3 (1), 65-
117, 1998. Also Technical Report ISERN-97-05 .

[7] L. Briand, S. Morasca, V. Basili, "Property-Based
Software Engineering Measurement", IEEE
Transactions of Software Engineering, 22 (1), 68-86,
1996.

[8] J.M. Bieman, B.-K. Kang, "Cohesion and Reuse in an
Object-Oriented System", in Proc. ACM Symp.
Software Reusability (SSR'94), 259-262, 1995.

[9] S.R. Chidamber, C.F. Kemerer, "Towards a Metrics
Suite for Object Oriented design", in A. Paepcke, (ed.)
Proc. Conference on Object-Oriented Programming:
Systems, Languages and Applications (OOPSLA'91),
October 1991. Published in SIGPLAN Notices, 26
(11), 197-211, 1991.

[10] S.R. Chidamber, C.F. Kemerer, "A Metrics Suite for
Object Oriented Design", IEEE Transactions on
Software Engineering, 20 (6), 476-493, 1994.

[11] P. Devanbu, "A Language and Front-end Independent
Source Code Analyzer", Proceedings of ICSE `92,
Melbourne, Australia, 1992.

[12] G. Dunteman, "Principal Component Analysis",
SAGE Publications, 1989.

[13] B. Henderson-Sellers, "Software Metrics", Prentice
Hall, Hemel Hempstaed, U.K., 1996.

[14] D.W. Hosmer, S. Lemeshow, "Applied Logistic
Regression", John Wiley & Sons, 1989.

[15] M. Hitz, B. Montazeri, "Measuring Coupling and
Cohesion in Object-Oriented Systems", in Proc. Int.
Symposium on Applied Corporate Computing,
Monterrey, Mexico, October 1995.

[16] T. Khoshgoftaar, E. Allen, "Logistic Regression
Modeling of Software Quality", TR-CSE-97-24,
Florida Atlantic University, March 1997.

[17] W. Li, S. Henry, "Object-Oriented Metrics that Predict
Maintainability", J. Systems and Software, 23 (2),

12PAGE

111-122, 1993.

[18] Y.-S. Lee, B.-S. Liang, S.-F. Wu, F.-J. Wang,
"Measuring the Coupling and Cohesion of an Object-
Oriented Program Based on Information Flow", in
Proc. International Conference on Software Quality,
Maribor, Slovenia, 1995.

i Can’t seem to be able to delete this f……ootnote.

