

U	MIC4220, Traitement numérique des signaux				
Comparaison entre RII et RIF					
	RIF		RII]	
•	Stable par défaut	•	La stabilité dépend de la position des pôles de $H(z)$		
ŀ	Demande <i>N</i> >> 1 pour une bonne performance	•	Peut donner une performance adéquate pour $n=1$ ou 2		
ŀ	Réponse en phase linéaire pour un filtre causal	•	Réponse en phase non linéaire en général		
•	La gamme dynamique des différents états se calcule facilement.	•	La gamme dynamique des différents états se calcule difficilement et peut affecter la performance		
			• Effets de quantification et d'arrondi plus prononcés que pour RIF.		
			Possibilité de cycles limites	L	
•	Pas d'équivalent analogique	•	Peut être dérivé d'un filtre analogique équivalent		
Mounir Boukadoum, Michaël Ménard et autres sources sur Internet					

UQAM Université de Galikes a Mentéral	MIC4220, Traitement numérique des signaux					
Fi	Filtre passe-bas Chebyshev					
• <i>H</i> (<i>s</i>) normalisé pour ondulations de 0,5 dB						
n	$H_P(s)$					
1	$\frac{2.8628}{s+2.8628}$					
2	$\frac{1.4314}{s^2+1.4256s+1.5162}$					
3	$\frac{0.7157}{s^3+1.2529s^2+1.5349s+0.7157}$					
4	$\frac{0.3579}{s^4 + 1.1974s^3 + 1.7169s^2 + 1.0255s + 0.3791}$					
5	$\frac{0.1789}{s^5 + 1.1725s^4 + 1.9374s^3 + 1.3096s^2 + 0.7525s + 0.1789}$					
6	$\frac{0.0895}{s^6 + 1.1592s^5 + 2.1718s^4 + 1.5898s^3 + 1.1719s^2 + 0.4324s + 0.0948}$					
Mounir Boukadoum, Michaël Ménard et autres sources sur Internet 30						

UQÂM Université de Gardine à Mensteral	MIC4220, Traitement numérique des signaux			
Fréquences normalisées				
• Les fréquences normalisées sont:				
Type de filtre	Spécifications du filtre analogue	Spécification du prototype du filtre passe-bas		
		v _p	V _a	
Passe-bas	ω_{ap} , ω_{aa}	1	ω_{aa}/ω_{ap}	
Passe-haut	ω_{ap}, ω_{aa}	1	ω_{ap}/ω_{aa}	
Passe-bande	$\omega_{apb}, \omega_{aph}, \omega_{aab}, \omega_{aah}$ $\omega_0 = \sqrt{\omega_{apb} \omega_{aph}}$ $\omega_0 = \sqrt{\omega_{apb} \omega_{aph}}$	1	$\frac{\omega_{aah} - \omega_{aab}}{\omega_{aph} - \omega_{apb}}$	
Coupe-bande $\omega_{apb}, \omega_{aph}, \omega_{aab}, \omega_{aah}$ $\omega_0 = \sqrt{\omega_{apb} \omega_{aph}}$ $\omega_0 = \sqrt{\omega_{apb} \omega_{aph}}$		1	$\frac{\omega_{aph} - \omega_{apb}}{\omega_{aah} - \omega_{aab}}$	
	Mounir Boukadoum, Michaël Ménard et autres	sources sur Internet		

MIC4220, Traitement numérique des signaux

$$\frac{\text{Coupe-bande}}{\text{Coupe-bande}} \\
H(z) = \frac{K(z - e^{j\theta})(z + e^{-j\theta})}{(z - re^{j\theta})(z - re^{-j\theta})} = \frac{K(z^2 - 2z\cos\theta + 1)}{(z^2 - 2rz\cos\theta + r^2)} \\
r \approx 1 - \left(\frac{BP_{3dB}}{f_e}\right) \times \pi \quad \text{Valide lorsque } 0.9 \leq r < 1 \\
\theta = \left(\frac{f_0}{f_e}\right) \times 360^{\circ} \\
K = \frac{1 - 2r\cos(2\theta) + r^2}{2 - 2\cos\theta}$$
MIC4220, Traitement numérique des signaux

UQAM Université du Galde a Micsheid	MIC4220, Traitement numérique de	es signaux
	MATLAB	
% Conception et simulation d'un filtr	e par placement de pôles et zéros	
pole1 = 0.5+0.5i; pole2 = 0.8 +0.25i; pole3 = conj(pole1); pole4 = conj(po poles = [pole1 pole2 pole3 pole4];	% création de deux paires de pôles conjugués	
zero1 = -0.5 + 0.8i; zero2 = -0.2 + 0.9i; zero3 = conj(zero1); zero4 = conj(ze zeros = [zero1 zero2 zero3 zero4];	% création de deux paires de zéros conjugués ero2);	
denz=poly(poles);	% conversion des pôles en dénominateur de H(z)	
numz=poly(zeros);	% numérateur de H(z) = 1	
zplane(numz, denz);	% affichage des pôles et zéros	
figure(2); freqz(numz,denz,256);	% affichage de la réponse en fréquence	
t=[0:1:127]; x=sin(2*pi*t/24); x=x+rand(1,128)-0.5; y=filter(numz.denz.x);	% test avec 128 valeurs d'un sinus corrompu	
figure(3); plot(t,100*x,'b',t,y,'k');axis([0 128 -175 175]);axis('normal');	
	Mounir Boukadoum, Michaël Ménard et autres sources sur Internet	88

UQAM Delverate de Derbe et Nesterd	MIC4220, Traitement numérique des signaux					
MATLAB						
% Autre exemple en utilisant des coordonnées polaires						
angl=[0.2: 0.1: 0.5]*pi/2;	% création de 4 paires conjuguées de pôles					
poles=0.85*exp(j*angl);						
<pre>poles=[poles 0.85*exp(-j*angl)];</pre>						
denz=poly(poles)	% conversion des pôles en dénominateur de H(z)					
numz=[1];	% numérateur de $H(z) = 1$					
zplane(numz, denz);	% affichage des pôles et zéros					
figure(2); freqz(numz,denz,256);	% affichage de la réponse en fréquence					
t=[0:1:127];	% test avec 128 valeurs d'un sinus bruité					
x=sin(2*pi*t/24);						
x=x+rand(1,128)-0.5;						
y=filter(numz,denz,x);						
figure(3); plot(t,500*x,'b',t,y,'k');axis([0 128 -1000 1000]);axis('normal');						
Mounir Boukadoum. Michaël Ménard et autres sources sur Internet						

UQÂM Université de Dantes à Mentela	MIC4220, Traitement numérique des signaux						
Exemple de programme							
/*IIR.c	/*IIR.c IIR filter using cascaded Direct Form II. $y(n) = \sum ax(n-k)-by(n-j)^*/$						
Void	<pre>IIR_Isr(void) { short a1 = 0x0; short a2 = 0x15f6; short b0 = 0x257d; short b1 = 0x4afd; short b2 = 0x257d;</pre>	L // coefficie	nts du filtre				
	<pre>static short p1=0, p2=0; short xn, p0, y0;</pre>	// variables // variables	persistentes d'e/s				
	<pre>xn = input_sample(); pn=xn-((b0*p1)>>15)-((b1*p2)>>15); yn=((a0*pn)>>15) + ((a1*p1)>>15) + p2 = p1; p1 = p0;</pre>	//: ((a2*p2)>>15);//	x- Σbp(n-k) Σ ap(n-k)				
}	output_sample(y0); // Envoyer le	e signal au port d	le sortie sériel				
 >>15 non requis si calculs fait en virgule flottante Noter l'absence de boucles for 							
	Mounir Boukadoum, Michaël Ména	rd et autres sources sur Interne	t	96			

MIC4220, Traitement numérique des signat						
Sommaire						
Méthode	TBL	Pôles-Zéros				
Type de filtre	Passe-bas, passe- haut, passe-bande, Coupe-bande	Passe-bas, passe-bande	Formules: Passe-bande et coupe-bande de 2 ^{ième} ordre. Passe-bas et passe- haut de 1 ^{ier} ordre. Autre: Essais-erreurs			
Phase linéaire	Non	Non	Non			
Conditions spéciales	Aucune	Échantillonnage élevé par rapport à la fréquence de coupure.	Filtres étroits			
Complexité de l'algorithme	Élevé	Modéré	Simple			
Outils de conception requis	Calculatrice	Calculatrice	Calculatrice			
Mounir Boukadoum, Michaël Ménard et autres sources sur Internet						

