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Abstract

Scenarios are often constructed for illustrating example runs through reactive system. Scenarios that describe possible interactions
between a system and its environment are widely used in requirement engineering, as a means for users to communicate their functional
requirements. Various software development methods use scenarios to define user requirements, but often lack tool support. Existing tools
are graphical editors rather than tool support for design. This paper presents a service creation environment for elicitation, integration,
verification and validation of scenarios. A semi-formal language is defined for user oriented scenario representation, and a prototype tool
implementing an algorithm that integrates them for formal specification generation. This specification is then used to automatically find and
report inconsistencies in the scenari@s1999 Elsevier Science B.V. All rights reserved.
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1. Introduction partial behavior arising in aestricted situation (aprecon-
dition) [2]. Scenarios are appropriate foractive systems
Requirements engineering is the first step in the software (like real-time controllers, embedded systems, communicat-
engineering life cycle. Documents that arise from this step ing systems, etc.) external behavior description. These
are informal specifications. The automation of this step is systems react tatimuli from their environment according
recognized as a hard task as formal methods are not easilyto their history. We extended the scenarios with timing
accepted and automatic computation of natural languages isconstraints, because the behavior of an important part of
not yet ready. Passing from the informal specifications to the the reactive system is constrained by timing requirements.
formal ones is still an open issue. One of the proposed
approaches is to offer a simple specification language that
is close to the natural language to be accepted, and hides the
formal methods. Timed automata are used as a target formaR. Related works
method because of the direct relationship between formal
interpretation of scenarios, and partial runs of the described During the last few years, scenarios have been used for
system. Requirements engineering includes elicitation, elicitation of systems specification in several requirement
understanding and representation of the user’s need for aspecification methods. Thgartial nature of scenarios make
reactive system. It is a critical task, which induces a great them suitable to represent parts of a system behavior. This
number of software failures [1]. An important part of these allows several users with different views or users of the
failures come from undetected inconsistencies and incom-same system, to provide different but possibly overlapping
pleteness of user requirements. Errors are also introducedscenarios to describe its behavior. However, these scenarios
during the conversion of requirements to specifications. ~ may include contradictions, and the system behavior may
A scenario is a possible interaction sequence between anot be completely defined by the set of scenarios provided.
system and its environment. Each scenario describes a Inorder to obtain a global behavior model, scenarios must
be composed, and it must be possible to deal with their
“ This work was partly funded by NSERC and the Ministry of Industry, ~contradictions and incompleteness. The composition aims
Commerce, Science and Technology, Quebec, under the IGLOO projectto integrate scenarios in a whole specification model. We
organized by the Centre de Recherche Informatique de Montreal. distinguish two composition methods; the declarative one,
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Fig. 1. Activities of a prototype tool for specification construction. Arrows show the succession of activities and the elements transmittethleetween

in an existing specification [7,8] which may be initially Time is an important concept in the emerging
empty. networks and applications. Hence, scenarios’ representa-
The automation of tasks performed on scenarios during tion must be able to express time constraints that reflect
composition, analysis, simulation and prototype generation real time system situations. In Refs. [16,17], scenarios
require a formal representation of scenario. Several existingare expressed using MSC extended by time constraint.
formalisms have been used. In Ref. [9], the authors use There is no scenario composition in Ref. [16], but the
Message Sequences ChafidSC) [10] as the scenarios’ authors propose an algorithm for checking time consis-
formal representation. These scenarios are integrated in aency. However, composition of scenarios in Ref. [17] is
globalMessage Flow GraptMFG) [11], which is checked  based on higher MSC (HMSC), which is a connected direct
for some syntactic properties. Glinz [4] describes his scen- graph of MSC. The timing coherence is treated in a similar
arios in Harel's state chart formalism [12] for which the fashion as Ref. [16].
scenarios’ composition templates were defined. Overlap- Our work encompasses several activities of scenario
ping scenarios are forbidden, hence they must be decom-based requirements engineering reported in the literature.
posed into disjoint ones, which can then be composed These activities include scenario modeling [18], scenario
according to the defined templates. Amyot et al. [3] have formalization [6], scenario composition [4,7], verification
chosen dJse Cases Map8UCM) [13] representation for  of inconsistencies, and completion [6,19,20]. Our main
their scenarios. The UCM formalism may include architec- contribution is an integration of all these activities in a
tural requirement that eases the scenarios’ composition intoframework for the automatic generation of valid and
a LOTOS specification. The latter serves to generate testcomplete specifications from user scenarios that support
sequences. Koskimies and Maen [7] use scenarios to temporal constraints.
describe partial behaviors of object classes in the OMT  This paper describes these activities and a prototype tool
method. Scenarios are formalized as trace diagram. Thenfor scenario based requirements engineering that provides
a Biermann [14] inductive algorithm synthesizes a minimal an automatic support for scenarios discovery, acquisition,
state machine that contains exactly the scenarios’ traces. Aanalysis, validation and completion. This environment uses
state is defined as an abstraction of object attribute values,a semi-formallanguage for scenario description, and algo-
but actions lack of semantic that may lead to a non conve- rithms for scenario composition, verification and validation.
nient insertion of a scenario. Hsia et al. [6] constructed The elicitation process is supported by an early execution of
scenarios in a tree structure by considering at each nodescenarios.
all possible events, according to a user’s view. Then scen- The paper is organized as follows. In Section 3, an over-
arios are translated to grammar that will be inserted into a view of the prototype tool is provided. Sections 4>8
finite conceptual state machine. The advantage of thisdetail the prototype tool, and Section 9 concludes the
method is the completeness of its generated specification.paper. An Appendix is added to show the applicability of
The Z algebraic specification language is used as a target otthe proposed work, but it is not necessary for understanding
composed scenarios in Ref. [15]. the actual paper.
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System Component: ATM
attribute: number of attempts
values: num
attribute: cash
values: available
attribute: display
values: card insert prompt, pin enter prompt, warning, service menu, amount menu
operation: display card insert prompt
added-conditions: display is card insert prompt
operation: display pin enter prompt
added-conditions: display is pin enter prompt
operation: display amount menu
added-conditions: display is amount menu
operation: display warning
added-conditions: display is warning
operation: display service menu
added-conditions: display is service menu
operation: issue cash
operation: check id
added-conditions: id is valid or id is invalid
operation: check amount
added-conditions: amount is valid or amount is invalid
operation: retain card
operation: eject card
operation: ask amount
operation: reinit
added-conditions: display is card insert prompt
withd-conditions: all
Environment Component: CUSTOMER
attribute: id
values: valid, invalid
attribute: amount
values: valid, invalid
operation: insert card
operation: enter pin
added-conditions: increment number of attempts
operation: enter amount
operation: select cash withdrawal

Fig. 2. ATM application domain.

3. An overview of activities supported editor for scenario description, and translation to textual
representation. As a scenario describes partial behaviors,
Fig. 1 shows the activities supported by the prototype tool and all of them may not be known at the beginning of the
and their relationships. development process, scenarios are acquired one by one,
An application domain definition concerns the enumera- and the whole behavior of the system is incrementally
tion and description of the system and its environment constructed. A scenario is expressed according to the
features. It includes objects making the system and its envir- constituents of the application domain. The syntactical
onment, and relevant environmental factors to the applica- analysis of scenarios uses elements of the application
tion (temperature, pressure, etc.). A system component maydomain. Missing elements referred in scenarios might,
be a physical unit (display, actuator, motor, etc.) or a piece however, be added to the application domain description
of software performing specific functions, and may be during scenario analysis.
composed of sub-components. A system component The specification generation activity analyzes a scenario
description includes its attributes and operations. At the and merges their partial behavior with that obtained from
beginning of a system requirement engineering process,the previously acquired scenarios’. This activity produces
an application domain definition is generally made by an early specification that includes all the scenarios. After
some elements known by users. This earlier definition is, obtaining an early specification or a complete specification,
however, generally incomplete and may be completed a corresponding SDL (Specification and Description

during a scenario acquisition. Language) specification can be generated. We have defined
Scenario acquisition includes obtaining them from users an operational semantic that is used to translate a timed
and their syntactical analysis. They are describedsarai- automata to an SDL specification [21]. In spite of a high

formal language based ostructured englishor using a abstraction degree and lack of details, early specification
graphical representation. A graphical language is based oncan be used to show a system general behavior by
MSCs. Our extention concerns addition of symbols for prototype simulation. Prototyping is wellised within
delays and conditions. We have constructed a graphicalrequirements engineering methods based on scenarios, as
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la WHEN ATM display is card insert prompt
IF CUSTOMER inserts card THEN ATM displays pin enter prompt
IF CUSTOMER enters pin THEN ATM checks id
TRANSITION DELAY 60 sec ON EXPIRY ATM ejects card, ATM reinits
IF id is invalid AND numbers attempts becomes greater than 3 THEN
ATM retains card, ATM reinits

Fig. 3. Scenario la.

it allows to reproduce all the partial behaviors included in 4. The application domain description
them, and to uncover other behaviors stemming from them.
Simulation may also induce users to modify their require-  The application domain is an enumeration of the system
ments, and make changes early in the development processand its environment elements. It includes environmental
The generation of specifications does not make any factors relevant to the system behavior. Indeed, behavior
assumptions on the set of the scenarios used. Scenarios (asf reactive systems may depend on elements of the environ-
partial descriptions), possibly gathered from different users, ment such as temperature or pressure. The domain descrip-
may include contradictions. The early specification obtained tion enumerates such elements and their value types. We
reflects inconsistencies in the scenarios, and coherence veridistinguish between continuous values (numerical attri-
fication aimed at finding them. This activity may lead to a butes) and discrete ones.
modification of some scenarios previously acquired. A system is made up of one or more interacting compo-
The set of scenarios provided may not completely define nents. A component may be a physical unit (sensor, display,
the behavior of the system. A specification generated might motor, etc.) or a piece of software. Components may also be
lack important behaviors and the specification completion composed of sub-components, and they may include attri-
activity aims at adding these missing definitions that may butes, and allow operations. A component description
cause the need for additional scenarios. includes its attributes (with their possible values) and

Scenario la

ATM
]

CUSTOMER inserts card w

|

display pin enter prompt

Scenario  lal

lal
CUSTOMER enters PIN ATM
check id
interaction delay 60 sec
retains card
id is invalid  AND
umbers attempts becomes greater than
reinit
I
reinit
T
— I

Fig. 4. Graphical representation of scenario 1la. The Customer being a part of the environment is not represented. The system described hemeglecludes a
component. Several interacting components may be described using an axis for each of them, and arrows showing their interactions.
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operations. The effects of operations are included as modi-prompt It is a natural language description ottandition
fications induced on the system and environment by execut-where the ATM attribute display has the properdsrd

ing them. These effects are described as two sets ofinsert prompt Changes express modifications of features
conditions conditions withdrawrand conditions added of entities in a system or an environment.

We have developed a language for the application “Operations” are active sentences in which a component,
domain description. Fig. 2 shows an example of an Auto- or “verb” performs an action. Another component may be
mated Teller Machine (ATM) where application domain added in the active sentence, as the one affected by the
description uses this notation. operation.

The application involves a system (ATM) and its envir- Delaysare introduced for timing constraint definition in
onment (CUSTOMER). The ATM'’s attributes include the scenarios. There are two kinds ddlays triggering delays
customer'snumbers of attemptshe cashin the ATM, and and completion delaysA triggering delay applies to an
the displayof the ATM. The attributes of the customer are interaction. Its constraints are at the starting moment.
his identification numbeid and theamountspecified in the After completion of the interaction that precedes ithani-
transaction. The description includes possible values of eachmal, exact or maximal time amount that must be spent
attribute. As an example, the ATMisplay may have five before its activationCompletion delayare put on interac-
possible “values”, and theumber of attemptany numer- tions or scenarios, so that all their operations are completed
ical value. The description includes operation of compo- before a given moment. Expiry operations are associated
nents with their effects asadded and withdrawn with completion delaysand are executed when timing
conditions. An operation may withdraw a specific condition, terminates.
conditions on an attribute, all conditions added by an opera- Scenario 1a includes eompletion delayon its second
tion, or all conditions known. As an example, the operation interaction, and specifies that it should be completed 60 s

check amountdds conditionid is valid or id is invalid, after the end of the first interaction.
while the operationreinit withdraws all the conditions and The graphical language is based on MSC [22]. We
adds the conditionlisplay is card insert prompt constructed an editor for the graphical scenarios’ descrip-

The domain description in Fig. 2 is limited to the tion, and translation to textual representation. This editor is
elements needed for the examples used in this paper. Onlyadded on the top of the scenario acquisition. Compared to
attributes and operations that appear in our examples areZ12, our extension mainly concerns the addition of symbols
enumerated. The domain description is partial, becausefor delaysandconditions
the level of abstraction is such that it includes only elements A scenario is formally represented as a quadruple
apparent from outside the system. Some elements may als@R,,m Re, R, Rp), where:
be known at the beginning, and others added in the course of

: oS o R.miS a scenario number
a scenario acquisition.

¢ Rsis the scenariprecondition a set of conditionsE,V)
whereE is an entity and/ a possible value of

. _ e R is a sequence dhteractions|ly,...,l].

5. A language for scenario representation Each I; = (ind;, D;, R, ID;) with ind; an initial delay,

D; = [d,...d, ] a set ofstimuli, R =[r;,....r; ] are

reactions of the systeniD; = (dv, IDR;) is an interac-

tion completion delaydy; is the value of the delay, and

IDR; a sequence of expiry operations).

¢ Ry = (rdv;,DR)) is a scenari@ompletion delay

We have definedsemi-formal textual and graphical
languages for a scenario, which uses some natural language
sentences.

Fig. 3 shows an example of a scenario that involves a
Customer and an ATM in the textual form, and Fig. 4
shows the same example using the graphical notation. A A scenario is formally interpreted as a possible set of
scenario is a series dfteractionsthat follow each other  timed event sequencés, 7) = (o1, T1), (09, T), .. (On, Tn)s
in sequential order, when a pre-condition is verified. Each where eacho; is an operation and;, the instant when it
interaction is a couples(imuli/reactiong. A stimulusmay occurs according to an abstract global clock. Each operation
be an operation at the system interface or the occurrence of éhas applicability conditions and can occur only if they hold.
certain situation. In scenario 1a, operations performed by aThe applicability conditions of the first operation in a

CUSTOMER arestimuli, while those of the ATM areeac- scenario corresponds to the scengsiecondition Other
tionsto them. The third interaction is activated by a condi- operation applicability conditions are obtained from the
tion. normal processing of operations that precede them.

Conditions and operations are parts of a natural language In Ref. [6], scenarios are formalized asenario trees
sentence. Conditions describguationsprevailing within with nodes to represent states, and events to represent speci-
the system and its environment, drangesA situationis fic stimuli that may change the state of the system or trigger
written as aradjectival clausgseeking a certain quality on  other events. The difference with our approach is that we do
an entity of an application domain. As an example, in not rely on the use of unique state names, but on the use of
scenario 1a, the pre-condition is AT8lisplay is card insert ~ conditionswhich infer states. As discussed in Section 6,
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Input: R=< R,,Rp, Ry ={L1,---,I,},Rp >, Ai-1 = < %i_1,5-1,50i1,Ci_1, Ei_1 >
Result: A, = < %;,5;,50;,C;, E; >
Ai= Ay

Let s, a state characterized by Rp

If no state in S; is identical to sp, add s, to S; endif
find Esup the set of sub-states of s,

FS = EsupU {sp}.

For each s; in FS,

If Rp # none, Rp =< Rdval, Rdexp > constructs Contsp a clock constraint corresponding
to Rdval endif
For each I; =< id, D, Re,tD >€ Ry,
Let OP be a set of operations in D and Re, NC conditions obtained by considering OP
from s;.
If there is no state s; characterized by NC, create s
If id # none constructs Cont;q a clock constraint corresponding to id endif
If tD # none, tD = < td, Tdexp >,
let Cont;p be a clock constraint corresponding to tD
If T'dexp # none add expiry transitions corresponding to Tdexp endif
endif
If Rdexp # none add expiry transitions corresponding to Rdexp endif
add transition < sj, s, OP, A,y >, with X set of clocks variables reseted and
v = {Contsp, Contiq, Cont,p}
Sj = Sk

endfor

endfor

Fig. 5. Scenario composition algorithm.

conditions give us more flexibility when comparing and variables reset with the transitions, afpds a set of clock
merging scenarios than state names, as there are no formatonstraints expressed using clock variables that must be
means to compare them. Another difference is the addition satisfied inC. The clock variable values are set according
of timing constraints. to a global abstract clock, and hold at each moment the time
elapsed since its last reset. The theory of Timed Automata
uses alense-timenodel in which the time domain is a set of
positive real values.

We have developed a specification generator based on anOf A;';l]orgv(gr']? rseecougenr:(z::;ii)y atimed al;f(;nztér::eomnsS:ZI
algorithm that incrementally generates timed automata [23] sequencer — q suc?1 (trrllat U|ns consumed aFf[ the
from scenarios. The algorithm allows either the integration q = s T 7i

. o moment ofr;.
of scenarios to an existing timed automata or the construc- ! . " :
tion of new ones. The algorithm guarantees that for each Arun r_(s, V) ofa_tlmed transition tabl_e over atimed word
scenario used as input to produce timed automata, thereg‘f'z) y ;(sgizl)(zeﬂ\r;e;d agz?? Va;r(wgi? mﬂmtv?/ith seqeuesnce
exists a partial run (or partial trace) that corresponds to it. aﬁds\.;-’ EO c— I% ft)r all i iz’ozsatisfyl/i.r‘w’ the foﬁo i
The proof is given in Ref. [8]. This section summarizes this re uilrementS' ' - 9 wing
algorithm which is fully presented in Ref. [24]. q '

6. Timed automata generation from scenarios

_ * 5 € Sy andyy(x) =0 forallx € Cand
6.1. Timed automata e for all i > 0, there is an edge ifE of the form
(S§-1.S, 0, Aj, ¥ such that(vi_; + 7, — 1,_4) satisfies

A timed automaton is defined adieed transition table v; andv; equals[A; — OJ(Vi_; + 7 — 7).

(3,58 S, C,E) whereX, is a finite alphabetSis a finite set

of states S, C Sis a set of start state§ is a finite set of We define a partial run of a runr, as a finite sequence

clock variables an@ C SxSXIx2°x &(C) is a set of  Fi(s, Vi) " (S Visny included inr.

transition. Timed automata are used as a formal method target
A transition from states to s’ on the input symboh is because of the direct relationship between formal interpre-

represented as a 5-tugies’, a, A, y). A C Cis a set of clock tation of scenarios and partial runs.
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6.2. A timed-automata synthesis algorithm created to allow the execution of itstimulireaction
Transitions may also be created for e@ompletion

The general principle of timed-automata generation is to delay expiry.

take each input scenario and produce a timed automaton so Delays in scenarios cause the addition of clock

that there exists a partial run. When a scenario is consideredconstraints to transitions. These clock constraints are

such a partial run is sought, and if it does not exist, the constructed with clock variables used to count the time

automaton is augmented with states and transitions toelapsed within the states. There is at the most one clock

include it. Correspondence is made between each scenariovariable for each state. Itis initialized in all of the transitions

and parts of an automaton. More precisely, between condi-that go to this state.

tions (in scenarios) and states (in the automaton), and There is the following correspondence between delays

between interactions and transitions. Clock variables andand clock constraints. Foiriggering delays ¢ being a

constraints are added to transitions according to delaysclock variable andd the timed amount of the delay naaxi-

and timeouts in scenarios. mal delayproduces a clock constraimt < d, a minimal
Timed-automata construction is based on concepts simi-delaya clock constraint > d, and anexact delaya clock

lar to those of state-based planning systems such as STRIP$onstraintc = d.

[25]. A completion delagorresponds to a clock constragi<

d. This clock constraint is added to all transitions generated

from a scenario, and when there apiry operationsa

transition with a clock constraimt= d is created to execute

these operations.

1. A state is defined bgharacteristic conditionshat hold.
Conditions thus provide a finer definition of states than
abstract names, and allow us to formally compare states

as follows: ” : : : .
Transition arrival states are obtained using operation
e Two states arédentical if they have the samehar- effects. These begin with theharacteristic conditionof
acteristic conditions the state from which the interaction is added.
¢ A states,is asub-statef a states, (its sup-statg, if its For each operation, a new set of conditions is obtained
characteristic conditions include thosespf from the original one, by removing conditions that appear in

the operatiorwithdrawn-conditionsand by adding condi-
ﬁons in itsadded-conditionsThe characteristic conditions
of the arrival state of the transition are the final set of condi-
tions obtained after considering all the operations.

When a new state is inserted in the automaton, certain
conditions are determined, and there is no sthi@acter-
izedby them in it.

The following rules must be respected in each automaton According to rule 1, when new states are introduced in the

2. Each operation execution results are expressed by mean
of added-conditionsand withdrawn-conditions For an
operation,added-conditionsre a set of conditions that
become true after its execution, while igthdrawn-
conditionsare a set of conditions that are no longer
true after its execution.

generated. automaton, all transitions that are possible from a state are
Rule 1 All transitions possible from a state must be possi- possible from all itssub-statesTransitions with the same

ble from all its sub-states. operations are added from every new state for all the transi-
Rule 2.A non-empty sequence of transitions must exist tions going from itssuper-statesThe addition of these tran-

between any state and each of its sub-states. sitions may create new states. In rul&ynthetidransitions

The composition algorithm is shown in Fig. 5. Given a set may also be added between states and theirstatesThey
of scenarios, it generates a set of automata that execute irmay also be added to transitions when interacgtmuli
parallel. Each automaton generated describes the behavioinclude some conditions not verified in the state from which
of a system component, which appears in some scenarios. Athey are added.
scenario composition begins by selecting the automaton that The timed-automata generation algorithm deals with
corresponds to it. This automaton is then updated by addi- overlapping scenarios. In fact, by using characteristic condi-
tion of states and transitions to obtaipartial run over the tions, we can compare states derived from different scenar-
scenario in it. There may be several partial runs correspond-ios and reuse them. The only necessity is the use of same
ing to a single scenario. Each of these partial runs begin at aidentifiers for conditions that are eased by the application
state where thereconditionshold (first states of the partial  domain definition. The algorithm may also produce several
runs). Transitions corresponding to the scenario interactionsindependent timed-automata, when the provided scenarios
are added from each of these states according to rule 1. Theare unrelated.
first state of a scenario partial run includes a stktarac- States, transitions, clock variables, clock constraints and
terizedby its pre-conditiongcreated if not existent), and all  events obtained from a scenario, are labeled withitsber
its sub-statesThe interactions are added sequentially from id, providing a traceability between scenarios and timed
each of the first states. After adding an interaction, a automata generated. Using this property, we defined an
state is obtained and used as a beginning state for thealgorithm to efficiently undo a scenario composition, by
next interaction. For each interaction, a transition is removing all the behaviors added to its specification. This
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id invalid  AND number of attempls > 3 ATM retains card, ATM reinit

x0:=0, (x0<60?)
S0 S1 §2
CUST inserts card/ CUST enters PIN/
/T\ ATM disp pin_enter_promth ATM checks id id valid

verif(cash available ?)
(x0=607) ATM disp service menu

ATM ejects card, ATM reinit

allows modification of a scenario without having to worry scenarigorecondition while the other states are determined
about all the other composed scenarios. by considering the effects of operations. As an example,
There is a possibility of an exponential explosion of the state S, is characterizedby the conditiondisplay is pin
number of states when similar scenarios are composed.enter prompt obtained by considering the effects of the
These problems are inherent to the use of automata forfirst interaction operations. Theompletion delayof the
interactive systems behavior description [26]. It is not possi- scenario’'s second interaction produces clock constraints
ble to avoid this exponential creation of states because eacton transitions fron, to S, andS; to S,. X,, the clock vari-
state represents a possible situation in the system accordin@ble used, is reset for transitions to st8te
to the scenarios used, and to the description of operations The addition of a second scenario shown in Fig. 7, to the
provided. The algorithm shown in Fig. 5, however, is automaton in Fig. 6, produces the automaton in Fig. 8.
improved [27] by the use ofjrouped stateslike Harel's Scenario 2a overlaps with the scenario 1a, and defines an

Fig. 6. Automaton generated from scenario 1a.

Statecharts [12]. alternative behavior to it.
The preconditionof scenario 2a is theharacteristic
6.3. A scenario composition example condition of §;, and S, and obtained after the first inter-

action. Therefore, no new state is created until the
The following example uses the domain description in second interaction, which creates st&@gand a transi-
Fig. 2. Fig. 6 shows the automaton generated after composi-tion from S, to it. A synthetic conditionverif(cash is
tion of scenario l1a, shown in Fig. 3, with an empty available) is added in the transition fron§, to S
specification. because the conditiocash is availablemust be satisfied
S, the first state generated, haracterizedby the in the second interaction.

2a WHEN display is pin enter prompt
IF CUSTOMER enters PIN THEN ATM checks id
TRANSITION DELAY 60 sec ON EXPIRY ATM ejects card, ATM reinits
IF id is valid AND cash is available THEN ATM displays service menu

Fig. 7. Scenario 2a.

id invalid  AND numbers of attempts > 3
ATM retains card, ATM reinit

x0:=0, N\ (x0<60?)
80 ) CUST inserts card/ \31 ) cusTenters PNy

ATM disp pin_enter_prompt ATM checks id id valid
verif(cash available ?)

ATM disp service menu
(x0=607)

ATM ejects card, ATM reinit @

Fig. 8. Automaton obtained after composition of scenario 2a.
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1b WHEN ATM display is card insert prompt
IF CUSTOMER inserts card THEN ATM displays pin enter prompt
IF CUSTOMER enters pin THEN ATM checks id
IF id is valid THEN ATM displays service menu
IF CUSTOMER selects cash withdrawal THEN ATM displays amount menu.

2b WHEN ATM display is service menu
IF CUSTOMER selects cash withdrawal THEN ATM ask amount
IF CUSTOMER enters amount THEN ATM checks amount
IF amount is valid THEN ATM gives cash, ATM displays service menu.

Fig. 9. Scenarios with operational inconsistency.

CUST enter amount/

@ e ATM check amount

CUSTi ts card/ T
ATI\I/;liiei; ¢ amount v alid CUST select cash withd/
pin_enR”:r_prompt ATM g{ve cash' ATM ask amoun
ATM disp service menu

CUST select cash withd/
ATM disp amount menu

Fig. 10. Automaton obtained by composing scenarios 1b and 2b.

S1 $2 —
CUST enters PIN/ id valid

ATM checks id disp service menu

The state$y, S;, S and the transitions betwe&yands,, temporal constraints, they define different systesponses
andS, and S, are labeled with the numbers 1a and 2a. The to the samestimuli. As in Refs. [6,19], these operational
stateS; and the transition fron$, to S; are labeled with the  inconsistencies produceon-deterministictransitions that
number 2a. The transitions frof to S, and fromS;t0 § go from the same state, with the same stimuli. An algorithm,
are labeled with 1a. Removing a scenario from a specifica- which checks all the transitions going from each state,
tion simply removes its number from all the labels, and allows us to find and report thes®n deterministidransi-
when an element has no more labels, it is removed from tions.
the specification. The scenarios shown in Fig. 9 include an operational
inconsistency. In scenario 1b, the operasetect cash with-
drawal, in the third interaction, causes the ATM display
amount menuwhile in the scenario 2b, the same operation
causes the ATM task amount

Fig. 10 shows the automaton obtained when the scenario
1b is composed with the scenario 2b. The inconsistency
reported produces two transitions frdg) to S, and toS;,
with the same stimulus but with different reactions. Fig. 11
shows the inconsistency detected by the prototype tool.

Inconsistent scenarios are shown to users and analysts
who may take appropriate actions for correction. The latter
may be a modification of the existing scenarios. As an
example, the inconsistency between scenarios 1b and 2b
can be corrected by choosing one of the operations, either
ATM ask amounbr ATM display amount menfor both
scenarios.

A non-deterministidehavior may, however, be wanted
7.1. Operational inconsistencies in requirements. As an example, in a game, it may be correct

to randomly choose between several actions for the same

Operations of two interactions in different scenarios may stimuli. In this case, th@on-determinisnshould be left in
be contradictory if in a sameituation with the same  the specification.

7. Scenario coherence verification

We distinguish three kinds of inconsistencies in a
scenario: operational inconsistencies, temporal inconsisten-
cies and inconsistencies against invariants. As observed in
Ref. [20], many inconsistencies can be detected, but its
correction cannot be fully automated because this implies
further elicitation. Thus, we detect inconsistencies, but
correction is left to analysts and users.

Detection of inconsistencies in a scenario uses the analy-
sis of specifications resulting from their composition. The
traceability relationship between specifications and scenar-
ios, obtained by labeling specification elements with
scenario numbers, allows us to point out faulty scenarios
to users for modification.
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OPERATIONAL INCONSISTENCY in state s3
Operations: ATM DISPLAYS AMOUNT MENU and ATM ASKS AMOUNT

Transitions:
(s3,s5,CUST SELECTS CASH WITHDRAWAL & ATM ASKS AMOUNT) and
(s3,s4,CUST SELECTS CASH WITHDRAWAL & ATM DISPLAYS AMOUNT MENU)

Obtained from Scenarios: [2B] and [1B]

Fig. 11. Analysis result for an operational inconsistency.

1c WHEN ATM display is card insert prompt
AFTER 10 sec IF CUSTOMER inserts card THEN ATM displays pin enter prompt
IF CUSTOMER enters pin THEN ATM checks id
IF id is valid THEN ATM displays service menu
DELAY 20 sec.
2c WHEN display is card insert prompt
BEFORE 5 sec IF CUSTOMER inserts card THEN ATM displays pin enter prompt
AFTER 15 sec IF CUSTOMER enters pin THEN ATM checks id
TRANSITION DELAY 35 sec
IF id is invalid THEN ATM reinits.

Fig. 12. Scenarios with temporal inconsistencies.

7.2. Temporal inconsistencies and 2c, shown in Fig. 13, allows their temporal inconsisten-
cies to be found (Fig. 14).

Delays in different scenarios may be contradictory if they ~ The first inconsistency produces the clock constraint
exclude each other, but their interactions have the same"X, < 5 andx, > 10" on the transition fron% to S;. This
operations and can be performed in the sasitaation constraint cannot be satisfied. We automatically find this
The automaton obtained when scenarios with temporal kind of unsatisfiable constraint by checking all of the transi-
inconsistencies are composed includes clock constraints,tions’ temporal constraints. It is important to observe that
which cannot be satisfied. We have developed algorithms verification of a constraint such ag,*< 5 andx, > 10" is
to check these inconsistencies. much simpler than th&lP-completeproblem ofsatisfiabil-

The scenarios in Fig. 12 include two temporal inconsis- ity. As a matter of fact, all terms of a formula checked here
tencies. The two scenarios have the sgmeeondition but are made of the same variable, include a comparator and a
while the first interaction in scenario 1c needs a 10 s pause,constant. The verification reduces to two comparisons. The
the scenario in 2¢ should have started before a delay of 5 s inkind of inconsistency described here always produces a kind
the first interaction. of constraint with the same clock variable, because the

There is another less apparent temporal inconsistencycomposition algorithm uses the same clock variable for all
between the two scenarios. Scenario 1¢ must be completedhe constraints in transitions going from the same state.
in 20's, but the conjunction with scenario 2c makes this  The temporal inconsistency, introduced by scenario 1c’s
requirement impossible. In fact, 10 s must pass before thecompletion delay is detected by an algorithm which deter-
first interaction in scenario 1c, and 15 s must pass after thismines in each state the relationship between the automaton
interaction and before the second interaction in scenario 2c.clock variables and their minimal values. We do this by
The combination of these two delays is such that the third using the transition’s clock constraints and initializations.
interaction of scenario 1c can begin after a minimal delay of This may involve an exploration of all the paths of the
25 s, from the beginning of the scenario. automaton starting at its initial state. This exploration is

An analysis of the automaton generated by scenarios 1coptimized by sorting the transitions going from each state,

x0:=0 id invalid ~ ATM retains card, ATM reinit

w (x0<20?)

x1:=0, (x1>15 & x1<357?) A0 : .
(x0<20?) id vali
S2 ¢ k/5_3\

@ (x0<5 & x0>10?) Qlj CUST enters PIN/ \_/ATM disp service menuU

CUST inserts card/ ATM checks id
ATM disp pin_enter_prompt

Fig. 13. Automaton obtained from scenarios 1c and 2c.
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TEMPORAL INCONSISTENCIES
Between scenarios: [1C,2C]

transition:
(s0,s1,CUST INSERTS CARD & ATM DISPLAYS PIN_ENTER_PROMPT,c1:=0,c0>10 & c0<5)
“¢c0 > 10 and c0 < 5’ is unsatisfiable.

In scenario: [1C] ‘‘delay 20 sec’’ is impossible in transition:
(s2,s3,ID is VALID & ATM DISPLAYS SERVICE_MENU,,cO < 20)

Fig. 14. Analysis result for temporal inconsistencies.

1I WHEN numbers of attempts is greater than 3 INHIBIT ATM displays service menu

Fig. 15. An invariant.

considering initializations and smaller constraints first, number of attempts> 3, as an additional stimulus of the
looking only for the clocks minimal values. The application second interaction of the scenario 2a.

of this algorithm to the automaton in Fig. 13, allows us to

find that in stateS,, %, has 25 as a minimal value, and o )

consequently the clock constraing‘< 20" in the transition 8- SPecification completion

from S, to S; cannot be respected.
205 P A complete specification may be defined as one that

contains all the facts about the described system, even

7.3. Invariants those that are not defined in the user requirements [28].
Completeness cannot be ensured in a specification obtained

Invariants are requirements defined to inhibit execution from users’ scenarios because it includes only the require-

of some operations in particular situations. ments given. However, we provide some guidance in speci-
Fig. 15 shows an example of an invariant, which prevents fication completion.

the operatiordisplay service meniy the ATM; this happens Some of the incompleteness in specifications result from

anytime the conditionumbers of attempts is greater thais missing operations to link scenarios. This incompleteness

satisfied. Invariants may be verified when scenarios are producesynthetic transitionbetween states and sub-states,
composed, or against an already constructed specification. andsynthetic condition transitions.Synthetidransitions

An invariant verification during composition proceeds as and conditions may be removed by adding operations or
follows: Whenever a transition is constructed from a state, interactions to scenarios. As an example, the automaton in
we check if the conditions of the invariant are included in its Fig. 8 obtained from scenarios 1a and 2a includgg#hetic
characteristic conditionsand then if the transition includes condition This synthetic conditiorcomes from the second
some of the operations inhibited. Invariants not respectedinteraction of scenario 2a’s, because after the first interac-
are reported immediately upon detection. tion there is no way to know if one of its stimuli, the condi-

Verification of an invariant against a specification looks tion cash is available is verified in stateS, The
for the operations that are inhibited in all transitions going specification may be complete by replacing scenario 2a
from all states in whicleharacteristic conditionsclude the with scenario 25 shown in Fig. 17.
conditions of the invariant. Transitions that do not respect Incompleteness that can be detected in specifications are
the invariant are reported for a possible modification, with classified as temporal constraint incompleteness and beha-
the number of scenarios from which they are derived. vior incompleteness.

As an example, verification of the invariant 11 againstthe  There exists a temporal constraint incompleteness when
specification in Fig. 8 produces the analysis result in Fig. 16. from a given state some time ranges do not correspond to
The invariant is not respected because thenber of any transition. This kind of incompleteness may result on
attemptsmay have any value in the transition fro& to the system being indefinitely blocked in a state. As an exam-
S;. A correction can be provided by adding the condition ple in Fig. 13, from stat&,, whenid is valid, no behavior is

INVARIANT VIOLATION: invariant 1I
Transitions:
(s2,s3,id is valid AND verif(cash is available) & ATM DISPLAYS SERVICE MENU)

Obtained from Scenarios: [2A]

Fig. 16. Analysis result for an invariant.
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2a’ WHEN display is pin enter prompt
IF CUSTOMER enters PIN THEN ATM checks id
TRANSITION DELAY 60 sec ON EXPIRY ATM ejects card, ATM reinits
IF id is valid THEN ATM checks cash availability
IF cash is available THEN ATM displays service menu

Fig. 17. Scenario ZaOperatiorcheck cash availabilitynust be defined. One of its possible effects must be the assertion of the conditivis available

defined if Xy is greater or equal to 20. The system may, definition and verification of feature interaction problems
therefore, be indefinitely blocked i8, if no behavior is [29,30]. Telephone services are well described using scenar-
defined in this case. Incompleteness is found and reportedios and feature interaction problems that occur when several
by checking all the clock constraints from the transitions services are combined. An experiment was conducted in
going from state to state. order to answer the following questions: How difficult is
Behavior incompleteness includes conditions that are notthe modeling of communication services with scenarios?
taken into account and unspecified responses to possibléAre we able to detect the well-known feature interactions?
stimuli. Conditions are not taken into account, for instance, And finally, how efficient is the composition algorithm? The
when we know that they may occur from a state, but no experiment was carried out by a student with little knowl-
transition considers them. As an example, the automatonedge of the system. All the scenarios have been obtained
in Fig. 10, we know that in stat&,, the Customer’sd from informal descriptions. The Appendix describes two
may bevalid or invalid according to the operatiocheck typical feature interactions. For more examples see Ref.
id definition. There exists an incompleteness in this state, [31].
because only the conditidd is valid produces a transition Future work concerns the extension of the scenario
from it. Such a kind of incompleteness is reported by the language that allows the use of explicit composition opera-
prototype tool and may be corrected by providing other tors and modularity. We have to adapt accordingly, all
scenarios. the algorithms that are used for inconsistency detection in
Unspecified responses to stimuli originate from missing the prototype tool. Future work will be undertaken with the
interactions that may, e.g. be errors at the system interface financial support of FranceTelecom.
As we know from the set oftimuliused, some of therror
transitionsmay be added by askiryhat/If questions. For
the timed-automaton shown in Fig. 10, such a question is: Appendix

What happens if the CUSTOMER selects cash with- Note to the reader, this appendix is not necessary for
drawal in situation “display is pin enter prompt”, hold- understanding this paper.
ing in state 5,7 Fig. 18 shows the system architecture assumed in this

The operation may be prevented by the system interface.@PPendix. The application involves a system CONTROL-
But scenarios are supposed to be used for a system’s preliLER and three users. Example 1 shows the application
minary design, and this kind of question may aid precisely domain description and scenarios for Three-Way Confer-

the designing of the interface, or may call for the addition of €nce and Call-Waiting services. Scenarios are given in
missing scenarios. both textual and graphical forms. The tool REST is dedi-

cated to service creation and validation from the first step.

We have specified 15 telephone services and detected all
corresponding feature interactions. More details are givenin

Ref. [31].

We have presented an environment for scenario-based
requirements engineering. This environment aims in assist-Al. Example 1
ing users and analysts in scenario acquisition, and produc-
tion of complete and valid specifications from them. We
seek the user’s greater involvement in the requirement engi- A
neering process by usisgmi-formalanguages for scenario
representation and prototype simulation.

We also integrated time to a scenario because of its

importance in real-time systems. The paper is illustrated B c
with ATM scenarios. Although these examples are sufficient - -
to demonstrate our algorithms, more industrial examples are

needed to assess the applicability and usefulness of the
approach. We used the prototype tool for telephone service Fig. 18. An abstract view of the telephone system.

9. Conclusion

Application domain description
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scenario: twc

Controller

A comm_status is
communicating with B

A flashes

holds B

sends A tone_3WC
A dials C

rings C

C pick ups handset

establish A_C_communication

A flashes

=>

establish three_WayCall

[

Fig. 19. Three-way conference scenario.

System Component: CONTROLLER

operation: send busy_tone
operation: send tone

operation: send tone_3WC
operation: check USER_B status

postconditions: USER_B status is idle OR USER_B
status is busy

operation: ring USER_B
operation: establish A_B_comm

postconditions: USER_A communication_status is
communicating_with_B

operation: establish A_ C_comm

operation: establish three_WayCall

operation: stop_A

withconditions: ends USER_A dial USER_B AND

ends CONTROLLER establish A_B_comm
operation: hold USER_B

postconditions:
holding

operation: hold USER_C

USER_B communication_status is

postconditions:
holding

USER_C communication_status is

System Component: USER_A

attribute: handset values: down, up
attribute: communication_status

values:
with C

communicating_with_B, communicating_-

operation: pick_up handset
postconditions: USER_A handset is up

operation: dial USER_B
operation: dial USER_C
operation: flash

System Component: USER_B

attribute: status values: busy, idle
attribute: communication_status

values:
with_ C

attribute: handset values: down, up
operation: pick_up handset

communicating_with_A, communicating_-

System Component: USER_C

attribute: status values: busy, idle
attribute: communication_status

values: communicating_with_A,
with_C, holding

communicating_-

Three-Way Conference Service Scenario (Fig. 19)

1twc WHEN USER_A communication_status is commu-
nicating_with_B
IF USER_A flashes THEN CONTROLLER holds
USER_B AND

CONTROLLER sends USER_A tone_3WC

IF USER_A dials USER_C THEN CONTROLLER rings
USER_C

IF USER_C status is idle AND USER_C pick_ups hand-
set

THEN CONTROLLER establishs A_ C_comm

IF USER_A flashes THEN CONTROLLER establishes
three_WaycCall.

Call-Waiting Service Scenarios (Fig. 20)

lcw WHEN USER_A communication_status is commu-
nicating_with_B

IF USER_C status is idle AND USER_C pick ups
handset

THEN CONTROLLER sends USER_C tone

IF USER_C dials USER_A THEN CONTROLLER
beeps USER_A
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scenario: cwl scenario: cw2
Controller Controller

comm_stat 1§

iy ) B op_status is holding
communicating with B P s

C status is idle
A flashes

holds C

establish A_B_communication
C pick ups handset T
sends C tone

scenario: cw3

C dials A Controller
beeps A
A flashes
holds B C op_status is holding
A flashes holds B

establish A_C_communication

establish A_C_communication
I

Fig. 20. Call-Waiting scenarios.

A flashes/ verif(C status is busy)
CTL hold B

CTL send A tone 3w~ A dial C/CTL ring C verif(C status is idle)
O C £ ()
verif(C status is idle)
A dial C/

C pick_up handset/
CTL establish A_C_com

verif(C status is idle)

CTL ring C
A flashes/ verif(C status is busy)
@ CTL hold B
CTL send A tone_3wc A dial C/
C pick_up handset/ CTL ring C
CTL send C tone A flashes/
A flashes/CTL hold B = CTL establish

sS/ CTL send A tone_3wc
C dial A/ A dial C
CTL beep A CTL ring
A flashes/CTL hold B

CTL send A tone_3wc

three_WayCall

©

A flashes/

CTL hold B A dial C/

\ CTL establish A_C_comm CTL ring C
A flashes/

CTL hold B

CTL establish
A_C_comm

A flashes/
CTL hold B

A flashes/ CTL hold C CTL send A tone_3wc
CTL establish A_B_comm

Fig. 21. Automata obtained by composition of three-way conference and call-waiting.
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scenario: calf3 |
Controller

Call forwarding & Call forwarding
< looking at B >

. scens i0: -.I
scenario: calfl seenario: calf2

Controller Controller

. status is ready
status is ready status is ready look up A

scenario: calfd
1 s Controller

< looking at B >

B forward is inactive

C dials A

C dials A

look up A look up A

A forward is inactive

rings A

rings B

look up B

A pick ups handset

B pick ups handset

stablish A_C_communication . —
establish AL looking at B establish B_C_communication

Fig. 22. Call-forwarding versus call-forwarding scenarios.

IF USER_A flashes THEN CONTROLLER holds IF USER_A flashes THEN CONTROLLER holds
USER_B AND USER_B AND

CONTROLLER establishs A_C_comm CONTROLLER establishs A_C_comm
2cw WHEN USER_B communication_status is holding po. Call-Waiting versus three-way conference

IF USER_A flashes THEN CONTROLLER holds
USER_C AND
CONTROLLER establishs A_B_comm

We have already shown the scenarios for these services.
Call-Waiting is described with scenarios 1cw, 2cw and 3cw,
and Three-Way Conference is described with scenario 1twc.
3cw WHEN USER_C communication_status is holding Fig. 21 shows the automaton obtained by the composition of

A forward is B
CTL look up B

B forward is inactive

C dials A/ )
CTL look u CTL ring B

1 A answer/
A forward is inactive B forward is A CTL establish B C. com
CTL ring A CTL look up A
SZ A answer/ @

CTL establish A_C_comm

Fig. 23. Automaton obtained by composition of scenarios calfl, calf2, calf3 and calf4.
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the two service scenarios using the application domain of
example 1. Itis already known that the combination of these
two services produces a feature interaction problem [32].
This interaction is detected without tool because the result-
ing automaton includes non-deterministic transitions.
Indeed in states s11 and s14 of the automaton in Fig. 21,
the same stimulus (A flashes) produces two different system
reactions: hold B followed by establish A_C _comm and
hold B followed by send A tone_3wc. The first reaction
corresponds to Call-Waiting, while the second reaction is
defined by a Three-Way Conference. Several other interac-
tions produce non-deterministic transitions and are detected
in the same way. These interactions include Credit-Card
Calling versus Voice-Mail Service and Call-Waiting versus
Voice Mail Service.

A3. Call forwarding versus call forwarding

Call Forwarding allows a user to forward all his incoming
calls to another user. When A forwards its calls to B, the
system redirects any call for A to B. This feature may inter-
act with itself and produce an infinite loop [32]. The
problem occurs when the call forwarding feature is being
used repetitively by a chain of users. Suppose that user A
decides to forward his calls to user B’s location and user B
decides to forward his calls to user A’s location. If a third
user attempts do dial either phone number, an infinite loop
will be generated. Scenarios calfl, calf2, calf3 and calf4 in
Fig. 22 describe an example where user A may forward his
calls to B, B may forward his calls to A, and C calls A. In
scenario calfl, C calls A. The system verifies if A forward is
activated (look up A). If A forward is inactive the system
then rings A and a communication is established when he
picks up. If A forward is B (scenario calf2), the system must
look up B. We use a situation descriptor here to show that
this scenario may be followed by either scenario calf3 or
calf4. Scenario calf3 describes the case where B forward is
inactive. The system then rings B and establishes a commu-
nication between B and C when B picks up. In scenario
calf4, as B is forwarded to A the system looks up A. We
do not show the application domain description used for this

example because of space restriction. Fig. 23 shows the[19

automaton resulting from the composition of scenarios
calfl, calf2, calf3 and calf4 in our environment. From the
experimentation we get the following results: scenarios are
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