Enumeration of eulerian and unicursal planar maps
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Abstract

Sum-free enumerative formulae are derived for several classes of rooted planar maps with no
vertices of odd valency (eulerian maps) and with two vertices of odd valency (unicursal maps).
As corollaries we obtain simple formulae for the numbers of unrooted eulerian and unicursal
planar maps. Also, we obtain a sum-free formula for the number of rooted bi-eulerian (eulerian
and bipartite) maps and some related results.
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1 Introduction

1.1 FEulerian maps have played a crucial role in enumerative map theory since its beginning in the
early sixties. In particular, Tutte’s sum-free formula [22] for the number of eulerian planar maps, all
of whose vertices are labelled and contain a distinguished edge-end, with a given sequence of (even)
vertex valencies was an essential step in obtaining his ground-breaking formula for counting rooted
planar maps by number of edges [23]. Several new results on the subject have been published since
then (see, e.g., [24, 9, 19, 2, 14, 4, 17]).

Here we consider two types of planar maps: eulerian maps - maps with no vertices of odd valency
- and unicursal maps - maps with exactly two vertices of odd valency. It turns out that in most
cases under consideration the rooted maps are counted by sum-free formulae. Such formulae are
both elegant and computationally efficient; they facilitate investigating asymptotic behaviour and
various arithmetic properties. Very often sum-free formulae enlarge the enumerative role of the
corresponding objects. Generally, it is difficult to predict such formulae; so it is always a pleasant
surprise to discover them.

A sum-free formula for the number of rooted eulerian planar maps with a given number of edges
n appears in [24] (in [23, p.269] the same formula counts rooted bipartite trivalent (bicubic) maps
with 3n edges, and a bijection between these two classes of maps was first presented in [15]). In
Section 2 we find sum-free formulae for rooted unicursal planar maps with a given number of edges
and for those with zero, one or two endpoints. We also find a sum-free formula for the number of
unicursal maps rooted in a vertex of odd valency and a formula for the number of rooted unicursal
maps as a function of the odd vertex valencies.
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In Section 3 we apply the methods of [9], and a formula obtained therein, to the results of
Section 2 to count unrooted eulerian and unicursal maps by number of edges.

In Section 4 we obtain (based on [7]) a sum-free formula for the number of rooted bi-eulerian
(eulerian bipartite) maps. We also obtain formulae (much less elegant) to count those rooted eulerian
and bi-eulerian maps that are non-separable.

Finally, in Section 5, we present some asymptotic formulae, discuss some identities and pose
several open problems.

1.2 Basic definitions. A map means a planar map: a 2-cell embedding of a planar connected
graph (loops and multiple edges allowed) in an oriented sphere. A map is rooted if one of its edge-
ends (variously known as edge-vertex incidence pairs, darts, semi-edges, or ”brins” in French) is
distinguished as the root. Counting unrooted maps means counting maps up to orientation-preserving
homeomorphism.

A map (or a graph) is eulerian if it has an eulerian circuit - that is, a circuit containing each of
the edges exactly once. It is well-known that a map (or connected graph) is eulerian if and only if
all its vertices are of even valency. A map (or graph) is bipartite if its vertices can be partitioned
into two parts so that no two vertices in the same part are connected by an edge. It is also well
known that a map is bipartite if and only if all its faces are of even valency. Thus for planar maps,
these two properties - eulerian and bipartite - are related by face-vertex duality. A map which is
both eulerian and bipartite is called bi-eulerian.

A map or graph is generally called unicursal if it possesses an eulerian walk, not necessarily a
circuit. It is well known that a map (or connected graph) is unicursal if and only if it contains
no more than two vertices of odd valency. For the sake of brevity we abuse the term and call a
map unicursal if it has exactly two vertices of odd valency. An endpoint is a vertex of valency 1; a
unicursal map evidently can have at most two such vertices.

Finally, a map is called non-separable if its edge-set cannot be partitioned into two non-empty
parts such that only one vertex and one face incident with it are incident with an edge in each
part. A planar map with at least two edges is non-separable if and only if it has no loops and its
underlying graph is 2-connected [23].

2 Rooted unicursal maps

Unicursal maps and eulerian maps are the very maps considered by Tutte in his seminal paper [22].
But all the enumerative results obtained so far for unicursal maps concern maps with specified vertex
valencies. Accordingly, up until now no formula has been known for the number of rooted unicursal
maps with n edges. As we mentioned above, a formula is known for the number of eulerian maps
with n edges. However the problem of counting unicursal maps cannot be reduced to the analogous
problem for eulerian maps by adding an edge connecting the two odd-valent vertices because these
vertices may not be incident to a common face; so we have to consider unicursal maps independently.

2.1 Let U’(n) denote the number of rooted unicursal maps with n edges and let U/(n), ¢ =0, 1,2,
denote the number of rooted unicursal maps with ¢ endpoints.

Theorem 1.

U’(n)—2”2<2n>, n>1, (2.1)
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Ul(n) = 2"2 (2” - 2). (2.4)

n—1
Proof. The number of unicursal planar maps with n edges and v vertices labelled 1,2,...,v with
the vertex i of valency 2d; + 1 if ¢ = 1,2 and 2d; if ¢ > 2 and each vertex rooted by distinguishing
one of its edge-ends, is given in [22, p.772] as
(n— 1)' (2d1 +1 2d2+1

C(2dy +1,2dy +1,2d3, . .., 2d,) = o) PNEFNE Hd, d _1 (2.5)

The number of rooted planar maps with n edges and v vertices, exactly two of which are of odd
valency, is found from the previous equation by multiplying by the number of ways to root a map
with n edges and dividing by the number of ways to label and root all the vertices of the same map
so that the two vertices of odd valency get labels 1 and 2 (we multiply by 2n and divide by the
product of the valencies and by v! and then multiply by v(v — 1)/2 to account for the fact that the
two vertices of odd valency get labels 1 and 2) and then summing over the sequences of valencies
that add to 2n :

n! (2d1)!(2dy)! v (2d; —1)!
> J

— N (n — | 12512 A(d, —1)!
(v—2)(n v+2)'d1+~~+dvzn—1 dq1%ds! i:3dl.(dl 1)!

To obtain U ( ) we evaluate the sum and then add over all possible values of v : from 2 to n + 1.
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where [2"]b means the coefficient of z™ in the power series b = b(z).
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By Lagrange’s inversion formula (see, e.g., [8]),
U'(n) = ﬁwﬂ{u + z)%*?% [(1 +2)2(1 —2)" (2 — (14 2)%2"(1 — z)*<n+2>} }

Now a factor of 2™ means that the coefficient of 2" ~2 will be zero even in the derivative. We have



di [(1 +2)%(1 - z)_(”+2)] =201+ 2)(1—2)" " 4 (n+2)(1 + 2)2(1 — 2)~ "3 50 that
z

U() = [ [2(1 27 (1= 2)70F) o (o 2) (1 21— 2) )

+
B e E )
| |

=0

1 [ (2n—1) n—2 (2n)! 2 /n—2
_n—1_2(n+1)!(n—2)!;< i +(n+2)(n+2)!(n—2)!i_0< i ﬂ

on—2 _2 (2n —1)! n (2n)!
n—1"(n+(n-2)!" (n+Dn-2)!

which simplifies to (2.1). This derivation is valid only for n > 2 since we are taking coefficients of
2"=2 but (2.1) turns out to be valid for n = 1 as well.

To prove formula (2.4) we set d; and ds to 0, so that the first and second vertices have valency 1.
Proceeding as above, we find that

n+1

Us(n) = [z""'1 )

v=2
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so that, by Lagrange’s inversion formula,

1
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/ _
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which simplifies to (2.4) using the same type of calculation as above.

If instead we just set d; to 0, then the first vertex has valency 1 and the second vertex can
have any odd valency 2ds + 1, including 1. If do = 0 then, as before, we multiply by n(n —1)/2 to
account for the fact that the two vertices of valency 1 get labels 1 and 2, but if dy > 0, then we
instead multiply by n(n — 1) to account for the fact the vertex of valency 1 gets label 1 and the
other odd-valent vertex gets label 2; so

/ ' ne i, n! _ (1—4x)’1/2—1 v—2
200 + U1 () = 2" 13 (g (-0 S

v=2

(2.7)

Therefore by Lagrange’s inversion formula,

2Win) + Uf(n) = =2 {(1 4 2202 L1 4 2)(1 = 2)70+) = (14 )27 (1 - 2) 0]

This formula simplifies, in the same manner as above, to

2n —2
27L
(2o0)
from which (2.3) follows.
Finally, formula (2.2) follows from the other formulae since

Us(n) + Ui(n) + Us(n) = U'(n).
Formulae (2.2), (2.3) and (2.4) are valid only for n > 2. O

Remark. W. Tutte did not publish a proof of (2.5) because, as he informed one of the authors
(Walsh) in late 2001, he had not expected that formula to have any applications (and he expressed
satisfaction upon hearing about the use to which we have put it). A bijective proof of both (2.5) and
the corresponding formula for eulerian maps, which was proved in [22], appeared in [5]. Another
bijective proof of the latter formula appeared in [18]. The method used in [18] was generalized in [3]
to count rooted maps with 1 or 2 endpoints.



2.2 Similar calculations yield sum-free formulae for rooted unicursal maps satisfying vari-
ous conditions. For example, to find the number U’(n) of unicursal maps with n edges
rooted at an odd-valency vertex, we do the same calculation, beginning with the formula
for C(2d; +1,2dy + 1,2d3, . ..,2d,), except that instead of multiplying by 2n we multiply by
2(dy + d2 + 1). We spare the reader the tedious details and give the final result:

Fn) = 2 (2” + 2). (2.8)

Theorem 2.

n+2\n+1

Similarly, to find the number U’(2d; + 1,2ds + 1;n) of rooted unicursal maps with n edges and
two vertices of fixed odd valencies 2d; + 1 and 2dy + 1, d; < ds, instead of taking the sum over
dy+---+d, =n—1 we take it over d3 +---+d, =n —d; —ds — 1 (and we multiply this sum by 2
if dy # dy). The same procedure leads to the product of two factors F; and F», where

P o= 2d1 2d2 (2n—2d1—2d2—2)! X{ 2 if dQ#dl
1= dq do (TL* 1)'(n7d1 —dy — 1)' 1 if dy = dy

and with d = dy + do,
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Using the identity
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which can be proved, e.g., by induction on d, we show that
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Thus, we prove the following.

Theorem 3. For all n > d+ 2,

2dy\ (2d2\ min(d,n—d-2) .
n d 2n—2d—2 .
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where d =dy +dy and U'(2dy + 1,2ds + 1;n) is the number of rooted unicursal maps with n edges
and two vertices of odd valencies 2d; + 1 and 2ds + 1.

If n =d+ 1 (the smallest value n can have), then v = 2; so from (2.5) we have:
. 2
U'(2d1+1,2dy+1;d+1) = 2(3) (%2) if dp # dy and U'(2dy+1,2dy +152d, +1) = ()"

For small d; and ds, the right-hand side of (2.9) can be made sum-free. In particular U’(1,1;n) =
Uj(n) and (2.9) reduces to (2.4). If the odd valencies are 1 and 3, then formula (2.9) simplifies to

2n —4
U'(1,3;n) :3.2"—2<:2), n >3, (2.10)
(moreover, U'(1,3;2) = 4). It simplifies to
9n — 20 2n —6
! . — n—4 > .
U'(3,3im) = ——-2 (n_3>, n >4, (2.11)

(U'(3,3;3) =4) and to three times that number for U’(1,5;n).
In general, for arbitrary fixed d; and ds formula (2.9) after elementary transformations can be
represented as follows:



Corollary. For d=dy +dy and all n > d+ 2,
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where ho(n) =1 and for d > 1, hq(n) is the following polynomial of n of degree d — 1 :

d
ha(n)= % ZO (;l) 2979 (n—d—2)(n—d—3)--- (n—d—1—3) -n(n—1)--- (n—d+j +1). (2.12)

It is easy to see that the sum in (2.12) is divisible by n — 1. Now, by (2.12),
hi(n) = 3 (this is formula (2.10)),
n) =9n — 20 (cf. (2.11)),
hs(n) = 3(3n — 7)(3n — 10),
ha(n) = 3(27n3 — 279n? + 934n — 1008), etc.

2.3 Rooted eulerian maps. The number E’(n) of rooted eulerian planar maps with n edges is
expressed by the following well-known formula [24]:

3.2n—1 2n
E'n)=—m—— . 2.13
() (n+1)(n+2)(n> (2.13)
Denoting e(z) := Y7  E'(n)z", it can be easily verified that
(z) = 82 +12x—1+(1—8x)3/2
ar 32x2

(2.14)

3 Unrooted eulerian and unicursal maps

3.1 Formulae (2.1), (2.3), (2.4) and (2.13) enable us to complete the solution of the long-standing
problem of the enumeration of unrooted eulerian planar maps. Namely, a formula obtained in [9]
can be transformed into an explicit formula with single sums over the divisors of n.

Theorem 4. The number ET(n) of non-isomorphic eulerian planar maps with n edges, n > 2, is
expressed as follows:

1 3.1 2k
E+ = _—_ 2k—2

() o | (n+ 1)(n+2) ( > k;%l ¢( ) <k>

n-200H/2
+ _9(n—2)/2
2 2

Z¢( )2" 2( k)—&-”(:), n even,
P n+ 2

where ¢(n) is the Euler totient function.
Proof. This expression is an easy consequence of the following result.

Theorem 5 [9].

ET(n) = % E'(n)+ 5 > ¢(%)(k+2)(k+1)E’(k)
k<n,k|n
U, (n ; 1), n odd, (3.2)
! Z¢(%)Ul(k)+U4*<n—2’_2>, n even,
k|3



where UL(n) and U, (n) denote the numbers of rooted unicursal maps with n edges and with one
and two singular vertices respectively; a singular vertex means an endpoint which is not allowed to
be the root-vertex.

It is clear that
n—1

Usu(n) =

since any map with n edges and two singular vertices contains 2n edge-ends, of which exactly two
are ineligible to be the root.
Likewise

Ub(n) (3.3)

2n —1 2n —1

Ui(”):TU{(n)‘F Us(n).

Indeed, the first summand reflects the fact that we may take any unrooted unicursal map with a
unique endpoint, declare this vertex to be singular and choose a root in one of 2n — 1 ways. The
second summand is obtained by considering the contribution to the set of rooted maps with one
singular vertex made by a map I' with two endpoints. If I' has no non-trivial symmetries, then we
must declare one of its endpoints to be singular and then choose a root in one of 2n — 1 ways; so
T contributes 2(2n — 1) to the set of rooted maps with one singular vertex instead of the usual 2n
rootings. Now suppose that I' has a rotational symmetry of order 2 (the only possible non-trivial
orientation-preserving automorphism). Both endpoints are equivalent, and after we declare one of
them to be singular (which destroys the symmetry), there are 2n—1 (instead of n) possible rootings.
Therefore, in both cases the proportion (2n — 1) : n is the same (alternatively, this ratio could be
obtained by using doubly rooted maps).
Finally, taking into account formulae (2.3) and (2.4) we obtain

2n —1
n

Substituting from (2.13), (2.1), (3.3), (3.4), (2.4) and (2.3) into (3.2) we obtain (3.1). O

Ul(n) = Ui (n). (3.4)

3.2 Similarly we prove the following.

Theorem 6. Let Ut (n) denote the number of non-isomorphic unicursal planar maps with n edges,
n > 2, then

2(”—3)/2 (nn_]_l) , n OC].d.7

U+(n):% > ¢(Z)2k_g<2kk>+ 2(n_6)/2<:)2) (3.5)

k|n
n/k odd

n even.

2

Proof. We exploit the method developed in [9]. Unicursal maps are similar to but simpler than
eulerian maps with respect to possible rotational symmetries. Namely, only three following types of
rotations exist (in the mnemonic designations adopted in [9]):

(I¢) rotations of an odd order ¢ > 3 (¢k = n) around the two odd-valent vertices (that is, around
an axis that intersects the map in the two odd-valent vertices);

(I3) rotations of order 2 around two even-valent vertices or an even-valent vertex and (the center
of) a face;

(T) rotations of order 2 around the middle of an edge and a vertex or a face.

In every case, the quotient map is a unicursal map; it contains one singular vertex in the last
case.

Now consider the possible liftings. In the first case, the axial cells (the vertices, edges or faces
in which the axis of rotation intersects the map) are determined uniquely. For ly we choose one
odd-valent vertex of the quotient map as axial; the other axial cell is an arbitrary vertex or face
except for the second odd-valent vertex. These are the possible choices of the second axial vertex
for rotations of the type T as well, while the first axial cell is necessarily the singular vertex. Now,



by the main theorem of [9] we obtain immediately the formula

1 " nU’(%), n odd,
+ - o /
v (n)_an Z ¢<k)U(k)+ n+1l_,/n+1
kln U*( ), n even.
n/k odd 2 2
This formula, together with (2.1), (2.3) and (3.4), gives rise to (3.5). O

The unicursal maps with at most three edges are depicted in Fig. 1, where below every map we
indicate the number of ways of rooting it.

SELRRTERNAE
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Figure 1: The unicursal planar maps with < 3 edges

3.3 Specializing this proof to unrooted unicursal maps with two endpoints we obtain the following
expression for their number U (n).

Proposition 1. U, (1) = U, (2) = 1 and for n > 3,
1 2n —2 2m — 2
+ — 727173 2m73 .
o () = =2 (0 F) e (07 (36)
where m = |(n+1)/2].

The first term in this formula can be written as 2" ~3C,,_1, where C,, is the n-th Catalan number.
Notice also that unicursal maps with exactly one endpoint do not have non-trivial symmetries;
therefore the number of such unrooted maps U (n) = U{(n)/(2n), and by (2.3) we have

Ut(n)=2""2%C,_1, n>2. (3.7
Likewise for unrooted unicursal maps with vertices of valencies 1 and 3, we have UT(1,3;n) =
U’(1,3,n)/(2n), whence by (2.10) we obtain

3 2n — 4
Ut(1,3;n) = n2"3<r7_ 2), n > 3. (3.8)

4 Rooted bipartite and non-separable eulerian maps

4.1 Bi-eulerian maps. As we noticed in Sect. 1.2, the dual of an eulerian planar map is bipartite,
and vice versa (thus E’(n) expresses also the number of rooted bipartite maps). Moreover, in a bi-
eulerian map, the edges of an eulerian circuit switch alternately between the two parts. Therefore
the following assertion is valid.

Lemma. A planar map is bi-eulerian if and only if all its vertices and faces are even-valent. Any
bi-eulerian map contains an even number of edges.

4.2 According to [7] (see also [21]), the cubic equation
322y —y+1=0 (4.1)
and

fl@)=(1+3y—y*)/3 (4.2)



determine the generating function f(z) = 1+ > .7 B'(2n)x®" of the number B’(2n) of rooted
bipartite eulerian planar maps with 2n edges. This remarkable result has been obtained by a strong
physical method known as the method of matrix integrals (see [26]) with the help of character
expansion techniques.

From (4.1) and (4.2) one can easily obtain the following explicit sum-free formula:

Proposition 2.

) 3n-1 3n
e (n i 1). (4.3)

Proof. Represent (4.1) in the form w = 3z%(w + 1)3, where w = y — 1. Then (4.2) becomes
f(x) = (3 +w —w?)/3. Applying Lagrange’s inversion formula, we obtain

] f() = - () (B w))" = R

gt =S )2 1))

which gives rise to (4.3). O

This is apparently a new result (announced in [12]), although as we learned not long ago [20, 16],
D. Poulalhon and G. Schaeffer deduced formula (4.3) directly, based on the combinatorial technique
developed in [2].

Remarks. 1. There is a simple 1:2:3 correspondence between, resp., rooted bi-eulerian planar
maps with 2n edges, tetravalent bi-eulerian maps with 4n edges and trivalent maps with all face
sizes multiple to 3 and with 6n edges. This claim has been established by Szabo and Wheater [21].

2. It is an easy matter to prove that bi-eulerian maps form a degenerate class of maps in the sense
that they cannot be 3-connected (that is, polyhedral). Indeed, in a 3-connected map, all the vertices
and faces are of valency at least 3; in a bi-eulerian map the valencies are all even, and so they must
all be at least 4. Neither the number of vertices nor the number of faces can, therefore, exceed half
the number of edges; plugging these two inequalities into the Euler formula yields a contradiction
if the map is to be finite and planar. At the same time, there is an infinite 3-connected bi-eulerian
planar map - the infinite chessboard - and lots of finite bi-eulerian maps of higher genus, the smallest
of which (on the torus) has one vertex and one face, each of valency 4, and two edges.

4.3 Non-separable eulerian and bi-eulerian maps. The functional equation

fl@) = g(z(f())?) (4.4)
relates the generating function f(x) that counts rooted maps by number of edges and the generating
function g(z) that counts rooted non-separable maps by number of edges [23, 25] (both f(z) and
g(x) also count the map with one vertex and no edges). It holds as well if f(x) counts a class I of
rooted maps and g(x) counts the subclass of rooted non-separable maps in 9t provided that a map
is in 9 if and only if all its 2-connected components are also in 9. This condition holds for both
eulerian maps and bi-eulerian maps; to prove this assertion, it suffices to delete the end components
of the block-cutpoint tree and proceed by induction on the number of edges.

For eulerian maps, the function f(z) is given in (2.14); for convenience we rewrite it here:

8224122 — 1+ (1 —8x)3/2

4.5
Flx) - (45
To apply (4.4) we express (4.5) in parametric form. Let
2z =2w(z+1)2. (4.6)
Solving (4.6) for x, substituting into (4.5) and simplifying, we find that
2
z oz
=14-—-—. 4.
f) =142 -2 (4.7

Now we set



u=x(f(z))* (4.8)

From (4.4), (4.7) and (4.8) we find that

z 2’2

glu) =145~ 7. (4.9)

Eliminating = between (4.6) and (4.8) and substituting for f(z) we obtain from (4.7) a relation
between u and z which we express in a form suitable for Lagrange inversion:

2u(l + z)?
- (4.10)
(+3-7)

The number E{¢(n) of rooted non-separable eulerian maps with n edges is the coefficient of ™ in
g(u). Combining (4.9) and (4.10) and using Lagrange inversion, we express this number as

e e
2 4

Unfortunately, unlike the cases considered in Section 2, this coefficient cannot be expressed as a
sum-free formula; in fact, it contains inconvenient alternating double sums:

n=1  _  _ min(jn—j-1) ‘ )
. > (=1 (" z (=1 2r =5 () ()
/ _ J= =
Exs(n) = — % N2 minGaeie2) - (412)
_j:()(_l)J( 77) kz=:o (=DF2 72 G) (o)

Similarly for bi-eulerian maps we use the equations (4.1) and (4.2) which we rewrite as
fl@)=(1+3y—9?)/2 and y=1+3xy>. (4.13)
Setting z = y — 1 and applying the same procedure as before, we find that the number B{g(n) of
rooted non-separable bi-eulerian maps with n edges is

Sy ranej—1 2naio1y "I 3n
jé:o(ilygnﬂi( jj ) 2. (1) (2)(n—j—k—1)

k=
min?j,n_j_m . (4.14)

—2?;2(—1)3’3“]‘1(2"2“) X CDR) ()

These results appear to be new (cf. [14, Sect.6.2]).

Bys(n) = = x

S|

5 Asymptotics, identities and open questions

5.1 Asymptotics. As direct corollaries of the obtained sum-free formulae we can obtain asymptotic
estimates of the corresponding quantities. In particular, as n — oo,

U'(n) ~ ﬁ n=1/2gn (5.1)
and
B'(2n) ~ 295 (2n)7%/2(9/2)". (5.2)

Formula (5.2) agrees with the well-known general cardinality pattern for planar maps [1] (cf.
also [11])

Cn=%/2p", n — 0o. (5.3)

Here p is known as the connective constant (called also the growth constant), which depends on
the class of maps, v = —5/2 as the (universal) critical exponent and C as a multiplicative constant
(C/7 is usually algebraic). More accurately, this behaviour is assumed to hold for n € Dom, where
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Dom C N denotes the set of all n for which there exist n-edged maps of the class under consideration.
Thus in (5.2), Dom = 2N and p = 9/2.

Unlike (5.2), in (5.1) we see another critical exponent: v = —1/2. However this deviation from
the pattern (5.3) is not counter-intuitive because in unicursal maps two vertices are distinguished
implicitly. This introduces the additional factor (;), which is of order n? since in the majority of
maps, the number v of vertices is of order n. As a matter of fact, formula (5.1) satisfies a generalized
planar map cardinality pattern which will be considered elsewhere (see [13]).

Non-separable eulerian and bi-eulerian maps satisfy the pattern (5.3). This assertion can be
proved by the technique described in [1] (Darboux’s method). We restrict ourselves to the calculation
of p in order to supplement the table of known values of the connective constants given in [10].

For bi-eulerian maps, consider again the cubic equation (4.1), 32%y® —y+1 = 0. According to [1],
the radius of convergence of y as a function of x is defined by the equation 8122 = 4. Now we need to
solve (4.1) at = 2/9 and then evaluate the generating function f(z) = (1+3y—y?)/3. The roots are
—3,3/2 and 3/2. The root —3 is meaningless, and we have f(2/9) = (1+ 3y — y?)/3|,=3/2 = 13/12.
Finally, the radius of convergence of the generating function f(x) for non-separable bi-eulerian maps
is equal to x f(x)?|,22/9 = 2/9-(13/12)? = 169/648. Therefore the connective constant p = 648/169.

Similarly for E’, the radius of convergence of the function f(z) (see (4.5)) is equal to 1/8 and
f(1/8) = 5/4. Thus the radius of convergence of the generating function f(x) for non-separable
eulerian maps is equal to xf(x)?|,—1/8 = 1/8-(5/4)? = 25/128. Therefore here we have the
connective constant p = 128/25.

As for unrooted maps, from (3.1) and (3.5) we obtain immediately that

E*T(n) ~ E'(n)/2n

and
Ut(n) ~U'(n)/2n

as n — 00. In other words, “almost all” eulerian and unicursal maps have only the trivial symmetry.

5.2 Identities. Formulae (2.3) and (2.4) imply the following formal identity:

Ui (n) = 2U}(n). (5.4)
This formula can also be represented as
Ul (n) = Ub(n), (5.4)

where U/(n) denotes the number of unicursal n-edged maps rooted at an endpoint and i stands
for the number of endpoints. Indeed, reasoning in the same manner as in Sect. 3.1 in the proof
of Theorem 4 we see that Uj(n) = Uj(n)/(2n) (as a matter of fact, U{(n) = U; (n)) whereas

U3(n) = Us(n)/n.
Is there a direct bijective proof of (5.4)7 Note that for unrooted maps of the same types the
corresponding equality does not hold: U;"(n) # 2U5" (n) according to (3.6) and (3.7).
The same question concerns another curious identity
U'(n) = ¢(n+1)(n+2)E'(n), (5.5)
which follows from formulae (2.1) and (2.13).
The next identity follows from formula (4.3) and the well-known formula of Tutte [23] for the
number S’(n) of rooted non-separable maps with n edges:
B'(2n) = 37718 (n + 1). (5.6)

It would also be nice to find a direct proof of it.
5.3 Generalizations. It would be interesting to extend the above-mentioned results to obtain
formulae for counting rooted maps of the classes we have treated here as a function of other pa-

rameters as well as the number of edges, such as the number of vertices, the valency of the vertex
containing the root, the sequence of vertex- and/or face-valencies or, in the case of bipartite and
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bi-eulerian maps, the number of vertices in each part (incidentally, a parametric formula for the
number of rooted bipartite maps by number of edges and number of vertices in each part appears
in [4, pp.125,126]). It would also be interesting to consider the classes of bipartite unicursal maps
necessary for counting unrooted bi-eulerian maps with a given number of edges by the method
presented in Section 3.

Numerical results. Tables 1 and 2 contain numerical data for unicursal, eulerian and bi-eulerian
maps. The values for n < 6 can be verified by the Atlas of maps [6] (for some quantities, in fact, we
first guessed the formulae from data extracted from the Atlas). Instead of using (4.12) and (4.14)
to calculate E{g(n) and Big(n), we used Maple to substitute for f(x) from (4.5) and (4.13), re-
spectively, into formula (4.4) and evaluate g(x).
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