
A service creation environment based on scenariosq

R. Dssoulia,* , S. Some´b, J. Vauchera, A. Salaha

aDépartement d’Informatique et de Recherche Ope´rationnelle, Universite´ de Montréal, C.P.6128, succ centre ville, Montre´al, Quebec, Canada H3C 3J7
bKBRE, SITE, University of Ottawa, Ottawa, Canada

Abstract

Scenarios are often constructed for illustrating example runs through reactive system. Scenarios that describe possible interactions
between a system and its environment are widely used in requirement engineering, as a means for users to communicate their functional
requirements. Various software development methods use scenarios to define user requirements, but often lack tool support. Existing tools
are graphical editors rather than tool support for design. This paper presents a service creation environment for elicitation, integration,
verification and validation of scenarios. A semi-formal language is defined for user oriented scenario representation, and a prototype tool
implementing an algorithm that integrates them for formal specification generation. This specification is then used to automatically find and
report inconsistencies in the scenarios.q 1999 Elsevier Science B.V. All rights reserved.

Keywords:Scenario; Service creation environment; Requirement engineering

1. Introduction

Requirements engineering is the first step in the software
engineering life cycle. Documents that arise from this step
are informal specifications. The automation of this step is
recognized as a hard task as formal methods are not easily
accepted and automatic computation of natural languages is
not yet ready. Passing from the informal specifications to the
formal ones is still an open issue. One of the proposed
approaches is to offer a simple specification language that
is close to the natural language to be accepted, and hides the
formal methods. Timed automata are used as a target formal
method because of the direct relationship between formal
interpretation of scenarios, and partial runs of the described
system. Requirements engineering includes elicitation,
understanding and representation of the user’s need for a
reactive system. It is a critical task, which induces a great
number of software failures [1]. An important part of these
failures come from undetected inconsistencies and incom-
pleteness of user requirements. Errors are also introduced
during the conversion of requirements to specifications.

A scenario is a possible interaction sequence between a
system and its environment. Each scenario describes a

partial behavior arising in arestricted situation (aprecon-
dition) [2]. Scenarios are appropriate forreactive systems
(like real-time controllers, embedded systems, communicat-
ing systems, etc.) external behavior description. These
systems react tostimuli from their environment according
to their history. We extended the scenarios with timing
constraints, because the behavior of an important part of
the reactive system is constrained by timing requirements.

2. Related works

During the last few years, scenarios have been used for
elicitation of systems specification in several requirement
specification methods. Thepartial nature of scenarios make
them suitable to represent parts of a system behavior. This
allows several users with different views or users of the
same system, to provide different but possibly overlapping
scenarios to describe its behavior. However, these scenarios
may include contradictions, and the system behavior may
not be completely defined by the set of scenarios provided.

In order to obtain a global behavior model, scenarios must
be composed, and it must be possible to deal with their
contradictions and incompleteness. The composition aims
to integrate scenarios in a whole specification model. We
distinguish two composition methods; the declarative one,
in which the composition is made according to the manner
explicitly indicated by the user [3–6], and the inductive
composition that uses inductive rules to insert a scenario

Information and Software Technology 41 (1999) 697–713

0950-5849/99/$ - see front matterq 1999 Elsevier Science B.V. All rights reserved.
PII: S0950-5849(99)00031-2

q This work was partly funded by NSERC and the Ministry of Industry,
Commerce, Science and Technology, Quebec, under the IGLOO project
organized by the Centre de Recherche Informatique de Montreal.

* Corresponding author. Tel.:1 1-514-343-6111; fax:1 1-514-343-
5834.

E-mail addresses:dssouli@iro.umontreal.ca (R. Dssouli); salah@iro.u-
montreal.ca (A. Salah)

in an existing specification [7,8] which may be initially
empty.

The automation of tasks performed on scenarios during
composition, analysis, simulation and prototype generation
require a formal representation of scenario. Several existing
formalisms have been used. In Ref. [9], the authors use
Message Sequences Charts(MSC) [10] as the scenarios’
formal representation. These scenarios are integrated in a
globalMessage Flow Graph(MFG) [11], which is checked
for some syntactic properties. Glinz [4] describes his scen-
arios in Harel’s state chart formalism [12] for which the
scenarios’ composition templates were defined. Overlap-
ping scenarios are forbidden, hence they must be decom-
posed into disjoint ones, which can then be composed
according to the defined templates. Amyot et al. [3] have
chosen aUse Cases Maps(UCM) [13] representation for
their scenarios. The UCM formalism may include architec-
tural requirement that eases the scenarios’ composition into
a LOTOS specification. The latter serves to generate test
sequences. Koskimies and Ma¨kinen [7] use scenarios to
describe partial behaviors of object classes in the OMT
method. Scenarios are formalized as trace diagram. Then,
a Biermann [14] inductive algorithm synthesizes a minimal
state machine that contains exactly the scenarios’ traces. A
state is defined as an abstraction of object attribute values,
but actions lack of semantic that may lead to a non conve-
nient insertion of a scenario. Hsia et al. [6] constructed
scenarios in a tree structure by considering at each node
all possible events, according to a user’s view. Then scen-
arios are translated to grammar that will be inserted into a
finite conceptual state machine. The advantage of this
method is the completeness of its generated specification.
The Z algebraic specification language is used as a target of
composed scenarios in Ref. [15].

Time is an important concept in the emerging
networks and applications. Hence, scenarios’ representa-
tion must be able to express time constraints that reflect
real time system situations. In Refs. [16,17], scenarios
are expressed using MSC extended by time constraint.
There is no scenario composition in Ref. [16], but the
authors propose an algorithm for checking time consis-
tency. However, composition of scenarios in Ref. [17] is
based on higher MSC (HMSC), which is a connected direct
graph of MSC. The timing coherence is treated in a similar
fashion as Ref. [16].

Our work encompasses several activities of scenario
based requirements engineering reported in the literature.
These activities include scenario modeling [18], scenario
formalization [6], scenario composition [4,7], verification
of inconsistencies, and completion [6,19,20]. Our main
contribution is an integration of all these activities in a
framework for the automatic generation of valid and
complete specifications from user scenarios that support
temporal constraints.

This paper describes these activities and a prototype tool
for scenario based requirements engineering that provides
an automatic support for scenarios discovery, acquisition,
analysis, validation and completion. This environment uses
a semi-formallanguage for scenario description, and algo-
rithms for scenario composition, verification and validation.
The elicitation process is supported by an early execution of
scenarios.

The paper is organized as follows. In Section 3, an over-
view of the prototype tool is provided. Sections 4–8.
detail the prototype tool, and Section 9 concludes the
paper. An Appendix is added to show the applicability of
the proposed work, but it is not necessary for understanding
the actual paper.

R. Dssouli et al. / Information and Software Technology 41 (1999) 697–713698

Fig. 1. Activities of a prototype tool for specification construction. Arrows show the succession of activities and the elements transmitted betweenthem.

3. An overview of activities supported

Fig. 1 shows the activities supported by the prototype tool
and their relationships.

An application domain definition concerns the enumera-
tion and description of the system and its environment
features. It includes objects making the system and its envir-
onment, and relevant environmental factors to the applica-
tion (temperature, pressure, etc.). A system component may
be a physical unit (display, actuator, motor, etc.) or a piece
of software performing specific functions, and may be
composed of sub-components. A system component
description includes its attributes and operations. At the
beginning of a system requirement engineering process,
an application domain definition is generally made by
some elements known by users. This earlier definition is,
however, generally incomplete and may be completed
during a scenario acquisition.

Scenario acquisition includes obtaining them from users
and their syntactical analysis. They are described in asemi-
formal language based onstructured englishor using a
graphical representation. A graphical language is based on
MSCs. Our extention concerns addition of symbols for
delays and conditions. We have constructed a graphical

editor for scenario description, and translation to textual
representation. As a scenario describes partial behaviors,
and all of them may not be known at the beginning of the
development process, scenarios are acquired one by one,
and the whole behavior of the system is incrementally
constructed. A scenario is expressed according to the
constituents of the application domain. The syntactical
analysis of scenarios uses elements of the application
domain. Missing elements referred in scenarios might,
however, be added to the application domain description
during scenario analysis.

The specification generation activity analyzes a scenario
and merges their partial behavior with that obtained from
the previously acquired scenarios’. This activity produces
an early specification that includes all the scenarios. After
obtaining an early specification or a complete specification,
a corresponding SDL (Specification and Description
Language) specification can be generated. We have defined
an operational semantic that is used to translate a timed
automata to an SDL specification [21]. In spite of a high
abstraction degree and lack of details, early specification
can be used to show a system general behavior by
prototype simulation. Prototyping is wellused within
requirements engineering methods based on scenarios, as

R. Dssouli et al. / Information and Software Technology 41 (1999) 697–713 699

Fig. 2. ATM application domain.

it allows to reproduce all the partial behaviors included in
them, and to uncover other behaviors stemming from them.
Simulation may also induce users to modify their require-
ments, and make changes early in the development process.

The generation of specifications does not make any
assumptions on the set of the scenarios used. Scenarios (as
partial descriptions), possibly gathered from different users,
may include contradictions. The early specification obtained
reflects inconsistencies in the scenarios, and coherence veri-
fication aimed at finding them. This activity may lead to a
modification of some scenarios previously acquired.

The set of scenarios provided may not completely define
the behavior of the system. A specification generated might
lack important behaviors and the specification completion
activity aims at adding these missing definitions that may
cause the need for additional scenarios.

4. The application domain description

The application domain is an enumeration of the system
and its environment elements. It includes environmental
factors relevant to the system behavior. Indeed, behavior
of reactive systems may depend on elements of the environ-
ment such as temperature or pressure. The domain descrip-
tion enumerates such elements and their value types. We
distinguish between continuous values (numerical attri-
butes) and discrete ones.

A system is made up of one or more interacting compo-
nents. A component may be a physical unit (sensor, display,
motor, etc.) or a piece of software. Components may also be
composed of sub-components, and they may include attri-
butes, and allow operations. A component description
includes its attributes (with their possible values) and

R. Dssouli et al. / Information and Software Technology 41 (1999) 697–713700

Fig. 3. Scenario 1a.

Fig. 4. Graphical representation of scenario 1a. The Customer being a part of the environment is not represented. The system described here includes asingle
component. Several interacting components may be described using an axis for each of them, and arrows showing their interactions.

operations. The effects of operations are included as modi-
fications induced on the system and environment by execut-
ing them. These effects are described as two sets of
conditions: conditions withdrawnandconditions added.

We have developed a language for the application
domain description. Fig. 2 shows an example of an Auto-
mated Teller Machine (ATM) where application domain
description uses this notation.

The application involves a system (ATM) and its envir-
onment (CUSTOMER). The ATM’s attributes include the
customer’snumbers of attempts, thecashin the ATM, and
the displayof the ATM. The attributes of the customer are
his identification numberid and theamountspecified in the
transaction. The description includes possible values of each
attribute. As an example, the ATMdisplaymay have five
possible “values”, and thenumber of attemptsany numer-
ical value. The description includes operation of compo-
nents with their effects asadded and withdrawn
conditions. An operation may withdraw a specific condition,
conditions on an attribute, all conditions added by an opera-
tion, or all conditions known. As an example, the operation
check amountadds conditionid is valid or id is invalid,
while the operationreinit withdraws all the conditions and
adds the conditiondisplay is card insert prompt.

The domain description in Fig. 2 is limited to the
elements needed for the examples used in this paper. Only
attributes and operations that appear in our examples are
enumerated. The domain description is partial, because
the level of abstraction is such that it includes only elements
apparent from outside the system. Some elements may also
be known at the beginning, and others added in the course of
a scenario acquisition.

5. A language for scenario representation

We have definedsemi-formal textual and graphical
languages for a scenario, which uses some natural language
sentences.

Fig. 3 shows an example of a scenario that involves a
Customer and an ATM in the textual form, and Fig. 4
shows the same example using the graphical notation. A
scenario is a series ofinteractionsthat follow each other
in sequential order, when a pre-condition is verified. Each
interaction is a couple (stimuli/reactions). A stimulusmay
be an operation at the system interface or the occurrence of a
certain situation. In scenario 1a, operations performed by a
CUSTOMER arestimuli, while those of the ATM arereac-
tions to them. The third interaction is activated by a condi-
tion.

Conditions and operations are parts of a natural language
sentence. Conditions describesituationsprevailing within
the system and its environment, orchanges. A situation is
written as anadjectival clause, seeking a certain quality on
an entity of an application domain. As an example, in
scenario 1a, the pre-condition is ATMdisplay is card insert

prompt. It is a natural language description of acondition
where the ATM attribute display has the propertycard
insert prompt. Changes express modifications of features
of entities in a system or an environment.

“Operations” are active sentences in which a component,
or “verb” performs an action. Another component may be
added in the active sentence, as the one affected by the
operation.

Delaysare introduced for timing constraint definition in
scenarios. There are two kinds ofdelays: triggering delays
and completion delays. A triggering delayapplies to an
interaction. Its constraints are at the starting moment.
After completion of the interaction that precedes it, amini-
mal, exact or maximal time amount that must be spent
before its activation.Completion delaysare put on interac-
tions or scenarios, so that all their operations are completed
before a given moment. Expiry operations are associated
with completion delays, and are executed when timing
terminates.

Scenario 1a includes acompletion delayon its second
interaction, and specifies that it should be completed 60 s
after the end of the first interaction.

The graphical language is based on MSC [22]. We
constructed an editor for the graphical scenarios’ descrip-
tion, and translation to textual representation. This editor is
added on the top of the scenario acquisition. Compared to
Z12, our extension mainly concerns the addition of symbols
for delaysandconditions.

A scenario is formally represented as a quadruple
kRnum; RP; RI ; RDl, where:

• Rnum is a scenario number
• RP is the scenarioprecondition, a set of conditionskE,Vl

whereE is an entity andV a possible value ofE
• RI is a sequence ofinteractions[I1,…,In].

Each Ii � kindi ;Di ;Ri ; IDil with indi an initial delay,
Di � �di1;…; din� a set of stimuli, Ri � �ri1;…; rin� are
reactions of the system,IDi � kdvi ; IDRil is an interac-
tion completion delay(dvi is the value of the delay, and
IDRi a sequence of expiry operations).

• RD � krdvi ;DRil is a scenariocompletion delay.

A scenario is formally interpreted as a possible set of
timed event sequences�s; t� � �s1; t1�; �s2; t2�;…�sn; tn�,
where eachs i is an operation andt i, the instant when it
occurs according to an abstract global clock. Each operation
has applicability conditions and can occur only if they hold.
The applicability conditions of the first operation in a
scenario corresponds to the scenarioprecondition. Other
operation applicability conditions are obtained from the
normal processing of operations that precede them.

In Ref. [6], scenarios are formalized asscenario trees,
with nodes to represent states, and events to represent speci-
fic stimuli that may change the state of the system or trigger
other events. The difference with our approach is that we do
not rely on the use of unique state names, but on the use of
conditionswhich infer states. As discussed in Section 6,

R. Dssouli et al. / Information and Software Technology 41 (1999) 697–713 701

conditions give us more flexibility when comparing and
merging scenarios than state names, as there are no formal
means to compare them. Another difference is the addition
of timing constraints.

6. Timed automata generation from scenarios

We have developed a specification generator based on an
algorithm that incrementally generates timed automata [23]
from scenarios. The algorithm allows either the integration
of scenarios to an existing timed automata or the construc-
tion of new ones. The algorithm guarantees that for each
scenario used as input to produce timed automata, there
exists a partial run (or partial trace) that corresponds to it.
The proof is given in Ref. [8]. This section summarizes this
algorithm which is fully presented in Ref. [24].

6.1. Timed automata

A timed automaton is defined as atimed transition table
kS;S;Sini ;C;El whereS is a finite alphabet,S is a finite set
of states,Sini # S is a set of start states,C is a finite set of
clock variables andE # S× S× S × 2C × F�C� is a set of
transition.

A transition from states to s0 on the input symbola is
represented as a 5-tupleks; s0;a;l; gl. l # C is a set of clock

variables reset with the transitions, andg is a set of clock
constraints expressed using clock variables that must be
satisfied inC. The clock variable values are set according
to a global abstract clock, and hold at each moment the time
elapsed since its last reset. The theory of Timed Automata
uses adense-timemodel in which the time domain is a set of
positive real values.

A word (s ,t) recognized by a timed automatonA consists
of an event sequences � s1;…;sn and a temporal
sequencet � t1;…; tn, such thats i is consumed at the
moment oft i.

A run r��s; �v� of a timed transition table over a timed word
(s ,t) is defined as an infinite sequence
r : ks0; v0l !�s1;t1� ks1; v1l !�s2;t2� ks2; v2l !�s3;t3�…, with si [S
and vi [�C! R�, for all i $ 0, satisfying the following
requirements:

• s0 [Sini andv0(x) � 0 for all x [C and
• for all i . 0, there is an edge inE of the form

ksi21; si ;si ; li ; gil such that�vi21 1 ti 2 ti21� satisfies
g i andvi equals�li ! 0��vi21 1 ti 2 ti21�.
We define a partial runř of a runr, as a finite sequence

ř:ksi ; vil !�si 1 1;ti 1 1�…ksi1n; vi1nl included inr.
Timed automata are used as a formal method target

because of the direct relationship between formal interpre-
tation of scenarios and partial runs.

R. Dssouli et al. / Information and Software Technology 41 (1999) 697–713702

Fig. 5. Scenario composition algorithm.

6.2. A timed-automata synthesis algorithm

The general principle of timed-automata generation is to
take each input scenario and produce a timed automaton so
that there exists a partial run. When a scenario is considered,
such a partial run is sought, and if it does not exist, the
automaton is augmented with states and transitions to
include it. Correspondence is made between each scenario
and parts of an automaton. More precisely, between condi-
tions (in scenarios) and states (in the automaton), and
between interactions and transitions. Clock variables and
constraints are added to transitions according to delays
and timeouts in scenarios.

Timed-automata construction is based on concepts simi-
lar to those of state-based planning systems such as STRIPS
[25].

1. A state is defined bycharacteristic conditionsthat hold.
Conditions thus provide a finer definition of states than
abstract names, and allow us to formally compare states
as follows:

• Two states areidentical if they have the samechar-
acteristic conditions.

• A statesb is asub-stateof a statesa (its sup-state), if its
characteristic conditions include those ofsa.

2. Each operation execution results are expressed by means
of added-conditionsand withdrawn-conditions. For an
operation,added-conditionsare a set of conditions that
become true after its execution, while itswithdrawn-
conditions are a set of conditions that are no longer
true after its execution.

The following rules must be respected in each automaton
generated.

Rule 1.All transitions possible from a state must be possi-
ble from all its sub-states.

Rule 2.A non-empty sequence of transitions must exist
between any state and each of its sub-states.

The composition algorithm is shown in Fig. 5. Given a set
of scenarios, it generates a set of automata that execute in
parallel. Each automaton generated describes the behavior
of a system component, which appears in some scenarios. A
scenario composition begins by selecting the automaton that
corresponds to it. This automaton is then updated by addi-
tion of states and transitions to obtain apartial run over the
scenario in it. There may be several partial runs correspond-
ing to a single scenario. Each of these partial runs begin at a
state where thepreconditionshold (first states of the partial
runs). Transitions corresponding to the scenario interactions
are added from each of these states according to rule 1. The
first state of a scenario partial run includes a statecharac-
terizedby itspre-conditions(created if not existent), and all
its sub-states. The interactions are added sequentially from
each of the first states. After adding an interaction, a
state is obtained and used as a beginning state for the
next interaction. For each interaction, a transition is

created to allow the execution of itsstimuli/reaction.
Transitions may also be created for acompletion
delay expiry.

Delays in scenarios cause the addition of clock
constraints to transitions. These clock constraints are
constructed with clock variables used to count the time
elapsed within the states. There is at the most one clock
variable for each state. It is initialized in all of the transitions
that go to this state.

There is the following correspondence between delays
and clock constraints. Fortriggering delays, c being a
clock variable, andd the timed amount of the delay, amaxi-
mal delayproduces a clock constraintc , d, a minimal
delaya clock constraintc . d, and anexact delaya clock
constraintc � d.

A completion delaycorresponds to a clock constraintc ,
d. This clock constraint is added to all transitions generated
from a scenario, and when there areexpiry operations, a
transition with a clock constraintc� d is created to execute
these operations.

Transition arrival states are obtained using operation
effects. These begin with thecharacteristic conditionsof
the state from which the interaction is added.

For each operation, a new set of conditions is obtained
from the original one, by removing conditions that appear in
the operationwithdrawn-conditions, and by adding condi-
tions in itsadded-conditions. Thecharacteristic conditions
of the arrival state of the transition are the final set of condi-
tions obtained after considering all the operations.

When a new state is inserted in the automaton, certain
conditions are determined, and there is no statecharacter-
izedby them in it.

According to rule 1, when new states are introduced in the
automaton, all transitions that are possible from a state are
possible from all itssub-states. Transitions with the same
operations are added from every new state for all the transi-
tions going from itssuper-states. The addition of these tran-
sitions may create new states. In rule 2Synthetictransitions
may also be added between states and theirsub-states. They
may also be added to transitions when interactionstimuli
include some conditions not verified in the state from which
they are added.

The timed-automata generation algorithm deals with
overlapping scenarios. In fact, by using characteristic condi-
tions, we can compare states derived from different scenar-
ios and reuse them. The only necessity is the use of same
identifiers for conditions that are eased by the application
domain definition. The algorithm may also produce several
independent timed-automata, when the provided scenarios
are unrelated.

States, transitions, clock variables, clock constraints and
events obtained from a scenario, are labeled with itsnumber
id, providing a traceability between scenarios and timed
automata generated. Using this property, we defined an
algorithm to efficiently undo a scenario composition, by
removing all the behaviors added to its specification. This

R. Dssouli et al. / Information and Software Technology 41 (1999) 697–713 703

allows modification of a scenario without having to worry
about all the other composed scenarios.

There is a possibility of an exponential explosion of the
number of states when similar scenarios are composed.
These problems are inherent to the use of automata for
interactive systems behavior description [26]. It is not possi-
ble to avoid this exponential creation of states because each
state represents a possible situation in the system according
to the scenarios used, and to the description of operations
provided. The algorithm shown in Fig. 5, however, is
improved [27] by the use ofgrouped states, like Harel’s
Statecharts [12].

6.3. A scenario composition example

The following example uses the domain description in
Fig. 2. Fig. 6 shows the automaton generated after composi-
tion of scenario 1a, shown in Fig. 3, with an empty
specification.

S0, the first state generated, ischaracterizedby the

scenarioprecondition, while the other states are determined
by considering the effects of operations. As an example,
state S1 is characterizedby the conditiondisplay is pin
enter prompt, obtained by considering the effects of the
first interaction operations. Thecompletion delayof the
scenario’s second interaction produces clock constraints
on transitions fromS1 to S0, andS1 to S2. x0, the clock vari-
able used, is reset for transitions to stateS1.

The addition of a second scenario shown in Fig. 7, to the
automaton in Fig. 6, produces the automaton in Fig. 8.
Scenario 2a overlaps with the scenario 1a, and defines an
alternative behavior to it.

The preconditionof scenario 2a is thecharacteristic
condition of S1, and S2 and obtained after the first inter-
action. Therefore, no new state is created until the
second interaction, which creates stateS3,and a transi-
tion from S2 to it. A synthetic conditionverif(cash is
available) is added in the transition fromS2 to S3,
because the conditioncash is availablemust be satisfied
in the second interaction.

R. Dssouli et al. / Information and Software Technology 41 (1999) 697–713704

Fig. 6. Automaton generated from scenario 1a.

Fig. 7. Scenario 2a.

Fig. 8. Automaton obtained after composition of scenario 2a.

The statesS0, S1, S2 and the transitions betweenS1 andS2,
andS1 andS0 are labeled with the numbers 1a and 2a. The
stateS3 and the transition fromS2 to S3 are labeled with the
number 2a. The transitions fromS1 to S0, and fromS2 to S0

are labeled with 1a. Removing a scenario from a specifica-
tion simply removes its number from all the labels, and
when an element has no more labels, it is removed from
the specification.

7. Scenario coherence verification

We distinguish three kinds of inconsistencies in a
scenario: operational inconsistencies, temporal inconsisten-
cies and inconsistencies against invariants. As observed in
Ref. [20], many inconsistencies can be detected, but its
correction cannot be fully automated because this implies
further elicitation. Thus, we detect inconsistencies, but
correction is left to analysts and users.

Detection of inconsistencies in a scenario uses the analy-
sis of specifications resulting from their composition. The
traceability relationship between specifications and scenar-
ios, obtained by labeling specification elements with
scenario numbers, allows us to point out faulty scenarios
to users for modification.

7.1. Operational inconsistencies

Operations of two interactions in different scenarios may
be contradictory if in a samesituation, with the same

temporal constraints, they define different systemresponses
to the samestimuli. As in Refs. [6,19], these operational
inconsistencies producenon-deterministictransitions that
go from the same state, with the same stimuli. An algorithm,
which checks all the transitions going from each state,
allows us to find and report thesenon deterministictransi-
tions.

The scenarios shown in Fig. 9 include an operational
inconsistency. In scenario 1b, the operationselect cash with-
drawal, in the third interaction, causes the ATM todisplay
amount menu, while in the scenario 2b, the same operation
causes the ATM toask amount.

Fig. 10 shows the automaton obtained when the scenario
1b is composed with the scenario 2b. The inconsistency
reported produces two transitions fromS3, to S4 and toS5,
with the same stimulus but with different reactions. Fig. 11
shows the inconsistency detected by the prototype tool.

Inconsistent scenarios are shown to users and analysts
who may take appropriate actions for correction. The latter
may be a modification of the existing scenarios. As an
example, the inconsistency between scenarios 1b and 2b
can be corrected by choosing one of the operations, either
ATM ask amountor ATM display amount menufor both
scenarios.

A non-deterministicbehavior may, however, be wanted
in requirements. As an example, in a game, it may be correct
to randomly choose between several actions for the same
stimuli. In this case, thenon-determinismshould be left in
the specification.

R. Dssouli et al. / Information and Software Technology 41 (1999) 697–713 705

Fig. 9. Scenarios with operational inconsistency.

Fig. 10. Automaton obtained by composing scenarios 1b and 2b.

7.2. Temporal inconsistencies

Delays in different scenarios may be contradictory if they
exclude each other, but their interactions have the same
operations and can be performed in the samesituation.
The automaton obtained when scenarios with temporal
inconsistencies are composed includes clock constraints,
which cannot be satisfied. We have developed algorithms
to check these inconsistencies.

The scenarios in Fig. 12 include two temporal inconsis-
tencies. The two scenarios have the sameprecondition, but
while the first interaction in scenario 1c needs a 10 s pause,
the scenario in 2c should have started before a delay of 5 s in
the first interaction.

There is another less apparent temporal inconsistency
between the two scenarios. Scenario 1c must be completed
in 20 s, but the conjunction with scenario 2c makes this
requirement impossible. In fact, 10 s must pass before the
first interaction in scenario 1c, and 15 s must pass after this
interaction and before the second interaction in scenario 2c.
The combination of these two delays is such that the third
interaction of scenario 1c can begin after a minimal delay of
25 s, from the beginning of the scenario.

An analysis of the automaton generated by scenarios 1c

and 2c, shown in Fig. 13, allows their temporal inconsisten-
cies to be found (Fig. 14).

The first inconsistency produces the clock constraint
“x0 , 5 andx0 . 10” on the transition fromS0 to S1. This
constraint cannot be satisfied. We automatically find this
kind of unsatisfiable constraint by checking all of the transi-
tions’ temporal constraints. It is important to observe that
verification of a constraint such as “x0 , 5 andx0 . 10” is
much simpler than theNP-completeproblem ofsatisfiabil-
ity. As a matter of fact, all terms of a formula checked here
are made of the same variable, include a comparator and a
constant. The verification reduces to two comparisons. The
kind of inconsistency described here always produces a kind
of constraint with the same clock variable, because the
composition algorithm uses the same clock variable for all
the constraints in transitions going from the same state.

The temporal inconsistency, introduced by scenario 1c’s
completion delay is detected by an algorithm which deter-
mines in each state the relationship between the automaton
clock variables and their minimal values. We do this by
using the transition’s clock constraints and initializations.
This may involve an exploration of all the paths of the
automaton starting at its initial state. This exploration is
optimized by sorting the transitions going from each state,

R. Dssouli et al. / Information and Software Technology 41 (1999) 697–713706

Fig. 11. Analysis result for an operational inconsistency.

Fig. 12. Scenarios with temporal inconsistencies.

Fig. 13. Automaton obtained from scenarios 1c and 2c.

considering initializations and smaller constraints first,
looking only for the clocks minimal values. The application
of this algorithm to the automaton in Fig. 13, allows us to
find that in stateS2, x0 has 25 as a minimal value, and
consequently the clock constraint “x0 , 20” in the transition
from S2 to S3 cannot be respected.

7.3. Invariants

Invariants are requirements defined to inhibit execution
of some operations in particular situations.

Fig. 15 shows an example of an invariant, which prevents
the operationdisplay service menuby the ATM; this happens
anytime the conditionnumbers of attempts is greater than3 is
satisfied. Invariants may be verified when scenarios are
composed, or against an already constructed specification.

An invariant verification during composition proceeds as
follows: Whenever a transition is constructed from a state,
we check if the conditions of the invariant are included in its
characteristic conditions, and then if the transition includes
some of the operations inhibited. Invariants not respected
are reported immediately upon detection.

Verification of an invariant against a specification looks
for the operations that are inhibited in all transitions going
from all states in whichcharacteristic conditionsinclude the
conditions of the invariant. Transitions that do not respect
the invariant are reported for a possible modification, with
the number of scenarios from which they are derived.

As an example, verification of the invariant 1I against the
specification in Fig. 8 produces the analysis result in Fig. 16.
The invariant is not respected because thenumber of
attemptsmay have any value in the transition fromS2 to
S3. A correction can be provided by adding the condition

number of attempts. 3, as an additional stimulus of the
second interaction of the scenario 2a.

8. Specification completion

A complete specification may be defined as one that
contains all the facts about the described system, even
those that are not defined in the user requirements [28].
Completeness cannot be ensured in a specification obtained
from users’ scenarios because it includes only the require-
ments given. However, we provide some guidance in speci-
fication completion.

Some of the incompleteness in specifications result from
missing operations to link scenarios. This incompleteness
producessynthetic transitionsbetween states and sub-states,
andsynthetic conditionsin transitions.Synthetictransitions
and conditions may be removed by adding operations or
interactions to scenarios. As an example, the automaton in
Fig. 8 obtained from scenarios 1a and 2a includes asynthetic
condition. This synthetic conditioncomes from the second
interaction of scenario 2a’s, because after the first interac-
tion there is no way to know if one of its stimuli, the condi-
tion cash is available, is verified in state S2. The
specification may be complete by replacing scenario 2a
with scenario 2a0, shown in Fig. 17.

Incompleteness that can be detected in specifications are
classified as temporal constraint incompleteness and beha-
vior incompleteness.

There exists a temporal constraint incompleteness when
from a given state some time ranges do not correspond to
any transition. This kind of incompleteness may result on
the system being indefinitely blocked in a state. As an exam-
ple in Fig. 13, from stateS2, whenid is valid, no behavior is

R. Dssouli et al. / Information and Software Technology 41 (1999) 697–713 707

Fig. 14. Analysis result for temporal inconsistencies.

Fig. 15. An invariant.

Fig. 16. Analysis result for an invariant.

defined if x0 is greater or equal to 20. The system may,
therefore, be indefinitely blocked inS2 if no behavior is
defined in this case. Incompleteness is found and reported
by checking all the clock constraints from the transitions
going from state to state.

Behavior incompleteness includes conditions that are not
taken into account and unspecified responses to possible
stimuli. Conditions are not taken into account, for instance,
when we know that they may occur from a state, but no
transition considers them. As an example, the automaton
in Fig. 10, we know that in stateS2, the Customer’sid
may bevalid or invalid according to the operationcheck
id definition. There exists an incompleteness in this state,
because only the conditionid is valid produces a transition
from it. Such a kind of incompleteness is reported by the
prototype tool and may be corrected by providing other
scenarios.

Unspecified responses to stimuli originate from missing
interactions that may, e.g. be errors at the system interface.
As we know from the set ofstimuli used, some of theerror
transitionsmay be added by askingWhat/If questions. For
the timed-automaton shown in Fig. 10, such a question is:

What happens if the CUSTOMER selects cash with-
drawal in situation “display is pin enter prompt”, hold-
ing in state S1?

The operation may be prevented by the system interface.
But scenarios are supposed to be used for a system’s preli-
minary design, and this kind of question may aid precisely
the designing of the interface, or may call for the addition of
missing scenarios.

9. Conclusion

We have presented an environment for scenario-based
requirements engineering. This environment aims in assist-
ing users and analysts in scenario acquisition, and produc-
tion of complete and valid specifications from them. We
seek the user’s greater involvement in the requirement engi-
neering process by usingsemi-formallanguages for scenario
representation and prototype simulation.

We also integrated time to a scenario because of its
importance in real-time systems. The paper is illustrated
with ATM scenarios. Although these examples are sufficient
to demonstrate our algorithms, more industrial examples are
needed to assess the applicability and usefulness of the
approach. We used the prototype tool for telephone service

definition and verification of feature interaction problems
[29,30]. Telephone services are well described using scenar-
ios and feature interaction problems that occur when several
services are combined. An experiment was conducted in
order to answer the following questions: How difficult is
the modeling of communication services with scenarios?
Are we able to detect the well-known feature interactions?
And finally, how efficient is the composition algorithm? The
experiment was carried out by a student with little knowl-
edge of the system. All the scenarios have been obtained
from informal descriptions. The Appendix describes two
typical feature interactions. For more examples see Ref.
[31].

Future work concerns the extension of the scenario
language that allows the use of explicit composition opera-
tors and modularity. We have to adapt accordingly, all
the algorithms that are used for inconsistency detection in
the prototype tool. Future work will be undertaken with the
financial support of FranceTelecom.

Appendix

Note to the reader, this appendix is not necessary for
understanding this paper.

Fig. 18 shows the system architecture assumed in this
appendix. The application involves a system CONTROL-
LER and three users. Example 1 shows the application
domain description and scenarios for Three-Way Confer-
ence and Call-Waiting services. Scenarios are given in
both textual and graphical forms. The tool REST is dedi-
cated to service creation and validation from the first step.
We have specified 15 telephone services and detected all
corresponding feature interactions. More details are given in
Ref. [31].

A1. Example 1

Application domain description

R. Dssouli et al. / Information and Software Technology 41 (1999) 697–713708

Fig. 17. Scenario 2a0. Operationcheck cash availabilitymust be defined. One of its possible effects must be the assertion of the conditioncash is available.

Fig. 18. An abstract view of the telephone system.

System Component: CONTROLLER

operation: send busy_tone
operation: send tone
operation: send tone_3WC
operation: check USER_B status

postconditions: USER_B status is idle OR USER_B
status is busy

operation: ring USER_B
operation: establish A_B_comm

postconditions: USER_A communication_status is
communicating_with_B

operation: establish A_C_comm
operation: establish three_WayCall
operation: stop_A
withconditions: ends USER_A dial USER_B AND

ends CONTROLLER establish A_B_comm

operation: hold USER_B

postconditions: USER_B communication_status is
holding

operation: hold USER_C

postconditions: USER_C communication_status is
holding

System Component: USER_A

attribute: handset values: down, up
attribute: communication_status

values: communicating_with_B, communicating_-
with_C

operation: pick_up handset

postconditions: USER_A handset is up

operation: dial USER_B
operation: dial USER_C
operation: flash

System Component: USER_B

attribute: status values: busy, idle
attribute: communication_status

values: communicating_with_A, communicating_-
with_C

attribute: handset values: down, up
operation: pick_up handset

System Component: USER_C

attribute: status values: busy, idle
attribute: communication_status

values: communicating_with_A, communicating_-
with_C, holding

Three-Way Conference Service Scenario (Fig. 19)

1twc WHEN USER_A communication_status is commu-
nicating_with_B
IF USER_A flashes THEN CONTROLLER holds
USER_B AND

CONTROLLER sends USER_A tone_3WC

IF USER_A dials USER_C THEN CONTROLLER rings
USER_C
IF USER_C status is idle AND USER_C pick_ups hand-
set

THEN CONTROLLER establishs A_C_comm

IF USER_A flashes THEN CONTROLLER establishes
three_WayCall.

Call-Waiting Service Scenarios (Fig. 20)

1cw WHEN USER_A communication_status is commu-
nicating_with_B

IF USER_C status is idle AND USER_C pick_ups
handset

THEN CONTROLLER sends USER_C tone

IF USER_C dials USER_A THEN CONTROLLER
beeps USER_A

R. Dssouli et al. / Information and Software Technology 41 (1999) 697–713 709

Fig. 19. Three-way conference scenario.

R. Dssouli et al. / Information and Software Technology 41 (1999) 697–713710

Fig. 20. Call-Waiting scenarios.

Fig. 21. Automata obtained by composition of three-way conference and call-waiting.

IF USER_A flashes THEN CONTROLLER holds
USER_B AND

CONTROLLER establishs A_C_comm

2cw WHEN USER_B communication_status is holding

IF USER_A flashes THEN CONTROLLER holds
USER_C AND
CONTROLLER establishs A_B_comm

3cw WHEN USER_C communication_status is holding

IF USER_A flashes THEN CONTROLLER holds
USER_B AND
CONTROLLER establishs A_C_comm

A2. Call-Waiting versus three-way conference

We have already shown the scenarios for these services.
Call-Waiting is described with scenarios 1cw, 2cw and 3cw,
and Three-Way Conference is described with scenario 1twc.
Fig. 21 shows the automaton obtained by the composition of

R. Dssouli et al. / Information and Software Technology 41 (1999) 697–713 711

Fig. 22. Call-forwarding versus call-forwarding scenarios.

Fig. 23. Automaton obtained by composition of scenarios calf1, calf2, calf3 and calf4.

the two service scenarios using the application domain of
example 1. It is already known that the combination of these
two services produces a feature interaction problem [32].
This interaction is detected without tool because the result-
ing automaton includes non-deterministic transitions.
Indeed in states s11 and s14 of the automaton in Fig. 21,
the same stimulus (A flashes) produces two different system
reactions: hold B followed by establish A_C_comm and
hold B followed by send A tone_3wc. The first reaction
corresponds to Call-Waiting, while the second reaction is
defined by a Three-Way Conference. Several other interac-
tions produce non-deterministic transitions and are detected
in the same way. These interactions include Credit-Card
Calling versus Voice-Mail Service and Call-Waiting versus
Voice Mail Service.

A3. Call forwarding versus call forwarding

Call Forwarding allows a user to forward all his incoming
calls to another user. When A forwards its calls to B, the
system redirects any call for A to B. This feature may inter-
act with itself and produce an infinite loop [32]. The
problem occurs when the call forwarding feature is being
used repetitively by a chain of users. Suppose that user A
decides to forward his calls to user B’s location and user B
decides to forward his calls to user A’s location. If a third
user attempts do dial either phone number, an infinite loop
will be generated. Scenarios calf1, calf2, calf3 and calf4 in
Fig. 22 describe an example where user A may forward his
calls to B, B may forward his calls to A, and C calls A. In
scenario calf1, C calls A. The system verifies if A forward is
activated (look up A). If A forward is inactive the system
then rings A and a communication is established when he
picks up. If A forward is B (scenario calf2), the system must
look up B. We use a situation descriptor here to show that
this scenario may be followed by either scenario calf3 or
calf4. Scenario calf3 describes the case where B forward is
inactive. The system then rings B and establishes a commu-
nication between B and C when B picks up. In scenario
calf4, as B is forwarded to A the system looks up A. We
do not show the application domain description used for this
example because of space restriction. Fig. 23 shows the
automaton resulting from the composition of scenarios
calf1, calf2, calf3 and calf4 in our environment. From the
experimentation we get the following results: scenarios are
appropriate for the description of communication services.
They are easy to use and understand for most designers. Our
environment shows that it is possible to encapsulate formal
methods within a general tool.

References

[1] B.W. Boehm, Software Engineering, IEEE Transaction on Computers
C-25 (12) (1976) 1226–1241.

[2] K.M. Benner, M.S. Feather, W.L. Johnson, L.A. Zorman, Utilizing
scenarios in the software development process, in: N. Prakash, C.

Rolland, B. Pernici (Eds.), Information System Development Process,
Elsevier, North-Holland, 1993, pp. 117–134.

[3] D. Amyot, L. Logrippo, R.J.A. Buhr, Spe´cification et conception de
systèmes communicants: une approche rigoureuse base`e sur des
scénarios d’usage. in: CFIP97, Lie`ge, Belgique, September 1997.

[4] M. Glinz, An integrated formal model of scenarios based on state-
charts, in: Software Engineering—ESEC’95, Proceedings of the 5th
European Software Engineering Conference, Springler LNCS
989,1995, pp. 254–271.

[5] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen,
Object-Oriented Modelling and Design, Prentice Hall, Englewood
Cliffs, NJ, 1991.

[6] P. Hsia, J. Samuel, J. Gao, D. Kung, Y. Toyoshima, C. Chen, Formal
approach to scenario analysis, IEEE Software March (1994) 33–41.

[7] K. Koskimies, E. Mäkinen, Automatic synthesis of state machines
from trace diagrams, Software-Practice and Experience 24 (7)
(1994) 643–658.

[8] S.S. Some´, Dérivation de Spe´cification àpartir de Sce´narios d’Inter-
action, PhD thesis, Universite´ de Montréal, 1997.

[9] H. BenAbdallah, S. Leue, Syntactic detection of process divergence
and non-local choice inmessage sequence charts, TACAS (1997)
259–274.

[10] ITU, Recommendation Z.120: Message Sequence Chart (MSC), ITU,
Geneva, 1996.

[11] P.B. Ladkin, S. Leue, Interpreting message flow graphs, Formal
Aspects of Computing 7 (5) (1995) 473–509.

[12] D. Harel, STATECHARTS: A visual formalism for complex systems,
Science of Computer Programming 8 (1987) 231–274.

[13] R.J.A. Buhr, R.S. Casselman, Use Case Maps for Object-Oriented
System, Prentice Hall, Englewood Cliffs, NJ, 1995 302 pp.

[14] A.W. Biermann, R. Krishnaswamy, Constructing programs from
example computations, IEEE Trans. Software Engineering SE-2 (9)
(1976) 141–153.

[15] J. Desharnais, R. Khedri, M. Frappier, A. Mili, Integration of sequen-
tial scenarios, Lecture Notes in Computer Science 1301 (1997) 310.

[16] R. Alur, G. Holzmanin, D. Peled, An analyzer for message sequence
charts, Software: Concepts and Tools 17 (1996) 70–77 also appeared
in TACAS’96, Tools and Algorithms for the Construction and Analy-
sis of Systems, Passau, Germany, LNCS 1055, Springer, Berlin, 1996,
pp. 35–48.

[17] H. BenAbdallah, S. Leue, Proceedings of the Tenth Conference on
Formal Description Techniques FORTE/PSTV’97, Osaka, Japan,
Timing constraints in message sequence chart specification, Chapman
and Hall, London, 1997.

[18] B. Regnell, M. Andersson, J. Bergstrand, A hierarchical use case
model with graphical representation, in: Proceedings of ECBS’96,
IEEE Second International Symposium and Workshop on Engineer-
ing of Computer-Based Systems, IEEE, March 1996.

[19] M.P.E. Heimdahl, N.G. Leveson, Completeness and consistency
analysis of state-based requirements, in: Proceedings of the 17th
International Conference on Software Engineering, 1995, pp. 3–14.

[20] S. Easterbrook, B. Nuseibeh, Using viewpoints for inconsistency
management, IEE Software Engineering Journal 11 (1) (1996) 31–43.

[21] A. En-Nouaary, R. Dssouli, F. Khendek, Timed scenarios to sdl:
specification,implementation and testing of real-systems, in:
Submitted for SDL Forum’99, 1999.

[22] ITU-T, Message Sequence Chart (MSC), Recommendation Z.120,
1993.

[23] R. Alur, D.L. Dill, A theory of timed automata, Theoretical Computer
Science 126 (2) (1994) 183–235.

[24] S. Some´, R. Dssouli, J. Vaucher, Scenarios to timed automata: build-
ing specifications from users requirements, in: Proceedings of the 2nd
Asia Pacific Software Engineering Conference (APSEC’95), IEEE,
December 1995.

[25] R. Fikes, N. Nilson, STRIPS: A new approach to the application of
theorem proving to problem solving, Artificial Intelligence 2 (3/4)
(1971) 189–208.

R. Dssouli et al. / Information and Software Technology 41 (1999) 697–713712

[26] D.L. Parnas, On the use of transition diagrams in the design of a user
interface for an interactive computer system, Proceedings of the ACM
Annual Conference 00 (1969) 379–385.

[27] S. Some´, R. Dssouli, An enhancement of timed automata generation
from timed scenarios using grouped states, Technical Report 1029,
DIRO-Universitéde Montréal, 1996.

[28] V.S. Alagar, D. Kourkopoulos, (In)completeness in specifications,
Information and Software Technology 36 (6) (1994) 331–342.

[29] P. Zave, Feature interactions and formal specifications in telecommu-
nications, Computer 26 (8) (1993) 20–30.

[30] R. Dssouli, S. Some, J.W. Guillery, N. Rico, Detection of feature
interactions with REST, in: P. Dini, R. Boutaba, L. Logrippo
(Eds.), Proceedings of the Feature Interactions in Telecommunica-
tions Networks, IOS Press, Amsterdam, 1997.

[31] J.F. Guillery, Detection of telephone service interactions. Technical
report, Département IRO, Universite´ de Montréal, 1996.

[32] E.J. Cameron, N.D. Griffeth, Y.J. Lin, M. Nilson, W.K. Schnure, H.
Velthuijsen, A feature Interaction Benchmark for IN and beyond, in:
L.G. Bouma, H. Velthuijsen (Eds.), Feature Interactions in Telecom-
munications Systems, IOS Press, Amsterdam, 1994.

R. Dssouli et al. / Information and Software Technology 41 (1999) 697–713 713

