
SPECIFICATION SYNTHESIS by MERGING USE CASES �

Aziz Salah
Département d’Informatique

Université du Québecà Montréal

C.P. 8888 succ. centre ville Montr´eal

Québec Canada H3C 3P8

Email: salah@info.uqam.ca

Rachida Dssouli
Electrical & Computer Engineering

Concordia University

1455 de Maisonneuve Blvd. W. Montreal

Quebec Canada H3G 1M8

Email: dssouli@ece.concordia.ca

Abstract
We propose two methods for automatic merging of use

cases to synthesize a specification in the form of a Finite
State Machine (FSM) which has the same behavior as these
use cases. For each use case the analyst chooses the appro-
priate method to merge it into the current FSM. The ob-
tained FSM is independent of the order in which use cases
are merged.

1 INTRODUCTION

Our objective is the automatic synthesis of a formal
specification by merging together a given set of use cases
which describes the behavior of the system. Analysts es-
tablish use cases and present them to users for validation.
Use cases are intelligible for users who are probably not
a computer specialist. A use case describes the possible
sequences of interactions among the system and its envi-
ronment in response to a stimulus [1]. It is not a single sce-
nario but regroups a set of potential scenarios. A scenario
represents a possible execution of a use case. Usually, a use
case focuses on sequences of interactions to accomplish a
potential goal. For example, a use case may describe how
a phone user may make a phone call. Merging together use
cases means the integration of use cases into a single tar-
get model which is the specification of the system. In our
approach, the output specification is a finite state machine.

In this paper Section 2 describes the acquisition of re-
quirements and their representation. Section 3 presents our
methods to merge use cases. Section 4 addresses the re-
lated work.

2 ACQUISITION OF THE REQUIRE-
MENTS

Variables of the system are discrete variables which cap-
ture the state of the system. When a system interacts with

�Partially supported by France Telecom

its environment, its state changes. Therefore, the variables
of the system are updated to describe its new state. The
state of the system depends only on the values of its vari-
ables. Thus a state of the system is a configuration in which
each variable has a unique value. The value of a variable
v in a states is written s(v). A variable-constraint is a
boolean combination of predicates on variables. A state
of the system satisfies a variable-constraint if the values
of the variables in this state satisfy the boolean expression
of the variable-constraint.Variable-assignmentsare used
to update the state of the system. For example, variable-
assignmentAssign = fv1 = v1 + 3; v2 = 1g means that
variablev1 is incremented by3, variablev2 is set to1 and
other variables are unchanged.

Use cases

A use case is described as a tree of possible sequences
of actions. Figure 1 shows an example of the tree of
a use case which specifies the establishment of a phone
call. Three scenarios are possible during the execution
of the use case shown in figure 1. Let’s name these
scenarios: sc1 =“Dial B, Ring, B Pickup, Talk”,
sc2 =”Dial B, Busy Tone A” and sc3 =”Dial B,
Ring, Busy Tone A”. sc1 represents the scenario of the
expected actions of the use case and corresponds to estab-
lishing a phone call among a user A and a user B. Scenarios
sc2 et sc3 cover cases of exceptions when a call establish-
ment fails.

We draw the general pattern of the tree of a use case
in figure 2 wherePN0, PN1, ::, PNn are calledprimary
nodesand where termsPActi andEActij areactions. PN0

is the root of the tree and represents the starting point of
the execution of the use case. All executions of a use case
start from the root and end by a leaf of the tree. Actions
PActi are called primary actions of the use case because
the scenario “PAct1, PAct2, ::, PActn” represents the ex-
pected sequence of actions of the use case. ActionsEActij
are exception and represent either a timer expiration, an



.

Dial B

Ring

Busy Tone A

Busy Tone A

Talk

B Pickup

Figure 1: Example of a use case modeling the establish-
ment of a phone call

interruption or any problem preventing the use case from
ending the execution of the expected sequence of actions.
Actually, scenarios in the form “PAct1, PAct2, .., PActi,
EActij ” represent the cases where the execution of the use
case fails. The tree of a use case shows the causality rela-
tion among its actions. In the sequence of a scenario, the
execution of an action creates acontextwhich enables the
execution of the next action. Before characterizing such
context, let’s focus on the description of an action.

...

...

...

...

PN0

PAct0 EAct01 EAct02

EAct0k0

PN1

PAct1
EAct11 EAct12

EAct1k1

PN2

PNn�1

PNn

PActn�1
EAct(n�1)1

EAct(n�1)2
EAct(n�1)kn�1

Figure 2: Representation of the tree of a use case

In a use case, the description of an action is a struc-
ture which includes three components: an event, a pre-
condition and a post-condition. The event is a label be-
longing toLab the set of possible events of the system
and models an observable signal. The pre-condition is a
variable-constraint that the state of the system must sat-
isfy before the execution of the action. The post-condition
of an action is a variable-assignment which describes the
modification of the state of the system after the execution
of the action. Moreover, we writeAct:Label the event of

actionAct, Act:VarConst denotes its variable-constraint
andAct:Assign represents its variable-assignment. In the
next section, we define a formal semantics of the behavior
a use case describes.

The merging of a use case into the specification is
accomplished by the means of an integration method.
We propose two semanticly different integration methods;
namelyFreeMethod andBlockMethod. FreeMethod

enables scenarios interleaving in the specification contrary
to BlockMethod which considers a use case as a build-
ing block and protects it against interleaving with other use
cases. The analyst chooses the appropriate method to use
for each use case and represents this information within a
mappingIntegMethod. Finally, We assume that the out-
puts of the requirements acquisition phase are:

� a set of discrete variablesV = fv1; ::; vpg

� a set of use casesUC = fuc1; uc2; ::; ucqg

� and the mappingIntegMethod which indicates for
each use case inUC an integration method.

3 SYNTHESIS OF THE SPECIFICATION

Synthesizing a specification means merging all the
given use cases into a finite state machine which preserves
the behavior of use cases. We start by defining a formal
semantics for use cases then we transform use cases into
a flat form which is appropriate to use for synthesizing a
finite state machine.

3.1 Formalization of the semantics of a
FreeMethod use case

A FreeMethod use case is a use case which is merged
into the specification by usingFreeMethod. In a scenario,
the execution of actionPActi (figure 2) creates acontext
that enables the execution of the next actions. All actions
of the primary nodePNi+1 are candidate to be next ac-
tion afterPActi. Consequently, we identify thiscontextby
a variable-constraint written “PNi+1:VarConst” and as-
sociated withPNi+1. The state of the system should sat-
isfy the context variable-constraintPNi:VarConst as well
asAct:VarConst in order to enable the execution an ac-
tion Act of a primary nodePNi. We notice that the con-
text PN0:VarConst is propagated through the execution
of actionPAct0 to constitute the contextPN1:VarConst.
In the same way, the contextPN1:VarConst is propa-
gated through the execution of actionPAct2 to constitute
the contextPN2:VarConst and so on. Consequently, the
variable-constraint of thecontext of a primary node is de-
duced from a recurrent sequence:



PN0:VarConst
def
= PAct0:VarConst ^ (tag == NoUC) (1)

For1 � i � n� 1,

PNi:VarConst
def
=PropagateConst(PNi�1; PActi�1)

^ PActi:VarConst
(2)

PNn:VarConst
def
= PropagateConst(PNn�1; PActn�1)

(3)
In equation (1) we have introduced a new variabletag

which is used during the merge of use cases. It is consid-
ered as a variable of the system and added to the setV .
The variabletag has no effect in the case ofFreeMethod

use case but it’s needed forBlocMethod use cases. When
the variabletag is set to the valueNoUC, it means that no
BlocMethod use case is running.

Equation (1) states that the contextPN0:VarConst is
exactly the pre-condition of primary actionPAct0. When
the state of the system satisfiesPN0:VarConst, the execu-
tion of PAct0 is expected but the environment of the sys-
tem may not allow this execution then an exception action
of PN0 may happen provided that the state of the system
satisfies also the pre-condition of this exception action.

Equation (2) gives the context expression for all pri-
mary nodes except the root and the leaf ones. The term
PropagateConst(PNi�1; PActi�1) denotes the variable-
constraint that all the states of the system satisfy af-
ter the execution of actionPActi�1. It represents
the variable-constraint which results from the propaga-
tion of PNi�1:VarConst by applyingPActi�1:Assign.
Moreover, we must includeActi:VarConst as a part
of the expression ofPNi:VarConst because an ex-
ception action of PNi may be executed in states
where the execution ofPActi is expected. Con-
sequently, the contextPNi:VarConst is the conjunc-
tion among PropagateConst(PNi�1; PActi�1) and
PActi:VarConst.

Equation (3) shows the context expression of the last
primary node of a use case. Since this primary node
doesn’t contain any action, its context is exactly the result-
ing variable-constraint from the execution ofPActn�1.

Let’s now define the formal semantics of a
FreeMethod use case. Given an actionAct of a
primary nodePN of a such use case, the system en-
ables the execution ofAct in a states which satisfies
the variable-constraintAct:VarConst ^ PN:VarConst.
During the execution ofAct in s, the labelAct:Label is
observed then the system moves to the new state which
result from the application of the variable-assignment
Act:Assign in states. We will define later the formal
semantics of aBlockMethod use case.

3.2 Behavior Rules of aFreeMethod use case

On the one hand, the representation of a use case in the
form of a tree (figure 2) is clear and intelligible for users
because they can easily extract from given use cases all the
possible scenarios of the system behavior. On the other the
analyst needs more convenient representation for use cases
which is suitable to an automatic synthesis of a specifica-
tion from given use cases. For this reason we transform a
use case into a flat format composed of a set of independent
behavior rules. A behavior rule is obtained by extend-
ing an action of a use case with the context of the primary
node of this action. A behavior rule has the same descrip-
tion elements like an action but has a different semantics.
A behavior ruler has a variable-constraintr:VarConst, a
label r:Label and a variable-assignmentr:Assign. Be-
havior rules are context free which means: if the state of
the system satisfiesr:VarConst then the system may exe-
cute behavior ruler and moves to a new state by applying
r:Assign to the current state.

In order to preserve the semantics of aFreeMethod

use case (section 3.1), we define the behavior ruler of an
actionAct of a primary nodePN as follows:

� r:VarConst
def
= Act:VarConst ^ PN:VarConst,

� r:Label
def
= Act:Label and

� r:Assign
def
= Act:Assign.

3.3 The case ofBlockMethod use cases

The normalization procedure (Fig. 3) consists of mod-
ifying a BlockMethod use case to obtain an equivalent
FreeMethod use case. We bring thus the definition of the
formal semantics of aBlockMethod use case to the case
of FreeMethod use case. The normalization procedure
asserts that the scenarios of aBlockMethod use case are
not interruptible by any other use case scenarios. It con-
sists of setting the variabletag to uc:id by modifying the
variable-assignment of the the first primary action ofuc

(Fig.3 line 2).uc:id denotes the unique id of the use case
uc. After the execution of the the first primary action of
a normalizedBlockMethod use case, the variabletag re-
mains set touc:id until the end of the use case where the
value oftag is restored toNoUc by the execution of one of
the last actions (Fig.3 lines 3-5). The variabletag is used
as a token to disable other use case when aBlockMethod

inserted use case is running.

3.4 Finite state machine of behavior rules

Finite state machine (FSM) is a suite model widely used
by the computer science community. FSMs are used for the



Procedurenormalization(uc : usecase)

(1) If IntegMethod(uc) = BlockMethod Then

(2) PAct0:Assign := PAct0:Assign [ ftag = uc:idg

(3) PActn:Assign := PActn:Assign[ ftag = NoUCg

(4) For all EActij of uc Do

(5) EActij :Assign := EActij :Assign[ ftag = NoUCg

Figure 3:Normalization procedure

specification of the behavior of a system, for the recogni-
tion of language patterns etc. FSM are precise and easy to
read and to convert into a design and into code [2]. FSM is
a directed labeled graph where nodes are states which are
connected by labeled edges called transitions. Formally,
we writeM = (S; So; L; T ) is an FSM where,S is the
set of states,So � S is the set of initial states,L a set of
labels for transitions andT � S �L� S is the set of tran-
sitions. FSM is an abstraction of the behavior of a system
which allows its simulation. Firing a transition of an FSM
represents the execution of an action.

We aim at constructing an FSM which has the same
behavior as a set of behavior rulesB. This task is
straightforward and consists of constructing the compo-
nents(S; So; L; T ) of this FSM.S is the set of states of
the system the behavior is specified byB. The states of the
system were defined in section 2.T the set of transitions is
composed of all the transitions in the form(s; r:Label; s0)
wherer is a behavior rule belonging toB, s is a state of
the system which satisfiesr:ConstV ar ands0 is the state
which results for the application ofr:Assign in s.L is the
set of all the labels of the behavior rules inB. However,
we will discuss further the definition ofSo the set of initial
states because this information is not available in a set of
behavior rules and should be extracted from use cases.

We show at Figure 4 aFreeMethod use case and
the obtained FSM from its behavior rules. The state
(NoUC; 0; 0) is the initial state of this FSM. By general-
izing this reasoning, the initial states of the FSM of a set of
use cases are the initial states of use cases.

3.5 Merging use cases into FSM

It consists of building an FSM from the behavior rules
which are extracted from use cases ofUC according to
their decided integration methods given by the mapping
IntegMethod. This FSM is the specification of the sys-
tem. Other use cases may be added to the specification to
complete any lack. The FSM of a system is thus incre-
mently build. Any intermediate FSM can be validated and
tested. If any error or bad interaction among use cases is

Action ConstV ar Label Assign

PAct0 v1 == 0 ^ v2 == 0 Out v1 = 1

PAct1 True In v1 = 0; v2 =
1

EAct11 True T imeOut v1 = 1

PAct2 True Reset v1 = 0; v2 =
0

In TimeOut

Out

Reset
(NoUC; 0; 0)

(NoUC; 0; 1)

(NoUC; 1; 0)

(NoUC; 1; 1)

Figure 4: A use case and its FSM where a state is a tuple
of variablestag, v1 andv2 values

detected, the responsible use cases are traced. After modi-
fying those use cases or choosing for them an another inte-
gration method, a new FSM is then rebuild. Since FSM of
the system is obtained from a set of behavior rules, we will
obtain the same FSM no matter the order in which use case
are merged.

We present at Fig. 5 an illustration of merging use case
usingFreeMethod andBlockMethod integration meth-
ods. FSM of figure 5(c) results from the integration of
use casesuc1 (figure 5(a)) anduc2 (figure 5(b)) using for
both of themFreeMethod. Because of the overlapping of
use casesuc1 anduc2, there is in FSM (c) a new scenario
00a; b; g00 which is not an execution ofuc1 nor uc2 but re-
sults from their interleaving. The scenario “a; b; g” do not
occur in FSM figure 5(d) which results from the merging
of uc1 by BlockMethod anduc2 by FreeMethod. The
scenario “a; b; c; d” is thus protected from interleaving in
FSM (d).

4 RELATED WORK AND DISCUSSION

In the related work, some authors do not differentiate
use cases and scenarios. A scenario should be an execution
of a use case. A use case with only one possible execution
may be considered as a scenario.

Glinz [3] describes his use cases using Harel’s state
charts formalism [4] for which use cases integration tem-
plates were defined. Overlapping use cases must be decom-
posed into disjoint ones before their integration. Amyot
and al. [5] have chosen a UCMUse Cases Maps[6] rep-
resentation for their scenarios. UCM is graphic notation
which is not formal but it is suitable for requirements elic-
itation. Koskimies and al.[7] use scenarios to describe par-
tial behaviors of object classes in the OMT method. Sce-
narios are formalized as trace diagrams and integrated into
a finite state machine that contains exactly the scenarios.



a

b

c

d

(a)

c

d

e

f

g

(b)

a

b

c

d

e

f
g

s1

s2

s3

s4

s5

(c)

a

b

cc

d
d

e

f
g

s1

s21

s31 s3

s41 s4

s5

(d)

Figure 5: (a) and (b) are the trees of use casesuc1 anduc2
respectively. (c) is FSM of the integration ofuc1 anduc2
using for both of themFreeMethod. FSM (d) is obtained
whenBlockMethod is used foruc1 andFreeMethod for
uc2

Their integration algorithm is restricted to deterministic
and “completely specified” systems. Hsia and al. [8], con-
struct a tree of all possible behaviors by considering at each
node all the possible events according to a user view. The
scenarios of a user view are paths this tree and are trans-
lated into a grammar that corresponds to a finite state ma-
chine. The generated specification is complete according
to the set of defined events. Som´e and al. [9], describes
scenarios using restricted natural language. Their scenar-
ios support timed constrained behavior and are integrated
into a timed automaton[10].

Merging use case in our approach is completely auto-
matic. We have also proposed two semanticly different in-
tegration methods. Choosing one of the integration meth-
ods for merging a use case is a part of the specification.
Consequently, a specification error may be fixed just by
changing the integration methods of use cases. Moreover
a similar approach may be applied for real-time systems
[11].

5 CONCLUSION

In this paper, we have proposed a suite formal model
of use case. An incremental construction of a specification
results from merging use cases by using two possible in-
tegration methods. Choosing an integration method for a
use case is based on whether the use case interleaving it is
enabled or not. The output of the integration of use case is
an FSM which is insensitive to the order in which use cases
are inserted.

Our approach was implemented as a formal specifica-
tion support tool in which several systems were tested such

as a telephone switch, an automatic teller machine and a
mouse click recognition system. The number of states in
the synthesized FSM grows rapidly, we wish to further
study this problem. Our approach may also be applied into
Object oriented analysis, in this case each object may rep-
resent a system. This is an interesting path we will explore.

REFERENCES

[1] J. Rumbaugh, Getting started, Using use cases to cap-
ture requirements, Journal of Object Oriented Pro-
gramming (1994) 8–??

[2] S. R. Schach, Object-Oriented and Classical Software
Engineering, 5th Edition, McGraw-Hill, 2001.

[3] M. Glinz, An integrated formal model of scenarios
based on statecharts, in: W. Sch¨afer, P. Botella (Eds.),
Proceedings of the Fifth European Software En-
gineering Conference, no. 989 in Lecture Notes in
Computer Science, Springer-Verlag, 1995, pp. 254–
271.

[4] D. Harel, STATECHARTS: A Visual Formalism for
Complex Systems, Science of Computer Program-
ming 8 (1987) 231–274.

[5] D. Amyot, L. Logrippo, R. Buhr, Sp´ecification et
conception de syst`emes communicants: une ap-
proche rigoureuse bas´ee sur des sc´enarios d’usage, in:
CFIP97, Liège, Belgique, 1997, pp. 159–174.

[6] R. Buhr, R. Casselman, Use Case Maps for Object-
Oriented System, Prentice Hall, USA, 1995.

[7] K. Koskimies, E. Mäkinen, Automatic Synthesis
of State Machines from Trace Diagrams, Software-
Practice and Experience 24 (7) (1994) 643–658.

[8] P. Hsia, J. Samuel, J. Gao, D. Kung, Y. Toyoshima,
C. Chen, Formal approach to scenario analysis, IEEE
Software 11 (1994) 33–41.

[9] R. Dssouli, S. Some, J. Vaucher, A. Salah, Service
creation environment based on scenarios, Information
and Software Technology 41 (11-12) (1999) 697–
713.

[10] R. Alur, D. Dill, A Theory of Timed Automata, The-
oretical Computer Science 126 (1994) 183–235.

[11] A. Salah, Génération automatique d’une sp´ecification
formelleà partir de sc´enarios temps-r´eels, Phd thesis,
Université de Montréal (May 2002).


